
Neural Bipartite Matching

Dobrik Georgiev 1 Pietro Liò 1

Abstract
Graph neural networks (GNNs) have found ap-
plication for learning in the space of algorithms.
However, the algorithms chosen by existing re-
search (sorting, Breadth-First search, shortest path
finding, etc.) usually align perfectly with a stan-
dard GNN architecture. This report describes
how neural execution is applied to a complex algo-
rithm, such as finding maximum bipartite match-
ing by reducing it to a flow problem and using
Ford-Fulkerson to find the maximum flow. This
is achieved via neural execution based only on
features generated from a single GNN. The eval-
uation shows strongly generalising results with
the network achieving optimal matching almost
100% of the time.

1. Introduction
Many real-world problems can be formulated as graph prob-
lems – social relations, protein folding, web search, etc.
Throughout the years graph algorithms for solving these
tasks have been discovered. One such task is the prob-
lem of finding the maximum flow f from a source to a
sink in a graph G(V,E) whose edges have certain capaci-
ties c(u, v), (u, v) ∈ E. (Imagine material flowing source
 sink). Any flow must obey two important properties:
the flow on each edge should not exceed the capacity, i.e.
f(u, v) < c(u, v) and for all nodes except source and sink
flow should be preserved, i.e.

∑
v∈V

f(u, v) =
∑
v∈V

f(v, u).

Algorithms for finding maximum flow have found applica-
tions in many areas, such as bipartite matching (attempted
here), airline scheduling or image segmentation (Boykov &
Funka-Lea, 2006).

The main topic of this work is evaluating whether graph
neural networks (GNNs) are able to reason like a complex

1 Department of Computer Science and Technology, University
of Cambridge, Cambridge, United Kingdom . Correspondence
to: Pietro Liò <pietro.lio@cst.cam.ac.uk>, Dobrik Georgiev
<dgg30@cam.ac.uk>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 108, 2020. Copyright 2020 by
the author(s).

algorithm, specifically, whether they can be used for finding
optimal bipartite matching using the Ford-Fulkerson (Ford
& Fulkerson, 1956) algorithm for finding maximum flow.
Performing the reasoning is achieved via neural execution,
in a similar fashion to Veličković et al. (2020). GNNs have
been both empirically (Veličković et al., 2020) and theoreti-
cally (Xu et al., 2020) shown to be applicable to algorithmic
tasks on graphs, strongly generalising on inputs of sizes
much larger than trained on. However, these algorithms
rely on a locally contained and fixed dataflow which aligns
perfectly with a standard GNN architecture, making them
easy to model with GNNs (c.f. Xu et al., 2020).

Our contributions are three-fold: 1) We successfully show
that GNNs are suitable for learning a complex algorithm,
namely Ford-Fulkerson, which consists of several compos-
able subroutines. To the best of our knowledge, this is the
first time such an algorithm is neurally executed with GNNs.
2) We demonstrate that GNNs can learn to respect the invari-
ants of a complex algorithm. 3) We devised an evaluation
which not only separately takes into account the accuracy of
the subroutines, but assesses the performance of the Ford-
Fulkerson algorithm as a whole – an inconsistency even in
one of the subroutines can invalidate the whole algorithm.

2. Background
2.1. Ford-Fulkerson

For presentational purposes consider a concise version of
Ford-Fulkerson algorithm given in Cormen et al. (2009)
which operates directly on the residual graph Gf with resid-
ual capacities cf derived from the input flow graph. The
source and sink of the network are src and sink:

Algorithm 1 Ford-Fulkerson

Input: Gf , src, sink
while ∃ valid path p ∈ Gf from src to sink do
cf (p) = min{cf (u, v) : (u, v) ∈ p}
for each (u, v) ∈ p do
cf (u, v) = cf (u, v)− cf (p)
cf (v, u) = cf (v, u) + cf (p)

end for
end while
return

∑
v∈G

cf (v, src)

Neural Bipartite Matching

The algorithm above has three key subroutines the neural
network has to learn – finding augmenting path, finding
minimum (bottleneck) capacity on the path and augmenting
the residual capacities along the path.

