
Principal Neighbourhood Aggregation for Graph Nets

Gabriele Corso * 1 Luca Cavalleri * 1 Dominique Beaini 2 Pietro Liò 1 Petar Veličković 3

Abstract
Graph Neural Networks (GNNs) have been shown
to be effective models for different predictive
tasks on graph-structured data. Recent work on
their expressive power has focused on isomor-
phism tasks and countable feature spaces. We
extend this theoretical framework to include con-
tinuous features—which occur regularly in real-
world input domains and within the hidden layers
of GNNs—and we demonstrate the requirement
for multiple aggregation functions in this con-
text. Accordingly, we propose Principal Neigh-
bourhood Aggregation (PNA), a novel architec-
ture combining multiple aggregators with degree-
scalers (which generalize the sum aggregator).
Finally, we compare the capacity of different
models to capture and exploit the graph struc-
ture via a novel benchmark containing multiple
tasks taken from classical graph theory, alongside
existing benchmarks from real-world domains, all
of which demonstrate the strength of our model.

1. Introduction
Graph Neural Networks (GNNs) have been an active re-
search field for the last ten years with significant advance-
ments in graph representation learning (Scarselli et al., 2009;
Bronstein et al., 2017; Hamilton et al., 2017b; Battaglia
et al., 2018). However, it is difficult to understand the ef-
fectiveness of new GNNs due to the lack of standardized
benchmarks (Dwivedi et al., 2020) and of theoretical frame-
works for their expressive power.

In fact, most work in this domain has focused on improv-
ing the GNN architectures on a set of graph benchmarks.
Only recently there have been significant studies on the ex-
pressive power of various GNN models (Xu et al., 2018;
Morris et al., 2019; Garg et al., 2020). However, these have

*Equal contribution 1University of Cambridge, Cambridge,
United Kingdom 2Invivo AI, Montreal, Canada 3DeepMind, Lon-
don, United Kingdom. Correspondence to: Gabriele Corso
<gc579@cam.ac.uk>, Luca Cavalleri <lc737@cam.ac.uk>.

ICML 2020 Workshop on Graph Representation Learning and
Beyond. Copyright 2020 by the author(s).

mainly focused on the isomorphism task in domains with
countable features spaces, and little work has been done
on understanding their capacity to capture and exploit the
underlying properties of the graph structure.

We hypothesize that the aggregation layers of current GNNs
are unable to extract enough information from the nodes’
neighbourhoods in a single layer, which limits their expres-
sive power and learning abilities.

Then, we mathematically prove the need for multiple ag-
gregators and we propose the concept of degree-scalers,
which allow the network to amplify signals. Combining the
above, we design the proposed Principal Neighbourhood
Aggregation (PNA).

Finally, we empirically demonstrate the performance of the
model on a multi-task benchmark we designed with tasks
taken from classical graph theory and on real-world datasets
from literature (Dwivedi et al., 2020).

The code for all the aggregators, scalers, models, multi-task
and real-world benchmarks is available here.

2. Principal Neighbourhood Aggregation
In this section, we first explain the motivation behind using
multiple aggregators concurrently. We then present the idea
of degree-based scalers, linking to prior related work on
GNN expressiveness. Finally, we detail the design of graph
convolutional layers which leverage the proposed Principal
Neighbourhood Aggregation.

2.1. Proposed Aggregators

Most work in the literature uses only a single aggregation
method, with mean, sum and max aggregators being the
most used in the state-of-the-art models (Xu et al., 2018;
Kipf & Welling, 2016; Gilmer et al., 2017; Veličković et al.,
2019). However, we hypothesize one aggregation function
is not enough to discriminate between different neighbour-
hoods and prove it in the theorem below:

Theorem 1 (Number of aggregators needed). In order to
discriminate between multisets of size n whose underlying
set is R, at least n aggregators are needed.

Proposition 1 (Moments of the multiset). The moments of
a multiset (as defined in Equation 1) exhibit a valid example

https://anonymous.4open.science/r/66c47001-04d7-4065-9d33-84dced3a53e3/

Principal Neighbourhood Aggregation for Graph Nets

using n aggregators.

We prove Theorem 1 in Appendix A and Proposition 1 in
Appendix B. Note that unlike (Xu et al., 2018), we consider
a continuous input feature space; this better represents many
real-world tasks where the observed values have uncertainty,
and better models the latent node features within a neural
network’s representations. Continuous features make the
space uncountable, and void the injectivity proof of the sum
aggregation presented by (Xu et al., 2018).

Hence, we redefine aggregators as continuous functions of
multisets which compute a statistic on the neighbouring
nodes, such as mean, max or standard deviation.

Theorem 1 proves that the number of independent aggre-
gators used is a limiting factor of the expressiveness of
GNNs. To empirically demonstrate this, we leverage four
aggregators, namely mean, maximum, minimum and std. In
Appendix D we present all these aggregators in detail.

Furthermore, we note that this can be extended to the nor-
malized moment aggregators, which allow advanced distri-
bution information to be extracted whenever the degree of
the nodes is high. As described in Appendix E, we choose
the nth root normalization, as presented in Equation 1, be-
cause it gives a statistic that scales linearly with the size of
the individual elements (as the other aggregators); this gives
the training adequate numerical stability.

