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Abstract
Recent works on representation learning for
Knowledge Graphs have moved beyond the prob-
lem of link prediction, to answering queries of an
arbitrary structure. Existing methods are based on
ad-hoc mechanisms that require training with a di-
verse set of query structures. We propose a more
general architecture that employs a graph neural
network to encode a graph representation of the
query, where nodes correspond to entities and
variables. The generality of our method allows
it to encode a more diverse set of query types
in comparison to previous work. Our method
shows competitive performance against previous
models for complex queries, and in contrast with
these models, it can answer complex queries when
trained for link prediction only. We show that the
model learns entity embeddings that capture the
notion of entity type without explicit supervision.

1. Introduction
Knowledge Graphs (KG) are useful data structures for en-
coding information from different domains, by representing
entities and relations of different types between them. Tasks
of interest that can be addressed with knowledge graphs
include information retrieval (Dalton et al., 2014), question
answering (Vakulenko et al., 2019; Huang et al., 2019), and
natural language processing (Logan et al., 2019). A com-
mon way to answer a question using a KG is to pose it as a
structured query (for example, using the SPARQL query lan-
guage (Harris et al., 2013)). The query is then answered via
logical inference, using the information present in the graph.
However, knowledge graphs are usually incomplete, either
due to the construction process, or their dynamic nature.
This means that there will be cases where these systems
return no answer for a query.

To address this problem, we follow recent works that pro-
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Figure 1. Message Passing Query Embedding takes as input a
query graph and outputs a query embedding. Features for each
node in the query graph are embeddings of entities in the KG,
or type embeddings. A GNN propagates information across the
graph, and an aggregation function yields the query embedding.

pose to map the query and all entities in the KG to an
embedding space (Hamilton et al., 2018; Wang et al., 2018;
Mai et al., 2019), where we can compute similarity scores
to produce a ranked list of answers. We propose Message
Passing Query Embedding (MPQE), motivated by the obser-
vation that queries over a KG can be represented by small
graphs, where nodes correspond to constant entities and
variables. We employ a Graph Neural Network (GNN) to
perform message passing on the query graph, and an ag-
gregation function to combine all the messages in a single
vector, which acts as a representation of the query in the em-
bedding space. By training on the task of query answering,
our method learns jointly an embedding for each entity in
the KG, and type embeddings for variables.

Our contributions can be summarized as follows: 1) We
propose a novel method to embed queries over knowledge
graphs, that addresses limitations of previous works in terms
of computational complexity, and the diversity of query
structures that it admits; 2) we show experimentally that
MPQE is competitive with previous work on complex query
embedding across multiple query structures. Furthermore,
we provide evidence of the superior generalization of MPQE
by training for link prediction only, and testing on complex
queries. While previous models fail in this setting, we
show that MPQE retains predictive performance on complex
queries; 3) we conduct a qualitative analysis of the entity
embeddings produced by query embedding methods, and
show that MPQE learns in an unsupervised way a structured
embedding space where entities cluster according to type.
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2. Problem Definition
We define a Knowledge Graph (KG) as a tuple (V, E ,R, T ),
where V is a set of nodes representing entities, and E a set
of typed edges between the nodes. A function τ : V → T
assigns a type to every node, where T is a set of entity types.
Each edge in E corresponds to a relation between two nodes
vi and vj ∈ V , that we denote by r(vi, vj), where r ∈ R is
a relation type.

Given a KG, we can pose queries that seek for an entity satis-
fying certain conditions. We consider queries in conjunctive
form, formed by a conjunction of binary predicates where
the arguments are entities or variables. To illustrate this,
consider a KG of an academic institution where researchers
work on topics, and topics are related to projects, and the
following query: “select all projects P , such that topic T is
related to P , and both alice and bob work on T .” This query
asks for entities P that satisfy the following condition:

P.∃T, P : related(P, T )

∧ works on(alice, T ) ∧ works on(bob, T ).

