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Abstract
Graph neural networks have demonstrated strong
performance modelling non-uniform structured
data. However, there exists little research explor-
ing methods to make them more efficient at infer-
ence time. In this work, we explore the viability
of training quantized GNNs models, enabling the
usage of low precision integer arithmetic for in-
ference. We propose a method, Degree-Quant, to
improve performance over existing quantization-
aware training baselines commonly used on other
architectures, such as CNNs. Our work demon-
strates that it is possible to train models using 8-bit
integer arithmetic at inference-time with similar
accuracy to their full precision counterparts.

1. Introduction
Graph neural networks (GNNs) have received substantial
attention in recent years due to their ability to model irregu-
larly structured data. As a result, they are extensively used
for applications as diverse as molecular interactions (Duve-
naud et al., 2015; Wu et al., 2017), social networks (Hamil-
ton et al., 2017), recommendation systems (van den Berg
et al., 2017) or program understanding (Allamanis et al.,
2018). Recent advancements have centered around building
more sophisticated graph models, including new types of
layers (Kipf & Welling, 2017; Velickovic et al., 2018; Xu
et al., 2019) and better aggregation functions (Corso et al.,
2020). However, despite GNNs being small in terms of num-
ber of parameters, the compute required for each application
remains tightly coupled to the input graph size. A 2-layer
GCN model with 32 hidden units would result in a model
size of just 81KB but requires 19 GigaOPs to process the
entire Reddit graph. We illustrate this growth in Figure 1.

One major challenge with graph architectures is therefore
performing inference efficiently, which limits the applica-
tions they can be deployed for. For example, GNNs have
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Figure 1. Despite model sizes for GNNs rarely exceeding 1MB,
the OPs needed for inference grows at least linearly with dataset
and node features dimensions. GNNs models 100× smaller than
popular CNNs require many more OPs to process large graphs.

been combined with CNNs for SLAM feature matching (Sar-
lin et al., 2019), however it is not possible to deploy this
technique on smartphones, or even smaller devices, where
accelerators often do not implement floating point arith-
metic, and instead favour more efficient integer arithmetic.
Integer quantization is one way to lower the compute budget
required to perform inference. This is achieved by employ-
ing fewer bits to represent each element involved in the
forward pass, significantly reducing memory consumption
and, compute and data movement costs.

Although quantization has been well studied for CNNs and
language models (Jacob et al., 2017; Wang et al., 2018;
Zafrir et al., 2019; Prato et al., 2019), there remains little
work addressing GNN efficiency (Mukkara et al., 2018; Jia
et al., 2020). To the best of our knowledge, there is no work
studying quantization for GNNs, and explicitly character-
ising the issues that arise. The recent work of Wang et al.
(2020) explores the use of binarized graph embeddings but
limits the study to citation networks. Our work enables
GNN quantization of any bit-width, which we evaluate un-
der 8-bit and 4-bit settings (due to the availability of native
hardware support) and under six datasets including citation
networks, superpixel image classification, molecular regres-
sion and social graph classification. We discover and explain
the sources of accuracy degradation in GNNs when using
lower precision arithmetic, and propose a technique, Degree-
Quant, to enable networks performing inference with 8-bit
arithmetic to achieve similar accuracy to FP32 models.



Degree-Quant: Quantization-Aware Training for Graph Neural Networks

2. Background
2.1. Message Passing Neural Networks (MPNNs)

Many popular GNN architectures may be viewed as gen-
eralizations of CNN architectures to an irregular domain:
at a high level, graph architectures attempt to build repre-
sentations based on a node’s neighborhood. Unlike CNNs,
however, this neighborhood does not have a fixed ordering
or size. This work considers GNN architectures conforming
to the MPNN paradigm (Gilmer et al., 2017). A graph G has
node features X ∈ RN×F , an incidence matrix I ∈ N2×E ,
and optionally D-dimensional edge features E ∈ RE×D.
We focus on three popular architectures with update rules:

1. Graph Convolution Network (GCN) (Kipf & Welling,
2017): x′v =

∑
u∈N (v)∪{v}[

1√
deg(u)deg(v)

Θxu]

2. Graph Attention Network (GAT) (Velickovic et al.,
2018): x′v = αv,vΘxv +

∑
u∈N (v)[αv,uΘxu], where

α represent attention coefficients.
3. Graph Isomorphism Network (GIN) (Xu et al., 2019):

x′v = hΘ[(1 + ε)xv +
∑

u∈N (v) xu], where h is a
function (e.g. MLP) and ε is a constant, both learnable.

