Abstract
Graph neural networks have demonstrated strong performance modelling non-uniform structured data. However, there exists little research exploring methods to make them more efficient at inference time. In this work, we explore the viability of training quantized GNNs models, enabling the usage of low precision integer arithmetic for inference. We propose a method, Degree-Quant, to improve performance over existing quantization-aware training baselines commonly used on other architectures, such as CNNs. Our work demonstrates that it is possible to train models using 8-bit integer arithmetic at inference-time with similar accuracy to their full precision counterparts.

1. Introduction
Graph neural networks (GNNs) have received substantial attention in recent years due to their ability to model irregularly structured data. As a result, they are extensively used for applications as diverse as molecular interactions (Duvenaud et al., 2015; Wu et al., 2017), social networks (Hamilton et al., 2017), recommendation systems (van den Berg et al., 2017) or program understanding (Allamanis et al., 2018). Recent advancements have centered around building more sophisticated graph models, including new types of layers (Kipf & Welling, 2017; Velickovic et al., 2018; Xu et al., 2019) and better aggregation functions (Corso et al., 2020). However, despite GNNs being small in terms of number of parameters, the compute required for each application remains tightly coupled to the input graph size. A 2-layer GCN model with 32 hidden units would result in a model size of just 81KB but requires 19 GigaOPs to process the entire Reddit graph. We illustrate this growth in Figure 1.

One major challenge with graph architectures is therefore performing inference efficiently, which limits the applications they can be deployed for. For example, GNNs have been combined with CNNs for SLAM feature matching (Sarlin et al., 2019), however it is not possible to deploy this technique on smartphones, or even smaller devices, where accelerators often do not implement floating point arithmetic, and instead favour more efficient integer arithmetic. Integer quantization is one way to lower the compute budget required to perform inference. This is achieved by employing fewer bits to represent each element involved in the forward pass, significantly reducing memory consumption and, compute and data movement costs.

Although quantization has been well studied for CNNs and language models (Jacob et al., 2017; Wang et al., 2018; Zafrir et al., 2019; Prato et al., 2019), there remains little work addressing GNN efficiency (Mukkara et al., 2018; Jia et al., 2020). To the best of our knowledge, there is no work studying quantization for GNNs, and explicitly characterising the issues that arise. The recent work of Wang et al. (2020) explores the use of binarized graph embeddings but limits the study to citation networks. Our work enables GNN quantization of any bit-width, which we evaluate under 8-bit and 4-bit settings (due to the availability of native hardware support) and under six datasets including citation networks, superpixel image classification, molecular regression and social graph classification. We discover and explain the sources of accuracy degradation in GNNs when using lower precision arithmetic, and propose a technique, Degree-Quant, to enable networks performing inference with 8-bit arithmetic to achieve similar accuracy to FP32 models.
2. Background

2.1. Message Passing Neural Networks (MPNNs)

Many popular GNN architectures may be viewed as generalizations of CNN architectures to an irregular domain: at a high level, graph architectures attempt to build representations based on a node’s neighborhood. Unlike CNNs, however, this neighborhood does not have a fixed ordering or size. This work considers GNN architectures conforming to the MPNN paradigm (Gilmer et al., 2017). A graph G has node features $X \in \mathbb{R}^{N \times F}$, an incidence matrix $I \in \mathbb{N}^{N \times E}$, and optionally D-dimensional edge features $E \in \mathbb{R}^{E \times D}$.

We focus on three popular architectures with update rules:

1. **Graph Convolution Network (GCN)** (Kipf & Welling, 2017):
 \[x'_v = \sum_{u \in \mathcal{N}(v) \cup \{v\}} \frac{1}{\deg(u) \deg(v)} \Theta x_u \]

2. **Graph Attention Network (GAT)** (Velickovic et al., 2018):
 \[x'_v = \alpha_v \Theta x_v + \sum_{u \in \mathcal{N}(v)} \alpha_{v,u} \Theta x_u \]
 where α represent attention coefficients.