In general, a query q is defined by a condition on a target
variable Vt as follows:

q = Vt.∃V1, . . . , Vm : r1(a1, b1)∧ . . .∧ rm(am, bm), (1)

where ri ∈ R, and ai and bi are either entities in the KG, or
query variables in {Vt, V1, . . . , Vm}. An entity is a correct
answer if it satisfies the condition defined by the query. We
can address the problem of returning a list of entities that
satisfy the query, by mapping the query to an embedding
and computing its similarity with the embeddings of entities
in the KG (Hamilton et al., 2018). Formally, we optimize an
embedding ev ∈ Rd for every entity v ∈ V , and we define
an embedding method for the query that maps it to a vector
q ∈ Rd. We then compute the cosine similarity between q
and an entity embedding ev as follows:

score(q, ev) =
q>ev
‖q‖‖ev‖

. (2)

This score determines the rank of an entity as a possible
answer to the query.

3. Related Work
Multiple approaches for machine learning on graphs con-
sider embedding the graph into a vector space via link pre-
diction (Bordes et al., 2013; Wang et al., 2014; Yang et al.,
2015). The applicability of these methods for answering
complex queries is limited. For each link that needs to be
predicted, these methods must consider all possible entities,
which is exponential in the size of the query. Our method
is based on an architecture that directly encodes the query

into an embedding, which provides our method with a linear
complexity in the size of the graph. Recent works have also
addressed the problem of embedding a query to retrieve ap-
proximate answers, by partitioning the query graph in differ-
ent subgraphs, so that candidate answers can be provided for
each of them (Zhang et al., 2018). In (Wang et al., 2018), the
authors pre-train embeddings using an algorithm inspired
by TransE. Instead of relying on a separate pre-training step,
we learn with an objective that optimizes entity embeddings
for the task of query answering directly. The most related
approaches to our work consider embedding queries directly
in the embedding space (Hamilton et al., 2018; Mai et al.,
2019; Ren et al., 2020), by applying a sequence of projec-
tion and intersection operators that follow the structure of
the query graph. These methods are constrained to having
entities only at the leaves of the Directed Acyclic Graph
(DAG) defined by the query. Furthermore, the use of pro-
jection and intersection mechanisms requires training with
multiple query structures that comprise both chains and in-
tersections. Our method has a more general formulation
that enables it to i) encode a general set of query graphs,
without constraints on the location of entities in the query,
and ii) learn from single-hop link prediction training alone,
and still generalize to larger queries.

4. Message Passing Query Embedding
As noted in previous work (Hamilton et al., 2018; Wang
et al., 2018), queries in conjunctive form can be represented
as a DAG. In this graph, the leaf nodes correspond to con-
stant entities, the root to the variable to be retrieved, and any
intermediate nodes to other variables in the query. Given a
query of the form given in eq. 1, we define the query graph
as the tuple (Vq, Eq,Rq). Here, Vq is the union of nodes
for constant entities Vqe and variables Vqv in the query. To
construct the set of edges Eq, we add one edge ri(a, b) for
each predicate in the query.

4.1. Model Definition

Message Passing Query Embedding (MPQE) learns a ma-
trix of entity embeddings Me ∈ R|V|×d, where each row
contains an embedding for each entity in the KG, and d is
the dimension of the embedding space. Additionally, it also
learns a matrix of type embeddings Mt ∈ R|T |×d, with one
embedding for each type of entity in the KG. Assume we
define an ordering on the sets E and T . The function φe(v)
returns the row of Me corresponding to v, for all entities
v ∈ E . Similarly, for all types v ∈ T , φt(v) returns its
corresponding row of Mt.