2.2. Algorithm Execution

Preliminary definitions The GNN receives a sequence of
T ∈ N graphs with the same structure (vertices edges), but
different features representing the execution of an algorithm.
Let the graph be G(V,E). At each timestep t ∈ {1, ..., T},
each node i ∈ V has node features ~x(t)i ∈ RNx and each
edge (i, j) ∈ E has edge features ~e(t)ij ∈ RNe . At each

step of the algorithm node-level outputs ~y(t)i ∈ RNy are
produced, which are later reused in ~x(t+1)

i .

Encode-process-decode The execution of an algorithm
proceeds by the encode process decode paradigm (Hamrick
et al., 2018). For each algorithm A, an encoder network
fA produces the algorithm-specific inputs ~z(t)i The result
is then processed using the processor network P , which
is shared across all algorithms. The processor takes as
input encoded inputs Z(t) = {~z(t)i }i∈V and edge features
E(t) = {~e(t)ij }e∈E to produce latent features H(t) = {~h(t)i ∈
RK}i∈V : Algorithm specific outputs are calculated by its
corresponding decoder network gA. Termination of the
algorithm is decided by a termination network, TA, specific
for each algorithm. The probability of the termination of
an algorithm is obtained by applying the logistic sigmoid
activation σ to the outputs of TA. This is summarised as:

~z
(t)
i = fA

(
~x
(t)
i ,~h

(t−1)
i

)
(1)

H(t) = P
(
Z(t),E(t)

)
(2)

~y
(t)
i = gA

(
~z
(t)
i ,~h

(t)
i

)
(3)

τ (t) = σ
(
TA

(
H(t)

))
(4)

where H(t) = 1
|V |
∑

i∈V
~h
(t)
i . The execution of the algo-

rithm proceeds while τ (t) > 0.5 and t < |V − 1|. The
algorithm is always terminated in |V − 1| steps.

Supervising algorithm execution The aim for every al-
gorithm is to learn to replicate the actual execution as close
as possible. To achieve this, the supervision signal is driven
by the actual algorithm outputs at every step t.

For more details, please refer to Veličković et al. (2020).

3. Neurally Executing Ford-Fulkerson
On a high-level, execution proceeds as in Figure 1. The
neural network computes an augmenting path from an input

residual graph Gf

GNN

augm. path

bottleneck

augm. res.
graph

R
ep

ea
ts

un
til

te
rm

in
at

io
n

Figure 1. Neural execution of Ford-Fulkerson: The GNN takes
as input a residual graph Gf . At each step of the algorithm, the
GNN computes the augmenting path which is then reused (orange)
to find the bottleneck edge on the path. The bottleneck and the
augmenting path are then fed through (blue) to produce the residual
graph with augmented capacities. The resulting residual graph is
the input to the next step (yellow).

residual graph. Then, given the path, the bottleneck on it
is found and the capacities on the path are changed accord-
ing to Algorithm 1. The resulting new residual graph is
reused as input to the next step and this process repeats until
termination of the algorithm.

Finding Augmenting Path One of the key challenges to
the task of finding an augmenting path was deciding how
the supervision signal is generated. Supervising towards
algorithms such as Breadth-First/Depth-First search turned
out to bee too difficult to train, since the algorithm and the
learner could choose a different augmenting path (in both
cases valid), but the learner is ‘penalised’ for its decision.

src sink

1

2

3

4

1/6

1/1

1/2

1/5

1/7

1/8

1/7

0/12

0/11

0/5

0/15

0/13

0/1

0/1

The solution to this problem is presented above. Additional
weights are attached to each edge (edges are in the format ca-
pacity/weight). Now, if we choose to find the shortest path1,
the bottom path (green) is preferred over the top one (red).
This changes the task from finding an augmenting path to
finding the shortest augmenting path, given the additional
weights. Finding the shortest path with the Bellman-Ford
algorithm (Bellman, 1958) can be achieved by learning to
predict predecessors for each node (Veličković et al., 2020).
The network needs to learn to ignore zero capacity edges.

1It is theoretically possible that two shortest paths exist, but in
practice this rarely occurred.

