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Abstract

Graph Neural Networks achieve remarkable re-
sults on problems with structured data but come as
black-box predictors. Transferring existing expla-
nation techniques, such as occlusion, fails as even
removing a single node or edge can lead to drastic
changes in the graph. The resulting graphs can
differ from all training examples, causing model
confusion and wrong explanations. Thus, we ar-
gue that explicability must use graphs compliant
with the distribution underlying the training data.
We coin this property Distribution Compliant Ex-
planation (DCE) and present a novel Contrastive
GNN Explanation (CoGE) technique following
this paradigm. An experimental study supports
the efficacy of CoGE.

1. Introduction
While neural networks have shown many breakthroughs,
they come as black-box predictors. Thus, research has devel-
oped explicability techniques to shed light on how a neural
network makes decisions. Such explanations help to under-
stand and trust the model. One approach is to identify those
parts of the input, which are most influential in generating
the output. With Graph Neural Networks (GNNs) being
generalizations of Convolutional Neural Networks (CNNs),
one might hope that the techniques for image explicability
of CNNs transfer to GNNs.

For example, we could apply occlusion (Zeiler & Fergus,
2014; Ancona et al., 2017) to GNNs. In computer vision,
occlusion measures the importance of a pixel by removing
the pixel from the image, e.g., by setting it black. Similarly,
we could measure the importance of a node or edge by
removing this node or edge. However, such removals are
drastic. Especially in sparse graphs node or edge removals
may change the topology of the graph completely.
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In Figure 1b, we can see the explanation of occlusion, asking
whether the graph contains a clique. Occlusion considers
the yellow edge most indicative of the existence of a clique.
This edge is not part of a clique. Instead, removing the edge
creates a disconnected graph. This graph probably confuses
the GNN, which was trained with only connected graphs.
This phenomenon can happen whenever we use graphs for
explanations that substantially differ from the training data.
The explanation of the target class might blend with an
adversarial attack against it. Thus we find a misleading (in
this case even wrong) explanation. Therefore, we argue to
only ever use data consistent with the training distribution
for making model explanations. We call this requirement
doing Distribution Compliant Explanation (DCE).

We propose a novel method CoGE (Contrastive Gnn Expla-
nation) based on contrastive explanation (Dhurandhar et al.,
2018; 2019). CoGE aims to find similarities to graphs with
the same label and differences to graphs with a different
label. Using only existing graphs for explanation, CoGE
clearly fulfills DCE. In an experimental evaluation, we show
the efficacy of CoGE. Our contributions are:

• We motivated the necessity of DCE for explaining
GNN predictions.

• We present CoGE, a novel method for explaining GNN
predictions for graph classification. CoGE uses a con-
trastive approach and adheres to DCE.

• We show the efficacy of our method empirically on
existing and synthetic datasets.

2. Related work
Graph Neural Networks Starting with Scarselli et al.
(2008), graph neural networks have achieved remarkable
results for graph-structured predictions (Zhou et al., 2018;
Wu et al., 2020). Since then, one family of graph neu-
ral networks was developed as generalized convolutional
networks (Duvenaud et al., 2015; Kipf & Welling, 2017)
where nodes update their embedding via aggregating their
neighborhood (Gilmer et al., 2017; Hamilton et al., 2017;
Battaglia et al., 2018; Xu et al., 2019b). Other propagation
methods such as attention or skip-connections have also
been proposed (Veličković et al., 2018; Xu et al., 2018).
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(a) CoGE
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(b) Occlusion
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(c) GNNExplainer

0

1

2

3

4

5

6

7
8

9
10

11

1213

14
15

16

17 18
19

(d) Sensitivity

Figure 1. Edge explanations methods for explaining a clique pre-
dictor. Edges in cliques should be bright for correct explanations.

Explainability Methods for Graphs GNNExplainer ex-
plains predictions by finding an edge mask and feature mask
that maximize the mutual information between the predic-
tion and the masked substructure (Ying et al., 2019). Image
attribution methods (Ancona et al., 2017) such as saliency
maps and Layer-wise Relevance Propagation have been
adapted to graph data structures (Baldassarre & Azizpour,
2019; Pope et al., 2019; Huang et al., 2020). These methods
do not consider the data distribution. For example, an edge
mask can “remove” edges from the graph and thus, similar
to occlusion, lead to misleading explanations.