Mn(X) = n
√
E [(X − µ)n] , n > 1 (1)

2.2. Degree-based Scalers

We introduce scalers as functions of the number of mes-
sages being aggregated (usually the node degree), which are
multiplied with the aggregated value to perform either an
amplification or an attenuation of the incoming messages.

(Xu et al., 2018) show that the use of mean and max aggre-
gators by themselves fail to distinguish between neighbour-
hoods with identical features but with differing cardinalities,
and the same applies to all the aggregators described above.
They propose the use of the sum aggregator to discrimi-
nate between such multisets. We generalise their approach
by expressing the sum aggregator as the composition of
a mean aggregator and a linear-degree amplifying scaler
Samp(d) = d.
Theorem 2 (Injective functions on countable multisets).
The mean aggregation composed with any scaling linear to
an injective function on the neighbourhood size can gener-
ate injective functions on bounded multisets of countable
elements.

We formalize and prove Theorem 2 in Appendix C.

Recent work (Veličković et al., 2019) shows how sum aggre-
gator doesn’t generalize to unseen graphs, particularly when

larger: a slightly different degree might, in fact, cause the
message to vanish or explode. We therefore propose using a
logarithmic scaling S ∝ log(d+ 1) to mitigate this effect.
Further motivation for that adoption can be summarized in
the following example: consider a social network where
nodes A, B and C have respectively 5 million, 1 million and
100 followers: on a linear scale, nodes B and C are the clos-
est pair, while in logarithmic scale, as in human perception,
A would be B nearest neighbour.

The logarithmic scaler is generalized in Equation 2, where δ
is a normalization parameter computed over the training set,
d is the degree of the node receiving the message and α is a
variable parameter that is negative for attenuation, positive
for amplification or zero for no scaling.

S(d, α) =

(
log(d+ 1)

δ

)α
, δ =

1

|train|
∑
i∈ train

log(di+1)

(2)

2.3. Combined Aggregation

We finally introduce the Principal Neighbourhood Aggrega-
tion (PNA), a general and flexible architecture, which in our
tests we used with four neighbour-aggregations with three
degree-scalers each, as summarized in Equation 3, where ⊗
is the tensor product:

⊕
=

 I
S(D,α = 1)
S(D,α = −1)

︸ ︷︷ ︸

scalers

⊗

µ
σ

max
min

︸ ︷︷ ︸
aggregators

(3)

We insert the PNA operator within the framework of a mes-
sage passing neural network (Gilmer et al., 2017), obtaining
the following GNN layer:

X
(t+1)
i = U

X(t)
i ,

⊕
(j,i)∈E

M
(
X

(t)
i , X

(t)
j

) (4)

where M and U are neural networks (for our benchmarks,
a linear layer was enough). U reduces the size of the con-
catenated message (in space R13F) back to RF where F is
the dimension of the hidden features in the network. As in
(Gilmer et al., 2017), we employ multiple towers to improve
computational complexity and generalization performance.

3. Architecture
We compare the performance of the PNA layer against some
of the most popular models in the literature, namely GCN
(Kipf & Welling, 2016), GAT (Veličković et al., 2017), GIN
(Xu et al., 2018) and MPNN (Gilmer et al., 2017) on a

Principal Neighbourhood Aggregation for Graph Nets

common architecture. In Appendix F, we present the details
of these graph convolutional layers.

For the multi-task experiments, we used an architecture,
represented in Figure 1, withM convolutions followed by
three fully-connected layers for node labels and a set2set
(S2S) (Vinyals et al., 2015) readout function for graph labels.
In particular, we want to highlight:

Gated Recurrent Units (GRU) (Cho et al., 2014) applied
after the update function of each layer, as in (Gilmer et al.,
2017; Li et al., 2015). Their ability to retain information
from previous layers proved effective when increasing the
number of convolutional layersM.

Weight Sharing in all the GNN layers but the first makes
the architecture follow an encode-process-decode configu-
ration (Battaglia et al., 2018; Hamrick et al., 2018). This
is a strong prior which works well on all our experimental
tasks, yields a parameter-efficient architecture, and allows
the model to have a variable numberM of layers.

Variable DepthM, decided at inference time (based on the
size of the input graph and/or other heuristics), is important
when using models over high variance graph distributions.
In our experiments we have only used heuristics dependant
on the number of nodes N (M = f(N)) and, for the archi-
tectures in the results below, we settled withM = bN/2c.

GC1
GRU

⨯ (𝓜 − 1)

MLP

S2S
in

nodes
labels

graph
labels

GCm
GRU

Figure 1. Layout of the architecture used. When comparing differ-
ent models, the difference lies only in the type of graph convolution
used in place of GC1 and GCm.

4. Benchmarks and Results
4.1. Multi-tasks Artificial Benchmark

We developed a multi-task benchmark with tasks from clas-
sical graph theory to test the model understanding of graph
features. In particular, we generated random graphs from
a wide variety of types and trained the models on node la-
bels representing single-source shortest-path lengths, the
eccentricity and the Laplacian features and graph labels
representing whether the graph is connected, the diameter
and the spectral radius. Further details on the tasks, graphs
generation, features and training settings can be found in
Appendix G.