3. **Graph Isomorphism Network (GIN)** (Xu et al., 2019):
 \[x'_v = h(1 + \epsilon) x_v + \sum_{u \in \mathcal{N}(v)} x_u \]
 where h is a function (e.g. MLP) and ϵ is a constant, both learnable.

2.2. Quantization for Non-Graph Neural Networks

Quantization allows for model size reduction and inference speedup without changing the model architecture. While there exists extensive studies of the impact of quantization at different bit-widths (Courbariaux et al., 2015; Han et al., 2015; Louizos et al., 2017), it is 8-bit integer (INT8) quantization that has attracted the most attention. This is due to INT8 models reaching comparable accuracy levels to full-precision (FP32) models (Krishnamoorthi, 2018; Jacob et al., 2017), offering a 4x model compression, and result in inference speedups on off-the-shelf hardware.

Quantization-aware training (QAT) has become the de facto approach towards designing robust quantized models (Wang et al., 2018; Zafrir et al., 2019; Wang et al., 2018). In their simplest forms, QAT schemes involve exposing the numerical errors introduced by quantization by simulating it on the forward pass and make use of straight-through estimator (STE) (Bengio et al., 2013) to compute the gradients. For integer QAT, the quantization of a tensor x during the forward pass is often implemented as:

\[x_q = \min(\text{quant}(x_{\text{max}}, x_{\text{min}}, \frac{x}{s + z})), \text{quant}(x_{\text{max}}, x_{\text{min}}, 0)) \]

where x_{min} and x_{max} are the minimum and maximum representable values at a given bit-width and signendess, s is the scaling factor making x span the $[x_{\text{min}}, x_{\text{max}}]$ range and, z is the zero-point, which allows for the real value 0 to be representable in x_q. Both s and z are scalars obtained at training time. Then, the tensor is dequantized as: $\hat{x} = (x_q - z)s$. Other variants of integer QAT are presented in Jacob et al. (2017).
To address these sources of error we propose a method for QAT with GNNs. Motivated by our Algorithm 1:

\[\text{Input:} \text{Graph } G, \text{ masking probabilities } \mathbf{p} \]

Create mask: \(\mathbf{m} \sim \text{Bernoulli}(\mathbf{p}) \)

Quantize weights: \(\Theta \leftarrow \text{Quantize}(\Theta) \)

\[M \leftarrow \text{MessageCalculate}(G, \Theta', \mathbf{m}) \]

\[X \leftarrow \text{Quantize}(\text{Aggregate}(M, \Theta', \mathbf{m}), \mathbf{m}) \]

\[\text{return Update}(X, \Theta', \mathbf{m}) \]

DQ aims to encourage more accurate gradients to flow through high in-degree nodes by probabilistically performing the forward pass at those nodes at full precision. At each layer a binary node mask is generated; masked nodes have the phases of the message passing, aggregation and update performed at full precision. This includes messages sent by masked nodes to other nodes, as shown in Figure 3. It is important to note that the weights used at all nodes are the quantized weights; this is motivated by the fact that our method is used to encourage more accurate gradients to flow back to the weights through high in-degree nodes. At test time masking is disabled: all nodes operate at low precision. To generate the mask, we pre-process each graph before training and create a vector of probabilities \(\mathbf{p} \) with length equal to the number of nodes. At training time, mask \(\mathbf{m} \) is generated by sampling using the Bernoulli distribution: \(\mathbf{m} \sim \text{Bernoulli}(\mathbf{p}) \). In our scheme, the \(p_i \) is higher if the in-degree of node \(i \) is large. We use a simple scheme with two hyperparameters, \(p_{\text{min}} \) and \(p_{\text{max}} \) to tune; nodes with the maximum in-degree are assigned \(p_{\text{max}} \) as their masking probability, with all other nodes assigned a probability calculated by linearly interpolating between \(p_{\text{min}} \) and \(p_{\text{max}} \) based on their in-degree ranking in the graph.