Given a query graph, we start by initializing each of the
nodes with a vector representation h

(0)
v , from Me if it cor-

responds to a constant entity, or from Mt for a variable.
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Formally, h(0)
v = φe(v) if v ∈ Vqe, and h

(0)
v = φt(v) if

v ∈ Vqv. We proceed by applying L steps of message
passing with a a Relational Graph Convolutional Network
(R-GCN) (Schlichtkrull et al., 2018), which updates the rep-
resentation of a node taking into account its neighbors and
the type of the relations involved. The representation for
node v at step l + 1 in the R-GCN is defined as follows:

h(l+1)
v = f

W
(l)
0 h(l)

v +
∑
r∈R

∑
j∈N r

v

1

|N r
v |
W(l)

r h
(l)
j

 ,

(3)
where f is a non-linearity, N r

v is the set of neighbors of
node v through relation type r, and W

(l)
0 and W

(l)
r are

parameters of the model. After L applications of an R-GCN
layer, the node representations are combined into a single
vector that acts as the embedding of the query, by means of
an aggregation function φ:

qφ = φ
(
{h(L)

v |v ∈ Vqe ∪ Vqv}
)
. (4)

Fixed message passing We consider as aggregation func-
tions sum and max pooling over all h(L)

v . We also experi-
ment with the concatenation of representations from hidden
layers of the R-GCN, followed by an MLP and a sum over
nodes in the query graph. We denote this function as CMLP:

qCMLP =
∑
v∈Vq

MLP
(
[h(1)
v , . . . ,h(L)

v ]
)
. (5)

Dynamic embedding Let D denote the diameter of the
query graph (the longest shortest path between two nodes
in the graph). We propose a dynamic query embedding
method, by noting that at most D message passing steps are
required to propagate messages from all nodes, to the target
node. The method performs D steps of message passing,
and it then selects the representation h

(D)
vt of the target node

vt as the embedding of the query. We denote this as the
Target Message (TM) function.

Training Following previous work on query embedding
(Hamilton et al., 2018), we optimize all parameters using
gradient descent on a contrastive loss function, where given
a query q and its embedding q, a positive sample v+ cor-
responds to an entity in the knowledge graph that answers
the query, and a negative sample v− is an entity sampled
at random, that is not an answer to the query but has the
correct type. We minimize a margin loss function:

L(q) = max(0, 1− score(q,h(0)
v+ ) + score(q,h(0)

v−)). (6)

5. Experiments
We evaluate the performance of MPQE in query answering
over knowledge graphs, by considering 7 different query

structures (detailed in Appendix A). All the code to repro-
duce our experiments is available online 1.

Datasets We use publicly available knowledge graphs that
have been used in the literature of graph representation learn-
ing and query answering (Ristoski et al., 2016; Hamilton
et al., 2018) containing from thousands to millions of enti-
ties – AIFB: a KG of an academic institution, where entities
are persons, organizations, projects, publications, and topics;
MUTAG: a KG of carcinogenic molecules, where entities
are atoms, bonds, compounds, and structures; AM: con-
tains relations between different artifacts in the Amsterdam
Museum, including locations, makers, and others; Bio: a
dataset of a biological interaction network containing enti-
ties of type drug, disease, protein, side effect, and biological
processes. Their statistics can be found in Appendix B.

Query generation We follow the evaluation procedure of
Hamilton et al. (2018): to obtain query graphs, we sam-
ple subgraphs from the KG. Each subgraph specifies the
entities and the types of variables in the query, and the cor-
rect answer to the query. For each query we also obtain
a negative sample, and in the case of query graphs with
intersections, a hard negative sample. This is an entity that
would be a correct answer, if the conjunction represented by
the intersection is relaxed to a disjunction. Before sampling
subgraphs for training, we remove edges from the KG. We
then guarantee that subgraphs sampled to generate query
graphs for testing rely on at least one of these remove edges.

Experimental setup With the exception of the TM ag-
gregation function (where the number of message passing
steps is given by the query diameter), we use 2 R-GCN
layers. For aggregation functions with MLPs, we use two
fully-connected layers, and in all cases we use ReLU for
the nonlinearities. We minimize eq. 6 using the Adam op-
timizer with a learning rate of 0.01, and use an embedding
dimension of 128. We train the models for 1-hop link pre-
diction until convergence, and then on the full set of query
structures. As a baseline we evaluate the Graph Query Em-
bedding (GQE) method by Hamilton et al. (2018) with their
TransE, DistMult, and Bilinear variants.