The results are presented in Figures 2 and 3, where we
observe that the proposed PNA model consistently outper-
forms state-of-the-art models. The baseline predicts the

average of the training set for all tasks.

Figure 2. Distribution of the log10MSE errors for the top 5 perfor-
mances of each model on the multi-task benchmark for different
GNN models using the same architecture and various near-optimal
hyper-parameters.

Nodes tasks Graph tasks

Model
Average

score
1 2 3 4 5 6

PNA -3.13 -2.89 -2.89 -3.77 -2.61 -3.04 -3.57

PNA (no scalers) -2.77 -2.54 -2.42 -2.94 -2.61 -2.82 -3.29

MPNN (sum) -2.53 -2.36 -2.16 -2.59 -2.54 -2.67 -2.87

MPNN (max) -2.50 -2.33 -2.26 -2.37 -1.82 -2.69 -3.52

GAT -2.26 -2.34 -2.09 -1.60 -2.44 -2.40 -2.70

GCN -2.04 -2.16 -1.89 -1.60 -1.69 -2.14 -2.79

GIN -1.99 -2.00 -1.90 -1.60 -1.61 -2.17 -2.66

Baseline -1.38 -1.87 -1.50 -1.60 -0.62 -1.30 -1.41

1. Single-source shortest-paths
2. Eccentricity
3. Laplacian features

4. Connected
5. Diameter
6. Spectral radius

Best

Worst

Figure 3. Mean log10MSE error for each task and their average.

The multi-task results follow and amplify the PNA superi-
ority arising in single-task training, suggesting deeper ex-
ploitation of common sub-units, which the other models
cannot achieve even when their latent size is significantly
increased, as shown by further experiments presented in
Appendix H.

Finally, we explored the extrapolation of the models to larger
graphs, (15-25 training, 25-30 validation and 20-50 test).
Unlike in (Veličković et al., 2019), the models are not given
any step-wise supervision or trained on easily extendable
subroutines, and they have to cope with their architectures
being augmented with further hidden layers. The results
in Figure 4 show that the PNA outperforms other models
and avoids the explosion issue encountered by some models
using the sum aggregator.

Principal Neighbourhood Aggregation for Graph Nets

ZINC CIFAR10 MNIST

Model
No edge features Edge features No edge features Edge features No edge features Edge features

MAE MAE Acc Acc Acc Acc

Dwivedi
et al.
paper

MLP 0.710±0.001 56.01±0.90 94.46±0.28

MLP (Gated) 0.681±0.005 56.78±0.12 95.18±0.18

GCN 0.469±0.002 54.46±0.10 89.99±0.15

GraphSage 0.410±0.005 66.08±0.24 97.20±0.17

GIN 0.408±0.008 53.28±3.70 93.96±1.30

DiffPoll 0.466±0.006 57.99±0.45 95.02±0.42

GAT 0.463±0.002 65.48±0.33 95.62±0.13

MoNet 0.407±0.007 53.42±0.43 90.36±0.47

GatedGCN 0.422±0.006 0.363±0.009 69.19±0.28 69.37±0.48 97.37±0.06 97.47±0.13

Our
experi-
ments

MPNN (sum) 0.381±0.005 0.288±0.002* 65.39±0.47 65.61±0.30 96.72±0.17 96.90±0.15

MPNN (max) 0.468±0.002 0.328±0.008* 69.70±0.55 70.86±0.27 97.37±0.11 97.82±0.08

PNA (no scalers) 0.413±0.006 0.247±0.036* 70.46±0.44 70.47±0.72 97.41±0.16 97.94±0.12

PNA 0.320±0.032 0.188±0.004* 70.21±0.15 70.35±0.63 97.19±0.08 97.69±0.22

Figure 5. Results of the PNA and MPNN models in comparison with those analysed by Dwivedi et al. (Kipf & Welling, 2016; Hamilton
et al., 2017a; Xu et al., 2018; Ying et al., 2018; Veličković et al., 2017; Monti et al., 2017; Bresson & Laurent, 2017). * indicates the
training was conducted with additional patience to ensure convergence.

-2

-1.5

-1

-0.5

0

lo
g 1

0
 r

at
io

 M
SE

 m
o

d
el

 a
n

d
 M

SE
 b

as
el

in
e

Size of the graphs in the test set

PNA

MPNN (sum)

MPNN (max)

GIN

GAT

GCN

Baseline

20-25 25-30 30-35 35-40 40-45 45-50

Figure 4. Multi-task log10 of the ratio of the MSE for different
GNN models and the MSE of the baseline.

4.2. Real-world Benchmarks

To test the capacity of the PNA model in real-world domains,
we assess it on the chemistry (ZINC) and computer vision
(CIFAR10 and MNIST) benchmark proposed in (Dwivedi
et al., 2020). To ensure a fair comparison, we followed their
method for training procedure and GNN structure.

To better understand the results in Figure 5, we need to take
into account how graphs differ among the three datasets. In
the chemistry benchmark, graphs are diverse and individual
edges (bonds) can significantly impact the properties of the
graphs (molecules). This contrasts with computer vision
datasets made of graphs with a regular topology (every
node has 8 edges) and where the graph structure of the
representation is not crucial (the good performance of the

MLP is evidence).