2.2. Quantization for Non-Graph Neural Networks

Quantization allows for model size reduction and inference
speedup without changing the model architecture. While
there exists extensive studies of the impact of quantization
at different bit-widths (Courbariaux et al., 2015; Han et al.,
2015; Louizos et al., 2017) and data formats (Carmichael
et al., 2018; Kalamkar et al., 2019), it is 8-bit integer (INT8)
quantization that has attracted the most attention. This is
due to INT8 models reaching comparable accuracy levels to
full-precision (FP32) models (Krishnamoorthi, 2018; Jacob
et al., 2017), offer a 4× model compression, and result in
inference speedups on off-the-shelf hardware.

Quantization-aware training (QAT) has become the de
facto approach towards designing robust quantized mod-
els (Wang et al., 2018; Zafrir et al., 2019; Wang et al.,
2018). In their simplest forms, QAT schemes involve ex-
posing the numerical errors introduced by quantization by
simulating it on the forward pass and make use of straight-
through estimator (STE) (Bengio et al., 2013) to compute
the gradients. For integer QAT, the quantization of a ten-
sor x during the forward pass is often implemented as:
xq = min(qmax,max(qmin, bx/s + zc)), where qmin and
qmax are the minimum and maximum representable values
at a given bit-width and signedness, s is the scaling factor
making x span the [qmin, qmax] range and, z is the zero-
point, which allows for the real value 0 to be representable
in xq. Both s and z are scalars obtained at training time.
Then, the tensor is dequantized as: x̂ = (xq − z)s. Other
variants of integer QAT are presented in Jacob et al. (2017).

Figure 2. Analysis of values collected after aggregation at the final
layer of FP32 GNNs trained on Cora. Generated using channel
data collected from 100 runs. As in-degree grows, so does the
mean and variance of channel values after aggregation.

Reaching performance comparable to FP32 models at lower
bit-widths is not trivial. As a result, QAT schemes often rely
on additional techniques to close the performance gap (Fan
et al., 2020; Sheng et al., 2018; Alizadeh et al., 2019).

3. Quantization for GNNs
In this section, we build an intuition for why GNNs would
fail with low precision arithmetic. Then, we propose our
novel technique for QAT with GNNs, Degree-Quant.

3.1. Sources of Error

QAT relies upon the STE to make an estimate of the gradient
despite the non-differentiable rounding in the forward pass.
If this approximation is inaccurate, however, then poor per-
formance will be obtained. In GNN layers, we identify the
aggregation phase as a source of numerical error, especially
at nodes with high in-degree due to two sources:

1. Outputs from aggregation have magnitudes that vary
significantly depending on a node’s in-degree: as it
increases, the variance of output values will increase.
Over the course of training qmin and qmax may become
severely distorted by infrequent outliers, reducing the
resolution for the vast majority of values observed.

2. Accumulation at large in-degree nodes where errors
compound leads to the error being backpropagated to a
large number of nodes, exacerbating the gradient error.

We can derive how the mean and variance of aggregation
output values vary as node in-degree, n, increases for each
of the three GNN layers, explaining the source (1) errors.
Suppose we model incoming message values for a single out-
put dimension with identically distributed random variables
Xi, while making no assumptions on their exact distribution
or independence. Further, we use Yn as the random variable
representing the value of node output after the aggregation
step. With GIN layers, we have Yn = (1+ε)X0+

∑n
i=1Xi.

It can be proven that E(Yn) = O(n). The variance
is also proportion to n in the case that we assume that
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Figure 3. High-level view of the stochastic element of Degree-
Quant. Masked (high in-degree) nodes, in green, operate at full
precision, while unmasked nodes (red) operate at reduced precision.
High in-degree nodes contribute most to poor gradient estimates,
hence they are stochastically masked more often.∑

i 6=j Cov(Xi, Xj) �
∑

i Var(Xi). This assumption is
sensible: if

∑
i 6=j Cov(Xi, Xj) is large then it implies that

the network has learned highly redundant features, and may
be a sign of over-fitting. Similar arguments can be made for
GCN and GAT layers; we would expect GCN aggregation
values to grow with O(

√
n), and GAT aggregation values

to remain constant due to the attention coefficients. We
empirically validate these predictions on networks trained
on the Cora dataset; results are plotted in fig. 2. We observe
that the aggregation values do follow the trends predicted,
and that for the values of in-degree in the plot (up to 168)
the covariance terms can be neglected.