Neural Bipartite Matching

Algorithm 2 Simulated Ford-Fulkerson
Input: Gf , src, sink, oracle {Neural network oracle}
cntb = 1
while oracle.FIND-PATH(Gf , src, sink) do
p = oracle.path
cf (p) = oracle.FIND-PATH(Gf , src, sink, p)
real-cf (p) = min{cf (u, v) : (u, v) ∈ p}
cntb++
if cf (p) 6= real-cf (p) then

break
end if
if real-cf (p) = 0 then {tb to avoid endless loops}

if cntb > tb then
break

end if
end if
oracle.SUBTRACT-BOTTLENECK(Gf , src, sink, p, cf (p))
cntb = 1

end while
return

∑
v∈G

cf (v, src)

Bottleneck Finding After an augmenting path is found,
the next step is to find the bottleneck capacity along this
path. All edges not on the augmenting path are masked out
(deterministically) and each edge is assigned a probability of
being the bottleneck. Inspired by Yan et al. (2020), the prob-
abilities were generated using a readout attention computed
from the messages between edges produced by the GNN
from the last Bellman-Ford timestep. We have found that
a single Transformer encoder layer (Vaswani et al., 2017)
followed by a fully-connected layer is sufficient for our task.

Augmenting Path Capacities Assuming integer capaci-
ties2 predicting the edge capacities after the augmentation is
achieved using logistic regression over the possible new for-
ward capacities. For each edge ei with capacity cei , based
on the message generated for this edge by the GNN, we as-
sign probabilities to each number of the range [0; cei]. Each
forward-backward edge capacity pair keeps constant sum.

To provide unique supervision signal for the above two
tasks, random walks of length 5 are generated, together with
random integer edge capacities in the range [1; 10].

4. Evaluation through simulation
Simply evaluating each step separately may not provide
sufficient insight on how well the algorithm is learnt – dis-
crepancies in either subroutine can nullify the correctness of
the algorithm. Here we present evaluation through simula-
tion, which simulates the Ford-Fulkerson from Algorithm 1.
Algorithm 2 summarises the simulation. Subroutine details
and design decisions are discussed below.

2This does not make the problem less general.

Finding Augmenting Path and Termination The main
issue with this step is that it is not possible to distinguish
whether a valid path does not exist or the network is unable
to find it. A trivial heuristic is terminating the algorithm as
soon as the network produces an invalid path containing a
zero capacity edge. A slightly better approach is a thresh-
olding heuristic – pre-defining a threshold hyperparameter t
and terminating the execution if the network is unable to find
a path t consecutive times. To add some non-determinism
edge weights are randomised for every attempt.

A smarter approach would be to learn to predict which nodes
are reachable in the residual network via edges with positive
capacity using the Breadth-First Search (BFS) algorithm.
Therefore we can decide to terminate the algorithm, by
predicting whether the sink is reachable from the source. If
predicted reachable, a possible path from the source to the
sink is generated by predicting predecessors. This heuristic
is less artificial than the previous one, but now we have
no guarantee that the generated path is valid. However,
the bottleneck finding subroutine can be used to detect the
presence of a zero capacity edge.

Bottleneck Finding Similar issue arises here: the net-
work could predict a wrong edge as the bottleneck on the
path, making the algorithm incorrect. If such an error oc-
curs, the Ford-Fulkerson algorithm is terminated instantly.
Under the bipartite matching setting this can only happen
if the generated path is invalid. In such case if the network
correctly predicts a zero capacity edge, the path-finding step
is rerun again. A threshold is used to avoid endless loops.

Augmenting Path Capacities The new predicted capac-
ities are compared against the real ones and if they are
different, the Ford-Fulkerson algorithm is terminated. This
may appear as a too strict policy, but evaluation on the bi-
partite matching setting showed that the network learns to
accurately perform this step.

Design Motivation If any of the above subroutines is
wrong the flow value produced will be lower than optimal.
Incorrect path-finding will keep generating invalid paths.
Badly learnt BFS, bottleneck finding or subtraction can
cause premature termination. Additionally, a well-learnt
bottleneck finding will allow for reruns to be generated,
allowing the network to ‘correct’ itself, to some extent.

The code for neural execution and simulation can be found
at https://anonymous.4open.science/r/
0403d670-c7f0-43c8-ab90-aa2f010462e7/.

5. Evaluation
Dataset and training details 300 bipartite graphs are
generated for training and 50 for validation. The proba-

https://anonymous.4open.science/r/0403d670-c7f0-43c8-ab90-aa2f010462e7/
https://anonymous.4open.science/r/0403d670-c7f0-43c8-ab90-aa2f010462e7/

Neural Bipartite Matching

Table 1. Accuracy of finding maximum flow at different graph sizes. Model format is <architecture>(<termination-heuristic>).
Termination heuristic is formatted as (t = X), where X is pre-determined. PNA-STD denotes PNA without the std aggregator.