With this and our theoretical analysis in mind, it is under-
standable why the PNA has a strong performance in the
chemistry datasets, as it was designed to understand the
graph structure and better retain neighbourhood informa-
tion. At the same time, the version without scalers suffers
from the fact it cannot distinguish between neighbourhoods
of different size. Instead, in the computer vision datasets,
the average improvement of the PNA on SOTA was lower
due to the smaller importance of the graph structure, and
the version of the PNA without scalers performs better as
the constant degree of these graphs makes scalers redundant
(and it is preferable to ’spend’ parameters for larger hidden
sizes).

5. Conclusion
We have extended the theoretical framework in which GNNs
are analyzed to continuous features proving the need for
multiple aggregators in such circumstances, and we pre-
sented a method, Principal Neighbourhood Aggregation,
consisting of the composition of multiple aggregators and
degree-scalers. With the goal of understanding the ability of
GNNs to capture graph structures, we have proposed a novel
multi-task benchmark and an encode-process-decode archi-
tecture for approaching it. Empirical results from synthetic
and real-world domains support our theoretical evidence.
We believe that our findings constitute a step towards estab-
lishing a hierarchy of models w.r.t. their expressive power,
where the PNA model appears to outperform the prior art in
GNN layer design.

Principal Neighbourhood Aggregation for Graph Nets

References
Albert, R. and Barabási, A.-L. Statistical mechanics of

complex networks. Reviews of Modern Physics, 74
(1):47–97, Jan 2002. ISSN 1539-0756. doi: 10.1103/
revmodphys.74.47. URL http://dx.doi.org/10.
1103/RevModPhys.74.47.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-
Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti,
A., Raposo, D., Santoro, A., Faulkner, R., et al. Rela-
tional inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261, 2018.

Borsuk, K. Drei sätze über die n-dimensionale euklidische
sphäre. Fundamenta Mathematicae, (20):177–190, 1933.
doi: 10.4064/fm-20-1-177-190.

Bresson, X. and Laurent, T. Residual gated graph convnets.
arXiv preprint arXiv:1711.07553, 2017.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and
Vandergheynst, P. Geometric deep learning: Going be-
yond euclidean data. IEEE Signal Processing Maga-
zine, 34(4):18–42, Jul 2017. ISSN 1053-5888. doi:
10.1109/msp.2017.2693418. URL http://dx.doi.
org/10.1109/MSP.2017.2693418.

Chen, Z., Chen, L., Villar, S., and Bruna, J. Can graph
neural networks count substructures? arXiv preprint
arXiv:2002.04025, 2020.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau,
D., Bougares, F., Schwenk, H., and Bengio, Y. Learn-
ing phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., and
Bresson, X. Benchmarking graph neural networks. arXiv
preprint arXiv:2003.00982, 2020.

Erdős, P. and Rényi, A. On the evolution of random graphs.
pp. 17–61, 1960.

Garg, V. K., Jegelka, S., and Jaakkola, T. Generalization and
representational limits of graph neural networks. arXiv
preprint arXiv:2002.06157, 2020.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pp. 1263–1272. JMLR.
org, 2017.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In Advances in neural
information processing systems, pp. 1024–1034, 2017a.

Hamilton, W. L., Ying, R., and Leskovec, J. Representation
learning on graphs: Methods and applications. arXiv
preprint arXiv:1709.05584, 2017b.

Hamrick, J. B., Allen, K. R., Bapst, V., Zhu, T., McKee,
K. R., Tenenbaum, J. B., and Battaglia, P. W. Relational
inductive bias for physical construction in humans and
machines. arXiv preprint arXiv:1806.01203, 2018.

Hazewinkel, M. Encyclopaedia of mathematics. Volume
9, STO-ZYG. Encyclopaedia of mathematics ; vol 9:
STO-ZYG. Kluwer Academic, Dordecht, 1988. ISBN
1556080085.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R.
Gated graph sequence neural networks. arXiv preprint
arXiv:1511.05493, 2015.

Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J.,
and Bronstein, M. M. Geometric deep learning on graphs
and manifolds using mixture model cnns. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5115–5124, 2017.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and leman go
neural: Higher-order graph neural networks. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 4602–4609, 2019.

Rotman, J. J. An Introduction to Algebraic Topol-
ogy, volume 119 of Graduate Texts in Mathemat-
ics. Springer New York. ISBN 978-1-4612-8930-2
978-1-4612-4576-6. doi: 10.1007/978-1-4612-4576-6.
URL http://link.springer.com/10.1007/
978-1-4612-4576-6.

Sato, R., Yamada, M., and Kashima, H. Random fea-
tures strengthen graph neural networks. arXiv preprint
arXiv:2002.03155, 2020.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, 2009.

Stanley, R. P. Enumerative Combinatorics Volume 2.
Cambridge Studies in Advanced Mathematics no. 62.
Cambridge University Press, Cambridge, 2001. ISBN
9780511609589.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. arXiv
preprint arXiv:1710.10903, 2017.

http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1109/MSP.2017.2693418
http://dx.doi.org/10.1109/MSP.2017.2693418
http://link.springer.com/10.1007/978-1-4612-4576-6
http://link.springer.com/10.1007/978-1-4612-4576-6

Principal Neighbourhood Aggregation for Graph Nets

Veličković, P., Ying, R., Padovano, M., Hadsell, R., and
Blundell, C. Neural execution of graph algorithms. arXiv
preprint arXiv:1910.10593, 2019.