Adversarial Graph Attacks Adversarial attacks on
graphs exploit that graph neural networks behave in an
undefined way outside of the kind of data they saw dur-
ing training. Several attack angles have been applied suc-
cessfully(Dai et al., 2018; Zügner et al., 2018; Zügner &
Günnemann, 2019; Xu et al., 2019a). At that, Zügner et al.
(2018) noted that already small perturbations lead to large
changes in the prediction. In this, we see support in our
claim that DCE is important for explanations as DCE work
contrary to adversarial attacks. Adversarial attacks find and
exploit out-of-distribution anomalies in the model, whereas
a DCE conforming method aims to explicitly disregard these
anomalies and instead searches for genuine patterns.

3. Method
Preliminaries We consider GNNs operating on undi-
rected graphs G = (V,E) labeled by y(G), with node set V
and edge set E. Nodes can have attributes in a feature matrix
X. We assume a learning model that transforms these initial
node features into final embeddings that are aggregated for
a graph-level representation. One example of such networks
is Message Passing Graph Neural Networks (Gilmer et al.,
2017) that iteratively update node embeddings based on
their immediate neighbors.

Explanations for graph classification We follow a con-
trastive approach (Dhurandhar et al., 2018; 2019). Such an
approach bases the explanation on other graphs from train-
ing, and thus fulfills DCE. In particular, we find the parts
of the graph that make this graph distant to graphs with a
different label and close to graphs with the same label.

To this end, we need a measure to compare the distance
between graphs. In our case, it suffices to define how graphs
differ for the classification problem. There exist many graph
distance and similarity measures (Sanfeliu & Fu, 1983;
Heimann et al., 2018; Zhang & Lee, 2019; Wang et al.,
2019) in the literature but they compare principally and of-
fer more than we need. For our explanation purpose, we
opt to compare the similarity in the model embedding space.
Thus, we can leverage the model information which struc-
tures and features are relevant or semantically equivalent for
the classification problem. For computing the similarity of
two graphs (with respect to the classification problem), we
measure a set to set distance of the final node embeddings.

In particular, we measure using the Optimal Transport (OT)
distance (Nikolentzos et al., 2017; Fey et al., 2020). Fig-
ure 2 shows an example of computing OT between the left
and middle graphs. All nodes have a weight (such that
the weights of all nodes per graph sum to 1. Now, every
node from the source needs to transport its weight to one or
more target nodes, whose weight denotes their maximum
capacity. The cost of one transport is the transport weight
times the distance between the node embeddings — we use
L2 distance for this. Optimal transport finds the globally
optimal soft assignment, even if this involves suboptimal
choices for some nodes. For example in Figure 2, node 2
does not move all its weight to node 4, even though they are
the same and the cost would be 0. Thus, optimal transport
allows us to compare embeddings of two graphs on node
granularity. We compare this to a graph-level metric in the
experiments where we measure the L2 distance between the
average node embeddings.

But we can also change the initial node weights to something
different than uniform. If we want to change the source
weights as to minimize optimal transport, the nodes that
do not have counterparts in the target graph receive a low
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Figure 2. Example for optimal transport (OT).

weight. If we want to change source weights as to maximize
optimal transport, the nodes with counterparts receive a low
weight. These two observations give us a framework to find
explaining graph parts. Jointly maximizing OT to graphs
with the same label and minimizing OT to graphs with a
different label finds us the explanation nodes. These are the
nodes with a low weight. Formally, we want to find weights
wopt for the nodes of graph G such that

wopt(G) = argmin
w

L 6≈w(G)− L≈w(G) + L=
w(G) (1)

The first loss term captures the average distance to the k
most similar graphs with a different label G6≈k . The second
loss term captures the average distance to the k most similar
graphs with the same label G≈k . We compute the similarity
to choose the graphs with uniformly weighted optimal trans-
port. The hyperparameter k determines how many graphs to
compare against. The third term compares the distance of
the w-weighted graph G to its uniformly-weighted version.
This term acts as regularization. It penalizes any deviation
from uniform weights, thus biasing w to only make few
modifications with substantial benefits. Let d(ZG, w, ZH)
be the optimal transport distance between two sets of embed-
dings from graphs G and H , where we weight ZG according
to w and ZH with uniform weights. Formally the losses are
then defined as:

L 6≈W (G) =
1

k

∑
H∈G6≈k

dW (ZG, ZH)

L≈W (G) =
1

k

∑
H∈G≈k

dW (ZG, ZH)

L=
W (G) = dW (ZG, ZG)

4. Experiments
4.1. CoGE Implementation

For CoGE, we set the number k of graphs to contrast again
to 10. Our framework uses the OT as provided by the
GeomLoss library (Feydy et al., 2019). For optimization
of Equation (1), we use gradient descent using the Adam

optimizer (Kingma & Ba, 2014) with a learning rate of 0.1,
except for REDDIT, where we use 0.011.