Model Accuracy
1× scale 2× scale 4× scale 8× scale

MPNN(t = 1) 97%± 1.61% 90%± 3.46% 97.8%± 2.44% 100%± 0.00%
MPNN(t = 3) 100%± 0.00% 99.4%± 1.28% 100%± 0.00% 100%± 0.00%
MPNN(t = 5) 100%± 0.00% 99.8%± 0.6% 100%± 0.00% 100%± 0.00%

MPNN(BFS) 99.8%± 0.6% 95.6%± 2.65% 98.0%± 2.00% 100%± 0.00%
PNA-STD(BFS) 100%± 0.00% 99.8%± 0.6% 100%± 0.00% 100%± 0.00%

bility of generating an edge between the two subsets was
fixed at p = 1

4 . Bipartite graph subset size was fixed at 8
as smaller sizes generated too few training examples. Both
subset were chosen to have the same size, as the maximum
flow (maximum matching) is dictated from the size of the
smaller subset. All subroutines are learnt simultaneously.
Adam optimiser (Kingma & Ba, 2015) was used for training
(initial learning rate 0.0005, batch size 32) and early stop-
ping with patience of 10 epochs on the last step predecessor
validation accuracy was performed. Evaluating the ability
to strongly generalise is performed on graphs with subset
size 8, 16, 32 and 64 (50 graphs each). Standard deviations
are obtained over 10 simulation runs.

Architectural details Two types of GNNs are assessed
for their ability to learn to execute the Ford-Fulkerson algo-
rithm. These are Message-passing neural networks (MPNN)
with maximisation aggregation rule (Gilmer et al., 2017)
and Principal Neighbourhood Aggregation (PNA) (Corso
et al., 2020) with the standard deviation (std) aggregator
removed3. Latent feature dimension was fixed to K = 32
features. Inputs (capacities and weights) are given as 8-bit
binary numbers. (Infinity is represented as the bit vector
111...1.) Similar to Yan et al. (2020), embedding vector ~vi
is learnt for each bit position. For each n-bit input ~x, the
input feature embedding is computed as ~̂x =

∑n−1
i=0 xi~vi.

Results and discussion We report the accuracy of pre-
dicting a flow (matching) equal to the maximum one. Table
1 presents the accuracy at different scale. Under threshold
based execution, only the path finding is performed neurally,
since all generated paths will have edges with capacity 1.

An exciting observation is that even a threshold of 1, i.e.
terminating Ford-Fulkerson as soon as an invalid path is
generated, yields high accuracy – about 90% for the 2×
scale and more than 95% for other datasets. In other words,
if a valid path exists, it is likely that the network will find
it. A threshold of 3 gives a noticeable boost in the accuracy
and a threshold of 5 turns out to be sufficient for an almost
perfect execution. An MPNN processor, which uses BFS

3The std aggregator for tasks with no input noise (such as
algorithms) results in a model which overfits to the data.

Figure 2. Maximum flow accuracy (solid) and mean absolute flow
error (dashed) per epoch for PNA and MPNN architectures.

for termination and determines the bottleneck and edge
capacities after augmentation performs better than threshold
based termination when t = 1 and is slightly worse than
other choices of t at scales 2× and 4×. A further ablation
study (Appendix A) showed that the latter two subroutines
have infinitesimal impact on the accuracy.

The best processor architecture was the PNA model, but
the std aggregator had to be removed and the model re-
quired extra training data for the BFS task (see Appendix
B). PNA also converged much more slowly than MPNN
as can be seen from the flow accuracy per epoch for the
1× scale, given in Figure 2. Both networks exhibits some
initial instability during the first epochs, but the MPNN was
much more stable (convergence in 10 epochs, compared
to 35). Both networks retained near 100% accuracy once
they converged, with the only exception of epoch 51 for
the PNA-based processor. Both models strongly generalise
across all scales.

To further evaluate the strong generalisation ability, the
two best-performing models were tested on bipartite graphs
generated with different edge probability. 50 more test
examples were generated for each of scale ∈ {1×, 2×} and
p ∈ { 15 ,

1
2 ,

3
4}. Both models performed equivalently and

exhibited average accuracy higher than 99.73% across all
test sets. Further details in Appendix C.