Vinyals, O., Bengio, S., and Kudlur, M. Order mat-
ters: Sequence to sequence for sets. arXiv preprint
arXiv:1511.06391, 2015.

Watts, D. J. Networks, dynamics, and the small-world
phenomenon. American Journal of Sociology, 105(2):
493–527, 1999. ISSN 00029602, 15375390. URL http:
//www.jstor.org/stable/10.1086/210318.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How
powerful are graph neural networks? arXiv preprint
arXiv:1810.00826, 2018.

Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., and
Leskovec, J. Hierarchical graph representation learning
with differentiable pooling. In Advances in neural infor-
mation processing systems, pp. 4800–4810, 2018.

You, J., Ying, R., and Leskovec, J. Position-aware graph
neural networks. arXiv preprint arXiv:1906.04817, 2019.

http://www.jstor.org/stable/10.1086/210318
http://www.jstor.org/stable/10.1086/210318

Principal Neighbourhood Aggregation for Graph Nets

A. Proof for Theorem 1 (Number of
aggregators needed)

In order to discriminate between multisets of size n whose
underlying set is R, at least n aggregators are needed.

Proof. Let S be the n-dimensional subspace of Rn formed
by all tuples (x1, x2, . . . , xn) such that x1 ≤ x2 ≤ . . . ≤
xn, and notice how S is the collection of the aforementioned
multisets. We defined an aggregator as a continuous function
from multisets to reals, which corresponds to a continuous
function g : S → R.

Assume by contradiction that it is possible to discriminate
between all the multisets of size n using only n− 1 aggre-
gators, viz. g1, g2, . . . , gn−1.

Define f:S→Rn−1 to be the function mapping each multi-
set X to its output vector (g1(X), g2(X), . . . , gn−1(X)).
Since g1, g2, . . . , gn−1 are continuous, so is f , and, since we
assumed these aggregators are able to discriminate between
all the multisets, f is injective.

As S is a n-dimensional Euclidean subspace, it is possible
to define a (n− 1)-sphere Cn−1 entirely contained within
it, i.e. Cn−1 ⊆ S. According to Borsuk–Ulam theorem
(Rotman; Borsuk, 1933), there are two distinct (in particular,
non-zero and antipodal) points ~x1, ~x2 ∈ Cn−1 satisfying
f(~x1) = f(~x2), showing f not to be injective; hence the
required contradiction.

Note: n aggregators are actually sufficient. A simple exam-
ple is to use g1, g2, . . . , gn where gk(X) = the k-th smallest
item in X . It’s clear to see that the multiset whose elements
are g1(X), g2(X), . . . , gn(X) is X , which can hence be
uniquely determined by the aggregators.

B. Proof for Proposition 1 (Moments of the
multiset)

The moments of a multiset (as defined in Equation 1) exhibit
a valid example using n aggregators.

Proof. Since n ≥ 1, and the first aggregator is mean, we
know µ. Let X = {x1, x2, . . . , xn} be the multiset to
be found, and define R = {r1 = x1 − µ, r2 = x2 −
µ, . . . , rn = xn − µ}.

Notice how
∑
ri

1 = 0, and for 1 < k ≤ n we have∑
ri
k = n Mk(X)k, i.e. all the symmetric power sums

pk =
∑
ri
k (k ≤ n) are uniquely determined by the mo-

ments.

Additionally, ek, the elementary symmetric sums of R, i.e.
the sum of the products of all the sub-multisets of size k
(1 ≤ k ≤ n), are determined as follow:

e1, the sum of all elements, is equal to p1; e2, the sum of
the products of all pairs in R, is (e1p1 − p2) /2; e3, the sum
of the products of all triplets, is (e2p1 − e1p2 + p3) /3, and
so on:

ek =
∑

1≤i1<i2<···<ik≤n

 k∏
j=1

rij

 , e0 = 1

Notice how e1, e2, . . . , en can be computed using the fol-
lowing recursive formula (Stanley, 2001):

ek =
1

k

k∑
j=1

(−1)j−1ek−jpj

Consider polynomial P (x) = Π(x − ri), i.e. the unique
polynomial of degree n with leading coefficient 1 whose
roots are R. This defines A, the coefficients of P , i.e. the
real numbers a0, a1, . . . , an−1 for which P (x) = xn +
an−1x

n−1 + . . . + a1x + a0. Using Vieta’s formulas
(Hazewinkel, 1988):

∑
1≤i1<i2<···<ik≤n

 k∏
j=1

rij

 = (−1)k
an−k
an

we obtain

ek = (−1)k
an−k
an

= (−1)kan−k recall an = 1

∴ ai = (−1)n+ien+i letting k = n+ i and rearranging

Hence A is uniquely determined, and so is P , being its
coefficients a valid definition of it. By the fundamental
theorem of algebra, P has n (possibly repeated) roots, which
are the elements of R, hence uniquely determining the latter.