5.1. Results

Query answering We report the area under the ROC
curve (AUC) and the Average Percentile Rank (APR) on the
test set. The results for the query answering task are shown
in Table 1. We observe that MPQE obtains competitive per-
formance in comparison with GQE across different datasets.
MPQE underperforms in the MUTAG dataset, which we
identified as the dataset with the least diverse set of rela-
tions. We noticed that while GQE-DistMult handles hard

1https://github.com/dfdazac/mpqe

https://github.com/dfdazac/mpqe
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Table 1. Results on query answering averaged across different
query structures. Highlighted values denote the best variant within
each group of GQE and MPQE models.

AIFB MUTAG AM Bio

Method AUC APR AUC APR AUC APR AUC APR

GQE-TransE 83.1 86.7 78.8 81.0 80.9 82.3 87.4 88.9
GQE-DistMult 83.8 86.0 80.6 81.1 82.9 83.2 90.0 90.3
GQE-Bilinear 83.4 83.3 78.5 79.7 80.7 84.4 90.5 90.8

MPQE-TM 84.9 87.4 76.7 77.6 84.2 86.3 88.8 89.8
MPQE-sum 84.7 86.8 74.6 73.1 80.9 83.6 90.0 90.5
MPQE-max 83.4 85.9 74.9 72.7 80.9 82.5 88.3 88.7
MPQE-CMLP 86.3 89.1 74.3 72.5 82.5 85.5 90.1 90.2

Table 2. Generalization results on complex query answering (AUC)
when training for simple link prediction. The results show the
performance on a test set of queries with chains only (ch), and the
complete set of queries with chains and intersections (all). Dashes
indicate not better than random results.

AIFB MUTAG AM Bio
Method ch all ch all ch all ch all

GQE-TransE 74.0 — 89.4 — 85.8 — 85.5 —
GQE-DistMult 72.8 — 85.4 — 82.4 — 95.9 —
GQE-Bilinear 72.7 — 89.1 — 85.9 — 85.8 —

MPQE-TM 77.0 75.5 86.8 77.2 85.0 81.6 96.4 83.9
MPQE-sum 69.8 69.6 82.8 74.0 52.5 53.9 92.4 80.0
MPQE-max 74.1 71.9 77.1 71.6 51.2 53.0 92.0 79.9
MPQE-CMLP 69.7 69.1 84.6 74.2 51.5 53.8 89.8 78.3

negative samples well (which occur only on queries with
intersections), MPQE-TM has better performance on regu-
lar samples, across all query structures. We discuss further
interesting properties of MPQE in Appendix C.

Generalization To examine the generalization properties
of MPQE, we train the models on simple queries that re-
quire 1-hop link prediction, but we carry out the evaluation
using the complete set of complex query structures. Un-
like MPQE, in this case GQE cannot provide an answer
better than random for queries with intersections, because
the intersection operator is not optimized. We thus consider
two evaluations modes: evaluating on queries with chain
structures only, and evaluating on the complete set of query
structures (where GQE is not applicable). These modes are
denoted as “ch” and “all”, respectively, in Table 2. The re-
sults of MPQE are competitive when evaluating on queries
with chains only, and crucially, it also generalizes well to
query structures not seen during training. This encourag-
ing results shows that MPQE implements a mechanism that
does not necessarily require training on many diverse query
structures to generalize well, unlike GQE.

Clustering We sample 200 entity embeddings for each
type in the AM dataset, and visualize them using T-

Figure 2. Visualization of the entity embeddings learned by GQE
(left) and MPQE (right). Each color represents an entity type.