Figure 2 also demonstrates large fluctuations in variance as in-degree increases. Since these fluctuations can disproportionately affect the \(q_{\text{min}} \) and \(q_{\text{max}} \) found by commonly used methods, we propose using percentiles. While percentiles have been used for post-training quantization (Wu et al., 2020), we are the first (to the best of our knowledge) to propose making it a core part of QAT; we find it to be a key contributor to achieving good results with graphs. \(q_{\text{min}} \) and \(q_{\text{max}} \) are more representative of the vast majority of values in this scheme, resulting in greater precision as bits are not wasted for encoding infrequently observed values.

4. Experiments

In this section we evaluate Degree-Quant against strong FP32 and INT8-QAT baselines. Our study evaluates performance on six datasets and includes both transductive and inductive tasks. The datasets used were Cora, CiteSeer (Yang et al., 2016), ZINC (Jin et al., 2018), MNIST and CIFAR-10 superpixels (Knyazev et al., 2019), and REDDIT-BINARY (Yanardag & Vishwanathan, 2015). Across all datasets INT8 models trained with Degree-Quant manage to recover most of the accuracy lost as a result of quantization. We use models described in Fey & Lenssen (2019) and Dwivedi et al. (2020). We frequently improved upon the results reported in these publications after extensive hyperparameter tuning. Significant gains were observed for GIN models for MNIST and CIFAR10 and large gains for all models on the ZINC dataset. For citation networks, our tuning resulted in models with considerably lower validation loss, however that did not translate into higher test accuracy.

To obtain quantized baselines, we first evaluated each type of layer and dataset with two variants of STE, vanilla STE and STE with gradient clipping, and two ways of tracking min/max ranges of the tensors to be quantized, using absolute values and using momentum. We found the choice of STE configuration to be highly dependent on the model architecture and type of problem to be solved: we see a much larger variance than is observed with CNNs. All QAT baselines use STE configurations informed by this analysis. QAT-INT8 results in table 1, with the exception of MNIST (an easy to classify dataset), corroborate our hypothesis that
Table 1. Results for DQ at INT8, with percent points improvements over baseline QAT in bold (for ZINC we show relative improvement).

<table>
<thead>
<tr>
<th>Quant. Scheme</th>
<th>Model Arch.</th>
<th>Node Classification (Accuracy %)</th>
<th>Graph Classification (Accuracy %)</th>
<th>Graph Regression (Loss)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cora ↑</td>
<td>MNIST ↑</td>
<td>ZINC ↓</td>
</tr>
<tr>
<td>FP32</td>
<td>GCN</td>
<td>80.9 ± 0.7</td>
<td>90.9 ± 0.4</td>
<td>0.450 ± 0.008</td>
</tr>
<tr>
<td></td>
<td>GAT</td>
<td>82.3 ± 0.8</td>
<td>95.8 ± 0.4</td>
<td>0.455 ± 0.006</td>
</tr>
<tr>
<td></td>
<td>GIN</td>
<td>77.9 ± 1.1</td>
<td>96.4 ± 0.4</td>
<td>0.334 ± 0.024</td>
</tr>
<tr>
<td>QAT-INT8</td>
<td>GCN</td>
<td>81.0 ± 0.7</td>
<td>90.9 ± 0.2</td>
<td>0.481 ± 0.029</td>
</tr>
<tr>
<td></td>
<td>GAT</td>
<td>81.9 ± 0.7</td>
<td>95.8 ± 0.3</td>
<td>0.460 ± 0.005</td>
</tr>
<tr>
<td></td>
<td>GIN</td>
<td>75.6 ± 1.2</td>
<td>96.7 ± 0.2</td>
<td>0.386 ± 0.025</td>
</tr>
<tr>
<td>DQ-INT8</td>
<td>GCN</td>
<td>81.7 ± 0.7 (+0.7)</td>
<td>90.9 ± 0.1 (+0.0)</td>
<td>0.434 ± 0.009 (+9.8)</td>
</tr>
<tr>
<td></td>
<td>GAT</td>
<td>82.1 ± 0.1 (+0.2)</td>
<td>95.8 ± 0.4 (+0.0)</td>
<td>0.456 ± 0.005 (+0.9)</td>
</tr>
<tr>
<td></td>
<td>GIN</td>
<td>77.2 ± 1.2 (+1.6)</td>
<td>96.6 ± 0.4 (-0.1)</td>
<td>0.357 ± 0.014 (+7.5)</td>
</tr>
</tbody>
</table>

GIN layers are less resilient to quantization. This was first observed in Fig. 2. In the case of ZINC, while all models result in noticeable degradation, GIN sees a more severe 16% increase of regression loss compared to our FP32 baseline. We present further results with GIN on REDDIT-BINARY in Table 2, including a study of performance at INT4.