Finally, X can be easily determined adding µ to each ele-
ment of R.

Note: the proof above assumes the knowledge of n. In the
case that n is variable (as in GNNs), and so we have multi-
sets of up to n elements, an extra aggregator will be needed.
An example of such aggregator is the mean multiplied by
any injective scaler which would allow the degree of the
node to be inferred.

C. Proof for Theorem 2 (Injective functions
on countable multisets)

The mean aggregation composed with any scaling linear to
an injective function on the neighbourhood size can gener-
ate injective functions on bounded multisets of countable
elements.

Principal Neighbourhood Aggregation for Graph Nets

Proof. Let χ be the countable input feature space from
which the elements of the multisets are taken and X an
arbitrary multiset. Since χ is countable and the cardinality of
multisets is bounded, let Z : χ→ N+ be an injection from
χ to natural numbers, and N ∈ N such that |X| + 1 < N
for all X .

Let’s define an injective function s, and without
loss of generality, assume s(0), s(1), . . . , s(N) > 0
(otherwise for the rest of the proof consider s as
s′(i) = s(i) − minj∈[0,N] s(j) + ε which is posi-
tive for all i ∈ [0, N]). s(|X|) can only take value
in {s(0), s(1), . . . , s(N)}, therefore let us define γ =

min
{
s(i)
s(j) | i, j ∈ [0, N], s(i) ≥ s(j)

}
. Since s is injec-

tive, s(i) 6= s(j) for i 6= j, which implies γ > 1.

Let K > 1
γ−1 be a positive real number and consider

f(x) = N−Z(x) +K.

∀x ∈ χ,Z(x) ∈ [1, N] ⇒ N−Z(x) ∈ [0, 1] ⇒ f(x) ∈
[K,K+1] , so E x∈X [f(x)] ∈ [K,K+1].

We proceed to show that the cardinality of X can be
uniquely determined, and X itself can be determined as
well, by showing that exist an injection h over the multisets.

Let us h as a function that scales the mean of f by an
injective function of the cardinality:

h(X) = s(|X|) E x∈X [f(x)]

We want show that the value of |X| can be uniquely inferred
from the value of h(X). Assume by contradiction ∃X ′, X ′′
multisets of size at most N such that |X ′| 6= |X ′′| but
h(X ′) = h(X ′′); since s is injective s(|X ′|) 6= s(|X ′′|),
without loss of generality let s(|X ′|) > s(|X ′′|), then:

s(|X ′′|)(K + 1) ≥ s(|X ′′|)E x∈X′′ [f(x)] = h(X ′′) =

= h(X ′) = s(|X ′|)E x∈X′ [f(x)] ≥ s(|X ′|)K

=⇒ K ≤ 1
s(|X′|)
s(|X′′|) − 1

≤ 1

γ − 1

which is a contradiction. So it is impossible for the size of a
multiset X to be ambiguous from the value of h(X).

Let us define d as the function mapping h(X) to |X|.

h′(X) =
∑
x∈X

N−Z(x) =
h(X)|X|
s(|X|)

−K|X| =

=
h(X)d(h(X))

s(d(h(X)))
−Kd(h(X))

Considering the Z(j)-th digit i after the decimal point in
the base N representation of h′(X), it can be inferred that
X contains i elements j, and, so, all the elements in X can

be determined; hence h is injective over the multisets in
X .

Note: this proof is a generalization of the one by Xu et al.
(Xu et al., 2018) on the sum aggregator.

D. Aggregators
The following paragraphs will describe in detail the aggre-
gators we leveraged in our architectures.

Mean Aggregation µ(X l) The most common message
aggregator in the literature, wherein each node computes a
weighted average or sum of its incoming messages. Equa-
tion 5 presents, on the left, the general mean equation, and,
on the right, the direct neighbour formulation, where X is
any multiset, X l are the nodes’ features at layer l, N(i) is
the neighbourhood of node i and di = |N(i)|. For clar-
ity we use E[f(X)] where X is a multiset of size d to be
defined as E[f(X)] = 1

d

∑
x∈X f(x).

µ(X) = E[X] , µi(X
l) =

1

di

∑
j∈N(i)

X l
j (5)

Maximum and Minimum Aggregations
max(X l), min(X l) Also often used in literature,
they are very useful for discrete tasks, for domains where
credit assignment is important and when extrapolating
to unseen distributions of graphs (Veličković et al.,
2019). Alternatively, we present the softmax and softmin
aggregators in Appendix D, which are differentiable and
work for weighted graphs, but don’t perform as well on our
benchmarks.

maxi(X l) = max
j∈N(i)

X l
j , mini(X l) = min

j∈N(i)
X l
j (6)

Standard Deviation Aggregation σ(X l) The standard
deviation (STD or σ) is used to quantify the spread of neigh-
bouring nodes features, such that a node can assess the
diversity of the signals it receives. Equation 7 presents first
the standard deviation formulation, and then the STD of a
graph-neighbourhood. ReLU is the rectified linear unit used
to avoid negative values caused by numerical errors and ε is
a small positive number to ensure σ is differentiable.