3.2. Our Method: Degree-Quant

To address these sources of error we propose Degree-Quant
(DQ), a method for QAT with GNNs. Motivated by our
observation that quantization error accumulates most at high
in-degree nodes, our method targets these nodes specifically.

Algorithm 1 Training forward pass for Degree-Quant. Any func-
tion accepting the mask parameter m is understood to perform only
the masked computations at full precision: intermediate tensors
are not quantized. At test time, all operations are at low precision.

Input: Graph G, masking probabilities p
Create mask: m← Bernoulli(p)
Quantize weights: Θ← Quantize(Θ)
M←MessageCalculate(G,Θ′,m)
X ← Quantize(Aggregate(M,Θ′,m), m)
return Update(X,Θ′,m)

DQ aims to encourage more accurate gradients to flow
through high in-degree nodes by probabilistically perform-
ing the forward pass at those nodes at full precision. At each
layer a binary node mask is generated; masked nodes have
the phases of the message passing, aggregation and update
performed at full precision. This includes messages sent
by masked nodes to other nodes, as shown in Figure 3. It
is important to note that the weights used at all nodes are
the quantized weights; this is motivated by the fact that our
method is used to encourage more accurate gradients to flow
back to the weights through high in-degree nodes. At test
time masking is disabled: all nodes operate at low precision.

To generate the mask, we pre-process each graph before
training and create a vector of probabilities p with length
equal to the number of nodes. At training time, mask m
is generated by sampling using the Bernoulli distribution:
m ∼ Bernoulli(p). In our scheme, the pi is higher if the
in-degree of node i is large. We use a simple scheme with
two hyperparameters, pmin and pmax, to tune; nodes with
the maximum in-degree are assigned pmax as their mask-
ing probability, with all other nodes assigned a probability
calculated by linearly interpolating between pmin and pmax

based on their in-degree ranking in the graph.

Figure 2 also demonstrates large fluctuations in variance as
in-degree increases. Since these fluctuations can dispropor-
tionately affect the qmin and qmax found by commonly used
methods, we propose using percentiles. While percentiles
have been used for post-training quantization (Wu et al.,
2020), we are the first (to the best of our knowledge) to
propose making it a core part of QAT; we find it to be a key
contributor to achieving good results with graphs. qmin and
qmax are more representative of the vast majority of values
in this scheme, resulting in greater precision as bits are not
wasted for encoding infrequently observed values.

4. Experiments
In this section we evaluate Degree-Quant against strong
FP32 and INT8-QAT baselines. Our study evaluates per-
formance on six datasets and includes both transductive
and inductive tasks. The datasets used were Cora, Cite-
Seer (Yang et al., 2016), ZINC (Jin et al., 2018), MNIST and
CIFAR-10 superpixels (Knyazev et al., 2019), and REDDIT-
BINARY (Yanardag & Vishwanathan, 2015). Across all
datasets INT8 models trained with Degree-Quant manage to
recover most of the accuracy lost as a result of quantization.

We use models described in Fey & Lenssen (2019) and
Dwivedi et al. (2020). We frequently improved upon the
results reported in these publications after extensive hyper-
parameter tuning. Significant gains were observed for GIN
models for MNIST and CIFAR10 and large gains for all
models on the ZINC dataset. For citation networks, our tun-
ing resulted in models with considerably lower validation
loss, however that did not translate into higher test accuracy.

To obtain quantized baselines, we first evaluated each type
of layer and dataset with two variants of STE, vanilla STE
and STE with gradient clipping, and two ways of tracking
min/max ranges of the tensors to be quantized, using ab-
solute values and using momentum. We found the choice
of STE configuration to be highly dependent on the model
architecture and type of problem to be solved: we see a
much larger variance than is observed with CNNs. All QAT
baselines use STE configurations informed by this analysis.

QAT-INT8 results in table 1, with the exception of MNIST
(an easy to classify dataset), corroborate our hypothesis that
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Table 1. Results for DQ at INT8, with percent points improvements over baseline QAT in bold (for ZINC we show relative improvement).
While GCN and GAT models retain most accuracy for INT8, models with GIN layers result in larger degradations. Models trained with
Degree-Quant (DQ), result in performances comparable to those of their FP32 counterparts, and surpassing FP32 baselines in some cases.