4.2. Qualitative Analysis

We analyze our explanations on two well known real-world
datasets for graph classification: MUTAG (Debnath et al.,
1991) and REDDIT-BINARY (Yanardag & Vishwanathan,
2015). MUTAG labels 4337 chemical molecules for their
mutagenic effect. REDDIT-BINARY classifies 2000 Reddit
threads whether they are of type Q&A or discussion. We
train Graph Isomorphism networks (Xu et al., 2019b), which
achieve state-of-the-art performance on both datasets and
analyze the trained models.

In MUTAG (see Figure 3), our method identifies the NO2

structure (red circle) as being primarily important, which is
a known mutagenic part (Debnath et al., 1991). However,
it is also present in a few non-mutagenic graphs. As a
second explanation, our method identifies the C next to an
O close to this component (green circle). The combination
of structures is only present in the mutagenic examples.

In REDDIT-BINARY, our method considers the central and
adjacent nodes to be important for classifying this graph
as Q&A (see Figure 4). They are indeed important since
a Q&A threads consist of few experts (high degree nodes)
and most users ask them questions and getting replies. In
contrast, discussions typically have only one central node
and the graph has a tree-like structure with higher depth.

4.3. Quantitative Analysis

Dataset We present CYCLIQ (cycles and cliques), a new
dataset for explaining graph classifications similar to the
node classification dataset in Ying et al. (2019). The CY-
CLIQ dataset is a binary classification problem. CYCLIQ’s
primary building blocks are random trees, to which we ap-
pend either cycles or cliques. The target labels store if the
graph has cycles or cliques. Nodes have an initial feature
vector of size 10, initialized to all ones. The correct expla-
nations for this dataset are the edges in a clique or cycle
structure. For evaluation, we count the number x edges be-
ing part of a cycle or a clique. The explanation accuracy of
a method is the ratio of how many edges in cycle or cliques
are in the method’s x most important edges.

Experiment Setup We run all explanations on a
GCN (Kipf & Welling, 2017) with 5 layers. We use a
constant embedding size of 20 across all layers. There are
no edge features. We create a total of 2000 graphs, us-
ing an 80/20 train-test split. The model understands the
task well, reaching 99% test accuracy. We compare our

1Code available at https://github.com/lukasjf/
contrastive-gnn-explanation

https://github.com/lukasjf/contrastive-gnn-explanation
https://github.com/lukasjf/contrastive-gnn-explanation


Contrastive GNN Explanation

G 6≈2G≈2

C
C

C
NC

O

C
O
OC

C

N
O O

H

H

H

H HH

C

C

C
CC N

CC O
O

C

H H

H H
H

H

H
H

H

C
C

C
NC

O

C
O
OC

C
C

H

H

H
H

H H
H HH

C
C C

C

C C

O

C
O
C

H
H

H

H
H

HH H

C
CC

O

C
NC

C

C O
O

H

H
H

HH H

H

Figure 3. MUTAG Explanation showing important substructures in molecules. Left: Original graph, Middle: Similar graphs with the
same label, Right: Similar graphs with a different label. Brighter nodes are more important in the explanation.
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Figure 4. Example Q&A explanation. Numbers depict the node
degree. Nodes connected to both central nodes are more important.

method against random guessing, a node-based occlusion
method (removing adjacent edges), sensitivity analysis, and
GNNExplainer (Ying et al., 2019) using the provided imple-
mentation2. To allow comparison with GNNExplainer we
focus on edge importances by summing the importance of
adjacent nodes for node-based explanation methods.

Results We report the explanation accuracies across the
1600 training graphs in table 1. Generally, it seems easier
to explain cliques than it is to explain cycles. We note that
CoGE produces the best results. For both classes it outper-
forms the other methods by at least 10%, reaching almost
perfect accuracy for cliques. Visual example explanations
for all methods (but random) are in Figure 1.