SNE (Maaten & Hinton, 2008) in Fig. 2 for GQE-Bilinear
and MPQE-TM. We observe that MPQE has learned a struc-
tured space where entities cluster according to their type,
without explicit supervision. This is in stark contrast with
the embeddings of GQE, where we do not observe such a
clear structure. We hypothesize that the structured embed-
ding space of MPQE contributes to the generalization from
simple link prediction to complex queries.

6. Conclusion
We have presented MPQE, a neural architecture to encode
complex queries on knowledge graphs, that jointly learns
entity and type embeddings and a straightforward message
passing architecture to obtain a query embedding. Our
experiments show that message passing across the query
graph is a powerful mechanism for query answering, that
generalizes to multiple query structures even when only
trained for single hop link prediction. Qualitative results
show that MPQE learns a well-structured embedding space.
This result motivates future research on the application of
the learned embeddings to other tasks related to KGs, such
as clustering, and node and graph classification. Under
this new light, MPQE can be seen as a new method for
unsupervised representation learning in KGs.

While our generalization experiments highlight the general
formulation of our method, we further plan to evaluate its
performance on queries not restricted to constants at the
leaves of the query graph in future work. By being able to
encode queries independent of the position of entities and
variables, we could encode queries with additional informa-
tion, that could be used to condition the answers on a given
context. Such an application would be useful in information
retrieval and recommender systems.

Our method presents limitations when evaluating on hard
negative samples. Further improvements could include im-
proving the message passing procedure via adding attention
or gating mechanisms, and extensions to more expressive
query embedding representations, such as boxes (Ren et al.,
2020).
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Figure 3. Query structures that we consider for the evaluation of
methods on query answering. Green nodes correspond to entities,
and the rest are variables in the query, with blue nodes representing
the target of the query.

Table 3. Statistics of the knowledge graphs that we use for training
and evaluation.

AIFB MUTAG AM Bio

Entities 2,601 22,372 372,584 162,622
Entity types 6 4 5 5
Relations 39,436 81,332 1,193,402 8,045,726
Relation types 49 8 19 56

A. Query structures
We run experiments over 7 different query structures that
combine chains and intersections, as detailed in Fig. 3.

B. Dataset statistics
We present statistics for the datasets used in our work in Ta-
ble 3. To generate splits for training, test, and validation, we
follow the procedure of Hamilton et al. (2018). Given a KG,
we start by removing 10% of its edges. Using this incom-
plete graph, we extract 1 million subgraphs, containing all
the query structures outlined previously. We then restore the
removed edges, and extract 11,000 additional subgraphs of
all structures, ensuring that they all rely in at least one of the
edges that was removed to create the training set. We split
this set of query graphs into two disjoint sets, containing
1,000 queries for validation, and 10,000 for testing. We use
the validation set to perform early stopping during training.

C. MPQE properties
An interesting observation from our experiments is that the
message passing mechanism alone is sufficient to provide
good performance for query answering, as we can see from
the results for the MPQE-TM architecture. In this model,
we perform a number of steps of message passing equal to
the diameter of the query, and take as query embedding the

resulting feature vector at the target node. Intuitively, this
allows MPQE-TM to adapt to the structure of a query so that
after message passing, all information from the entity and
variable nodes has reached the target node. To confirm this
intuition, we evaluate the performance of MPQE as a func-
tion of the number of message passing steps, ranging from
1 to 4. The results are shown in Figure 4, for all the query
structures that we have considered. We highlight the points
that correspond to the diameter of the query, and we note
that the results align with our intuition about the message
passing mechanism. When the number of steps matches the
diameter, there is a significant increase in performance, and
further steps have little effect. This supports the superior
generalization observed in our experiments, in comparison
with GQE, and other MPQE architectures where the number
of R-GCN layers was fixed.
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Figure 4. Query answering performance (AUC) as a function of the number of message passing steps (implemented by layers of an
R-GCN), evaluated across different query types. Dark circles corresponds to the diameter of the corresponding query. When the number
of steps matches the diameter, there is a significant increase in performance, and further steps have little effect.