σ(X) =
√

E[X2]− E[X]2 ,

σi(X
l) =

√
ReLU

(
µi(X l2)− µi(X l)

2
)

+ ε (7)

Normalized Moments Aggregation Mn(X l) The mean
and standard deviation are the first and second normalized
moments of the multiset (n = 1, n = 2). Additional mo-
ments, such as the skewness (n = 3), the kurtosis (n = 4),

Principal Neighbourhood Aggregation for Graph Nets

or higher moments, could be useful to better describe the
neighbourhood. These become even more important when
the degree of a node is high because four aggregators are
insufficient to describe the neighbourhood accurately. As
described in Appendix E, we choose the nth root normaliza-
tion, as presented in Equation 8, because it gives a statistic
that scales linearly with the size of the individual elements
(as the other aggregators); this gives the training adequate
numerical stability. Once again we add an ε to the absolute
value of the expectation before applying the nth root for
numerical stability of the gradient.

Mn(X) = n
√
E [(X − µ)n] , n > 1 (8)

Besides those described above, we have experimented with
additional aggregators. We detail some examples below.
Domain-specific metrics can also be an effective choice.

Softmax and Softmin Aggregations As an alternative to
max and min, softmax and softmin are differentiable and
can be weighted in the case of edge features or attention
networks. They also allow an asymmetric message passing
in the direction of the strongest signal.

softmaxi(X l) =
∑

j∈N(i)

X l
j exp(X l

j)∑
k∈N(i) exp(X l

k)
,

softmini(X l) = −softmaxi(−X l)

(9)

E. Normalized Moments Aggregation
The main motivation for choosing the nth root normaliza-
tion for the moments is numerical stability. In fact, one
property of our version is that it scales linearly with L, for
uniformly distributed random variables U [0, L], as do other
aggregators such as mean, max and min (std is a particular
case). Other common formulations of the moments such
as those in Equation 10 scale respectively as the nth power
and constantly with L. This difference causes numerical
instability when combined in the same layer.

Mn(X) = E [(X − µ)n] Mn(X) =
E [(X − µ)n]

σn
(10)

To demonstrate the usefulness of higher moments aggrega-
tion and further motivate the need for multiple aggregation
functions, we ran an ablation study showing how different
moments affect the performance of the model. We conduct
this by testing five different models, each taking a different
number of moments, on our multi-task benchmark.

The results in Figure 6 demonstrate that with the increase of
the number of aggregators the models reach a higher expres-
sive power, but at a certain point (dependent on the graphs
and tasks, in this case around 3) the increase in expressive-
ness given by higher moments reduces the performance

Figure 6. Multi-task log10 MSE on different versions of the PNA
model with increasing number of moments aggregators (specified
in the legend), using mean as first moment. All the models use the
identity, amplification and attenuation scalers. The model on the
right is the complete PNA as described before (mean, max, min
and std aggregators).

since the model becomes harder to optimize and prone to
overfitting. We expect that higher moments will be more
beneficial on graphs with a higher average degree since they
will better characterize the neighbourhood distributions.

Finally, we note how the addition of the max and min ag-
gregators in the PNA (rightmost column) gives a better
and more consistent performance in these tasks than higher
moments. We believe this is task-dependent, and, for algo-
rithmic tasks, discrete aggregators can be valuable. As a
side note, we point out how the max and min aggregators of
positive values can be considered as the nth-root of the nth

(non-centralized) moment as n tends to, respectively, +∞
and −∞.

F. Alternative Graph Convolutions
In this section, we present the details of the four graph
convolutional layers from existing models that we used
to compare the performance of the PNA in the multi-task
benchmark.

Graph Convolutional Networks (GCN) (Kipf &
Welling, 2016) use a normalized mean aggregator followed
by a linear transformation and an activation function.
We define it in Equation 11, where Ã = A + IN is the
adjacency matrix with self-connections, W is a trainable
weight matrix and b a learnable bias.

X(t+1) = σ
(
D̃−

1
2 ÃD̃−

1
2X(t)W + b

)
(11)

Graph Attention Networks (GAT) (Veličković et al.,
2017) perform a linear transformation of the input fea-
tures followed by an aggregation of the neighbourhood as a

Principal Neighbourhood Aggregation for Graph Nets

weighted sum of the transformed features, where the weights
are set by an attention mechanism a. We define it in Equa-
tion 12, where W is a trainable projection matrix. As in the
original paper, we employ the use of multi-head attention.

X
(t+1)
i = σ

 ∑
(j,i)∈E

a
(
X

(t)
i , X

(t)
j

)
WX

(t)
j

 (12)

Graph Isomorphism Networks (GIN) (Xu et al., 2018)
perform a sum aggregation over the neighbourhood, fol-
lowed by an update function U consisting of a multi-layer
perceptron. We define it in Equation 13, where ε is a learn-
able parameter. As in the original paper, we use a 2-layer
MLP for U .

X
(t+1)
i = U

((
1 + ε

)
X

(t)
i +

∑
j∈N(i)

X
(t)
j

)
(13)

Message Passing Neural Networks (MPNN) (Gilmer
et al., 2017) perform a transformation before and after an
arbitrary aggregator. We define it in Equation 14, where M
and U are neural networks and

⊕
is a single aggregator. In

particular, we test models with sum and max aggregators,
as they are the most used in literature. As with PNA layers,
we found that linear transformations are sufficient for M
and U and, as in the original paper (Gilmer et al., 2017), we
employ multiple towers.