We have for the first time shown (near-)perfect strong gener-
alisation for a complex algorithmic execution task. Based
on this, we think that Algorithms and Deep Learning rein-
force each other and we hope this paves to way to further
related applications.

Neural Bipartite Matching

References
Bellman, R. On a routing problem. Quarterly of

Applied Mathematics, 16(1):87–90, 1958. ISSN
0033569X, 15524485. URL http://www.jstor.
org/stable/43634538.

Boykov, Y. and Funka-Lea, G. Graph cuts and efficient N-D
image segmentation. Int. J. Comput. Vis., 70(2):109–131,
2006. doi: 10.1007/s11263-006-7934-5. URL https:
//doi.org/10.1007/s11263-006-7934-5.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and
Stein, C. Introduction to Algorithms, 3rd Edi-
tion. MIT Press, 2009. ISBN 978-0-262-03384-
8. URL http://mitpress.mit.edu/books/
introduction-algorithms.

Corso, G., Cavalleri, L., Beaini, D., Liò, P., and Veličković,
P. Principal neighbourhood aggregation for graph nets.
CoRR, abs/2004.05718, 2020. URL https://arxiv.
org/abs/2004.05718.

Ford, L. R. and Fulkerson, D. R. Maximal flow through
a network. In Canadian Journal of Mathematics, pp.
399–404, 1956.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O.,
and Dahl, G. E. Neural message passing for quantum
chemistry. In Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Syd-
ney, NSW, Australia, 6-11 August 2017, pp. 1263–1272,
2017. URL http://proceedings.mlr.press/
v70/gilmer17a.html.

Hamrick, J. B., Allen, K. R., Bapst, V., Zhu, T., Mc-
Kee, K. R., Tenenbaum, J., and Battaglia, P. W.
Relational inductive bias for physical construction
in humans and machines. In Proceedings of the
40th Annual Meeting of the Cognitive Science Soci-
ety, CogSci 2018, Madison, WI, USA, July 25-28,
2018, 2018. URL https://mindmodeling.org/
cogsci2018/papers/0341/index.html.

Kingma, D. P. and Ba, J. Adam: A method for stochastic op-
timization. In 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6980.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. At-
tention is all you need. In Advances in Neural Infor-
mation Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, 4-9 De-
cember 2017, Long Beach, CA, USA, pp. 5998–6008,
2017. URL http://papers.nips.cc/paper/
7181-attention-is-all-you-need.

Veličković, P., Ying, R., Padovano, M., Hadsell, R., and
Blundell, C. Neural execution of graph algorithms. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=SkgKO0EtvS.

Xu, K., Li, J., Zhang, M., Du, S. S., Kawarabayashi, K.,
and Jegelka, S. What can neural networks reason about?
In 8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April 26-
30, 2020, 2020. URL https://openreview.net/
forum?id=rJxbJeHFPS.

Yan, Y., Swersky, K., Koutra, D., Ranganathan,
P., and Hashemi, M. Neural executon engines,
2020. URL https://openreview.net/forum?
id=rJg7BA4YDr.

A. Subroutine impact
An ablation study of an MPNN based model (Table 2, top
half) shows that using the network to perform the bottleneck
finding and/or augmentation steps has minimal impact on
the overall accuracy: In almost all cases mean accuracy re-
mains within 1-2%. This is further supported by the follow-
ing two observations. Setting an edge with capacity 0 to be
a negative example and edge with 1 – positive, the average
true negative rate for finding the bottleneck across all scales
is 0.9928. The average augmentation accuracy (correctness
of capacities after augmentaiton) is 0.9995. Given these
observations and the fact that the accuracy has a standard
deviation of 2.65%, the differences could be accredited to
the BFS occasionally mispredicting the sink as unreachable
on the last iteration of the Ford-Fulkerson algorithm.

B. PNA is not highly suitable for the task of
graph algorithm execution

Figure 3. PNA on 2× scale. The model shows signs of overfitting.