Citation networks trained with DQ manage to recover most of the accuracy lost as a result of QAT-INT8. In some instances DQ-INT8 models outperform the reference FP32 baselines. We see DQ being more effective for GIN layers, outperforming INT8 baselines for Citeseer (4.4%) and REDDIT-BINARY (15.7%) by large margins. For DQ, ratios of p_{min} and p_{max} in $[0.0, 0.2]$ were the most common.

Table 2. Results for DQ-INT8 GIN models perform nearly as well as at FP32. For INT4, DQ offers a significant increase in accuracy. We focus on GIN as it is most susceptible to degradation.

<table>
<thead>
<tr>
<th>Quantization</th>
<th>Model</th>
<th>REDDIT-BIN (Acc. %) ↑</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP32</td>
<td>GIN</td>
<td>92.0 ± 1.5</td>
</tr>
<tr>
<td>QAT-INT8</td>
<td>GIN</td>
<td>76.1 ± 7.5</td>
</tr>
<tr>
<td>DQ-INT8</td>
<td>GIN</td>
<td>91.8 ± 2.3 (+15.7)</td>
</tr>
<tr>
<td>QAT-INT4</td>
<td>GIN</td>
<td>54.4 ± 6.6</td>
</tr>
<tr>
<td>DQ-INT4</td>
<td>GIN</td>
<td>81.3 ± 4.4 (+26.9)</td>
</tr>
</tbody>
</table>

Figure 4. q_{max} with absolute min/max and percentile ranges, applied to INT8 GCN training on Cora. Percentile max is half of the absolute, doubling resolution for the majority of values.

Performance Implications. The performance benefits of INT8 arithmetic have been studied for CNNs and other regular architectures (Horowitz, 2014; Jacob et al., 2017; Bhandare et al., 2019). However, we note that to obtain peak performance for GNNs it is necessary to process nodes with a cache-friendly ordering: the true speedup will be dataset and hardware dependent. It is worth emphasizing that quantized networks are necessary to use accelerators in smartphones and smaller devices as they primarily accelerate integer arithmetic. Quantized networks are also smaller and require less memory at inference-time.

5. Discussion

Benefits of Percentile Ranges. Figure 4 shows the importance of using percentiles during training. When using standard min/max that the upper range grows to over double the range for 99.9% of values: this effectively halves the quantization resolution for most values. We found that gradient clipping had no clear benefits when combined with percentiles: all results used the STE, with the exception of REDDIT-BINARY. DQ was also more stable, and we obtained strong results with an order of magnitude less tuning relative to the QAT baselines.

6. Conclusion

This work has presented Degree-Quant, a method for training a diverse set of GNN architectures to obtain close to FP32 performance while using only 8-bit integer arithmetic. Our work is a first step towards enabling GNNs to be deployed more widely, including to resource constrained devices such as smartphones. We believe that our insights pave the way for research into mixed-precision training and further techniques for efficient inference with GNNs.
ACKNOWLEDGMENTS

This work was supported by Samsung AI, Arm and, by the UK’s Engineering and Physical Sciences Research Council (EPSRC) with grants EP/M50659X/1 and EP/S001530/1.

References

Han, S., Mao, H., and Dally, W. J. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding, 2015.

Louizos, C., Ullrich, K., and Welling, M. Bayesian compression for deep learning, 2017.

van den Berg, R., Kipf, T. N., and Welling, M. Graph convolutional matrix completion, 2017.