X
(t+1)
i = U

(
X

(t)
i ,

⊕
(j,i)∈E

M
(
X

(t)
i , X

(t)
j

))
(14)

G. Multi-task Benchmark
The benchmark consists of classical graph theory tasks on
artificially generated graphs.

Random Graph Generation Following previous work
(Veličković et al., 2019; You et al., 2019), the benchmark
contains undirected unweighted randomly generated graphs
of a wide variety of types (we provide, in parentheses, the
approximate proportion of such graphs in the benchmark).
Letting N be the total number of nodes per graph:

• Erdős-Rényi (Erdős & Rényi, 1960) (20%): with prob-
ability of presence for each edge equal to p, where p is
independently generated for each graph from U [0, 1]

• Barabási-Albert (Albert & Barabási, 2002) (20%):
the number of edges for a new node is k, which is
taken randomly from {1, 2, ..., N − 1} for each graph

• Grid (5%): m × k 2d grid graph with N = mk and
m and k as close as possible

• Caveman (Watts, 1999) (5%): with m cliques of size
k, with m and k as close as possible

• Tree (15%): generated with a power-law degree distri-
bution with exponent 3

• Ladder graphs (5%)

• Line graphs (5%)

• Star graphs (5%)

• Caterpillar graphs (10%): with a backbone of size
b (drawn from U [1, N)), and N − b pendent vertices
uniformly connected to the backbone

• Lobster graphs (10%): with a backbone of size b
(drawn from U [1, N)), p (drawn from U [1, N − b])
pendent vertices uniformly connected to the backbone,
and additional N − b− p pendent vertices uniformly
connected to the previous pendent vertices.

Additional randomness was introduced to the generated
graphs by randomly toggling arcs, without strongly im-
pacting the average degree and main structure. If e is the
number of edges and m the number of ’missing edges’
(2e+ 2m = N(N − 1)), the probabilities Pe and Pm of an
existing and missing edge to be toggled are:

Pe =

{
0.1 e ≤ m
0.1 m

e e > m
Pm =

{
0.1 e

m e ≤ m
0.1 e > m

(15)
After performing the random toggling, we discarded graphs
containing singleton nodes, as they are in no way affected
by the choice of aggregation.

For the presented multi-task results, we used graphs of small
sizes (15 to 50 nodes) as they were already sufficient to
demonstrate clear differences between the models.

Graph Properties In the multi-task benchmark, we con-
sider three node labels and three graph labels based on
standard graph theory problems. The node properties tasks
are the single-source shortest-path lengths, the eccentricity
and the Laplacian features (LX where L = (D − A) is
the Laplacian matrix and X the node feature vector). The
graph properties tasks are whether the graph is connected,
the diameter and the spectral radius.

Input Features As input features, the network is provided
with two vectors of size N , a one-hot vector (representing
the source for the shortest-path task) and a feature vector
X where each element is i.i.d. sampled as Xi ∼ U [0, 1].
Apart from taking part in the Laplacian features task, this
random feature vector also provides a “unique identifier” for
the nodes in other tasks. Similar strengthening via random
features was also concurrently discovered by (Sato et al.,
2020). This allows for addressing some of the problems

Principal Neighbourhood Aggregation for Graph Nets

highlighted in (Garg et al., 2020; Chen et al., 2020); e.g. the
task of whether a graph is connected could be performed
by continually aggregating the maximum feature of the
neighbourhood and then checking whether they are all equal
in the readout.

Model Training While having clear differences, these
tasks also share related subroutines (such as graph traver-
sals). While we do not take this sharing of subroutines as
prior as in (Veličković et al., 2019), we expect models to
pick up on these commonalities and efficiently share param-
eters between the tasks, which reinforce each other during
the training.

We trained the models using the Adam optimizer for a maxi-
mum of 10,000 epochs, using early stopping with a patience
of 1,000 epochs. Learning rates, weight decay, dropout and
other hyper-parameters were tuned on the validation set. For
each model, we run 10 training runs with different seeds and
different hyper-parameters (but close to the tuned values)
and report the five with least validation error.

H. Parameters Comparison
Table 1 shows the results of testing all the other models on
the multi-task benchmark with increased latent size.

Table 1. Average score of different models using feature sizes of 16
and 20, compared to the PNA with 16 on the multi-task benchmark.
”# params” is the total number of parameters in each architecture.

SIZE 16 SIZE 20

MODEL # PAR log MSE # PAR log MSE

PNA 8350 -3.13 - -
MPNN (SUM) 7294 -2.53 11186 -2.19
MPNN (MAX) 8032 -2.50 12356 -2.23

GAT 6694 -2.26 10286 -2.08
GCN 6662 -2.04 10246 -1.96
GIN 7272 -1.99 11168 -1.91

We observe that, even with fewer parameters, PNA performs
consistently better and an increased number of parameters
does not boost the performance of the other models. This
suggests that the multiple aggregators in the PNA produce a
qualitative improvement to the capacity of the model.