Quant. Model Node Classification (Accuracy %) Graph Classification (Accuracy %) Graph Regression (Loss)
Scheme Arch. Cora ↑ Citeseer ↑ MNIST ↑ CIFAR-10 ↑ ZINC ↓

FP32
GCN 80.9± 0.7 71.4± 0.9 90.9± 0.4 58.4± 0.5 0.450± 0.008

GAT 82.3± 0.8 70.5± 0.9 95.8± 0.4 65.1± 0.8 0.455± 0.006

GIN 77.9± 1.1 65.1± 2.1 96.4± 0.4 57.4± 0.7 0.334± 0.024

QAT-INT8
GCN 81.0± 0.7 70.9± 0.7 90.9± 0.2 56.4± 0.5 0.481± 0.029

GAT 81.9± 0.7 70.5± 0.9 95.8± 0.3 66.3± 0.4 0.460± 0.005

GIN 75.6± 1.2 63.0± 2.6 96.7± 0.2 52.4± 1.2 0.386± 0.025

GCN 81.7± 0.7 (+0.7) 70.7± 0.9 (-0.2) 90.9± 0.1 (+0.0) 56.3± 0.1 (-0.1) 0.434± 0.009 (+9.8)
GAT 82.1± 0.1 (+0.2) 70.8± 1.0 (+0.3) 95.8± 0.4 (+0.0) 67.7± 0.5 (+1.4) 0.456± 0.005 (+0.9)DQ-INT8
GIN 77.2± 1.2 (+1.6) 67.4± 1.4 (+4.4) 96.6± 0.4 (-0.1) 55.5± 0.6 (+3.1) 0.357± 0.014 (+7.5)

Table 2. Results for DQ-INT8 GIN models perform nearly as well
as at FP32. For INT4, DQ offers a significant increase in accuracy.
We focus on GIN as it is most susceptible to degradation.

Quantization Model REDDIT-BIN (Acc. %) ↑

FP32 GIN 92.0± 1.5

QAT-INT8 GIN 76.1± 7.5

DQ-INT8 GIN 91.8± 2.3 (+15.7)

QAT-INT4 GIN 54.4± 6.6

DQ-INT4 GIN 81.3± 4.4 (+26.9)

GIN layers are less resilient to quantization. This was first
observed in fig. 2. In the case of ZINC, while all models re-
sults in noticeable degradation, GIN sees a more severe 16%
increase of regression loss compared to our FP32 baseline.
We present further results with GIN on REDDIT-BINARY
in table 2, including a study of performance at INT4.

Citation networks trained with DQ manage to recover most
of the accuracy lost as a results of QAT-INT8. In some
instances DQ-INT8 models outperform the reference FP32
baselines. We see DQ being more effective for GIN lay-
ers, outperforming INT8 baselines for Citeseer (4.4%) and
REDDIT-BINARY (15.7%) by large margins. For DQ, ra-
tios of pmin and pmax in [0.0, 0.2] were the most common.

5. Discussion
Benefits of Percentile Ranges. Figure 4 shows the im-
portance of using percentiles during training. When using
standard min/max that the upper range grows to over dou-
ble the range for 99.9% of values: this effectively halves
the quantization resolution for most values. We found that
gradient clipping had no clear benefits when combined with
percentiles: all results used the STE, with the exception of
REDDIT-BINARY. DQ was also more stable, and we ob-
tained strong results with an order of magnitude less tuning
relative to the QAT baselines.

Figure 4. qmax with absolute min/max and percentile ranges, ap-
plied to INT8 GCN training on Cora. Percentile max is half that
of the absolute, doubling resolution for the majority of values.

Performance Implications. The performance benefits of
INT8 arithmetic have been studied for CNNs and other
regular architectures (Horowitz, 2014; Jacob et al., 2017;
Bhandare et al., 2019). However, we note that to obtain
peak performance for GNNs it is necessary to process nodes
with a cache-friendly ordering: the true speedup will be
dataset and hardware dependent. It is worth emphasizing
that quantized networks are necessary to use accelerators in
smartphones and smaller devices as they primarily acceler-
ate integer arithmetic. Quantized networks are also smaller
and require less memory at inference-time.

6. Conclusion
This work has presented Degree-Quant, a method for train-
ing a diverse set of GNN architectures to obtain close to
FP32 performance while using only 8-bit integer arithmetic.
Our work is a first step towards enabling GNNs to be de-
ployed more widely, including to resource constrained de-
vices such as smartphones. We believe that our insights
pave the way for research into mixed-precision training and
further techniques for efficient inference with GNNs.
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