Our initial experiments with the PNA architecture (Table
2) did not align with our expectations – PNA model per-
forms significantly worse than MPNN on the 2× scale. Plot-

http://www.jstor.org/stable/43634538
http://www.jstor.org/stable/43634538
https://doi.org/10.1007/s11263-006-7934-5
https://doi.org/10.1007/s11263-006-7934-5
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://arxiv.org/abs/2004.05718
https://arxiv.org/abs/2004.05718
http://proceedings.mlr.press/v70/gilmer17a.html
http://proceedings.mlr.press/v70/gilmer17a.html
https://mindmodeling.org/cogsci2018/papers/0341/index.html
https://mindmodeling.org/cogsci2018/papers/0341/index.html
http://arxiv.org/abs/1412.6980
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/7181-attention-is-all-you-need
https://openreview.net/forum?id=SkgKO0EtvS
https://openreview.net/forum?id=SkgKO0EtvS
https://openreview.net/forum?id=rJxbJeHFPS
https://openreview.net/forum?id=rJxbJeHFPS
https://openreview.net/forum?id=rJg7BA4YDr
https://openreview.net/forum?id=rJg7BA4YDr

Neural Bipartite Matching

Table 2. Accuracy of finding maximum flow at graph sizes. Model format is as in Table 1. -bottle (minus bottleneck) corresponds to
changing the neural execution of bottleneck finding to a deterministic one. -augment is used when the augmentation step is deterministic.
-BFS variety is for when the PNA-based network is trained without the extra data.

Model Accuracy
1× scale 2× scale 4× scale 8× scale

MPNN(BFS) 99.8%± 0.6% 95.6%± 2.65% 98.0%± 2.00% 100%± 0.00%
MPNN(BFS)
-bottle 99.8%± 0.6% 96.8%± 2.56% 100%± 0.00% 100%± 0.00%

MPNN(BFS)
-augment 99.8%± 0.6% 97.8%± 1.40% 98.2%± 1.66% 100%± 0.00%

MPNN(BFS)
-augment
-bottle

100%± 0.00% 97.6%± 2.33% 100%± 0.00% 100%± 0.00%

PNA(BFS) 99.4%± 0.92% 50.0%± 5.51% 18.6%± 4.73% 0.2%± 0.6%
PNA(BFS)
-bottle 100%± 0.00% 47.8%± 7.67% 19.4%± 3.47% 0.6%± 0.91%

PNA(BFS)
-augment 100%± 0.00% 50.2%± 5.02% 18%± 3.35% 0.6%± 0.91%

PNA(BFS)
-augment
-bottle

100%± 0.00% 53.8%± 4.69% 19.2%± 4.66% 0.8%± 0.98%

PNA-STD(BFS)
-BFS variety

100%± 0.00% 99.4%± 0.92% 0%± 0.00% 0%± 0.00%

PNA-STD(BFS) 100%± 0.00% 99.8%± 0.6% 100%± 0.00% 100%± 0.00%

Table 3. Accuracy at different edge probability p for the two best models.

Scale Model Accuracy
p = 1

5
p = 1

2
p = 3

4

1× MPNN(BFS) 98%± 1.55% 100%± 0.00% 100%± 0.00%
PNA-STD(BFS) 100%± 0.00% 100%± 0.00% 100%± 0.00%

2× MPNN(BFS) 96.8%± 2.03% 99.4%± 0.92% 100%± 0.00%
PNA-STD(BFS) 99.4%± 1.28% 100%± 0.00% 100%± 0.00%

ting the accuracy per epoch for that scale reveals that the
learner initially starts to converge towards a good solution
but it overfits after epoch 25. Our first hypothesis was that
since the task of finding maximum flow is deterministic and
contains no noise, the std aggregator leads to overfitting.
Although removing it did increase the accuracy on the 2×
scale, it did not help for strong generalisation, leading to 0%
accuracy on larger scales.

We already knew that PNA architecture works when BFS is
not used. Hence, our next hypothesis was that since PNA
has more parameters and more aggregators (which do not
align to the task) than MPNN, extra training data is needed
for the BFS task. We provided 200 more bipartite graphs
drawn from the same distribution, but had some pairs (up
to 40%) of nodes matched greedily. Although BFS still
exhibited some instability, as per Figure 2, it stabilised in
the last 10-15 epochs, and produced a model which strongly
generalised.

C. Varying edge probability
Table 3 shows the accuracy for two best models on data
generated with different edge probability p. Higher p pro-
duces cases easily solved by both models. The accuracy
is less than 100% mainly for lower edge probability at 2×
scale. Both processor architectures perform equivalently
data generated with higher edge probability.