Ablation Study Next, we study the importance of each
loss term from Equation (1), reusing above CYCLIQ setting.
Table 2 shows that L 6≈W captures most explanation, but L≈W
andL=

W help improve further. Additionally, we try replacing
OT distance with the euclidean distance on the weighted
average on the node embeddings (L and Average). This
leads to worse accuracy while still outperforming baselines.

2https://github.com/RexYing/
gnn-model-explainer

Table 1. Explanation accuracies on the CYCLIQ dataset.

Method Cycle Acc. Clique Acc. Avg. Acc.

Random 0.41 ± 0.17 0.58 ± 0.13 0.49
Occlusion 0.39 ± 0.23 0.86 ± 0.16 0.62
Sensitivity 0.36 ± 0.2 0.87 ± 0.12 0.61
GNNExplainer 0.43 ± 0.18 0.73 ± 0.14 0.58
CoGE 0.78 ± 0.18 0.99 ± 0.02 0.88

Table 2. Explanation accuracies on the CYCLIQ dataset for abla-
tions of the loss and the distance measure.

Loss Cycle Acc. Clique Acc. Avg. Acc.

−L≈W 0.63 ± 0.25 0.6 ± 0.35 0.62
−L≈W + L=

W 0.62 ± 0.23 0.61 ± 0.27 0.61
L 6≈W 0.65 ± 0.23 0.99 ± 0.02 0.81
L 6≈W + L=

W 0.66 ± 0.24 0.99 ± 0.02 0.82
L 6≈W − L

≈
W 0.7 ± 0.2 0.99 ± 0.02 0.84

LW and Average 0.45 ± 0.24 0.99 ± 0.02 0.71

LW and OT 0.78 ± 0.18 0.99 ± 0.02 0.88

5. Conclusion
In this work, we discuss the particularities of explaining
GNN predictions. In graphs, structure is important, as only
slight modifications can lead to graphs out of the known data
distribution. Explanations start to blend with adversarial at-
tacks. Therefore, we argue that explanation methods should
stay with the training data distribution and produce Distri-
bution Compliant Explanation (DCE). We propose a novel
explanation method, CoGE, for graph classification that ad-
heres to DCE. Experimental results verify its effectiveness
and its robustness to parameter choices. Fur future work,
we aim at extending our findings to node classification and
better understanding the connection between explanation
and adversarial attacks.

https://github.com/RexYing/gnn-model-explainer
https://github.com/RexYing/gnn-model-explainer
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Ancona, M., Ceolini, E., Öztireli, C., and Gross, M. A

unified view of gradient-based attribution methods for
deep neural networks. In NIPS Workshop on Interpreting,
Explaining and Visualizing Deep Learning, Long Beach,
USA, December 2017.

Baldassarre, F. and Azizpour, H. Explainability tech-
niques for graph convolutional networks. arXiv preprint
arXiv:1905.13686, 2019.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-
Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti,
A., Raposo, D., Santoro, A., Faulkner, R., et al. Rela-
tional inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261, 2018.

Dai, H., Li, H., Tian, T., Huang, X., Wang, L., Zhu, J., and
Song, L. Adversarial attack on graph structured data. In
Proceedings of the International Conference on Machine
Learning (ICML), Stockholm, Sweden, July 2018.

Debnath, A. K., Lopez de Compadre, R. L., Debnath, G.,
Shusterman, A. J., and Hansch, C. Structure-activity
relationship of mutagenic aromatic and heteroaromatic
nitro compounds. correlation with molecular orbital ener-
gies and hydrophobicity. Journal of medicinal chemistry,
1991.

Dhurandhar, A., Chen, P.-Y., Luss, R., Tu, C.-C., Ting, P.,
Shanmugam, K., and Das, P. Explanations based on the
missing: Towards contrastive explanations with pertinent
negatives. In Advances in Neural Information Processing
Systems, 2018.

Dhurandhar, A., Pedapati, T., Balakrishnan, A., Chen, P.-
Y., Shanmugam, K., and Puri, R. Model agnostic con-
trastive explanations for structured data. arXiv preprint
arXiv:1906.00117, 2019.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell,
R., Hirzel, T., Aspuru-Guzik, A., and Adams, R. P. Con-
volutional networks on graphs for learning molecular fin-
gerprints. In Advances in Neural Information Processing
Systems, 2015.

Fey, M., Lenssen, J. E., Morris, C., Masci, J., and Kriege,
N. M. Deep graph matching consensus. arXiv preprint
arXiv:2001.09621, 2020.
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