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Abstract
Predicting interactions among heterogenous graph
structured data has numerous applications such
as knowledge graph completion, recommenda-
tion systems and drug discovery. Often times, the
links to be predicted belong to rare types such
as the case in repurposing drugs for novel dis-
eases. This motivates the task of few-shot link
prediction. Typically, GCNs are ill-equipped in
learning such rare link types since the relation
embedding is not learned in an inductive fashion.
This paper proposes an inductive RGCN for learn-
ing informative relation embeddings even in the
few-shot learning regime. The proposed inductive
model significantly outperforms the RGCN and
state-of-the-art KGE models in few-shot learning
tasks. Furthermore, we apply our method on the
drug-repurposing knowledge graph (DRKG) for
discovering drugs for Covid-19. We pose the drug
discovery task as link prediction and learn em-
beddings for the biological entities that partake
in the DRKG. Our initial results corroborate that
several drugs used in clinical trials were identified
as possible drug candidates. The method in this
paper are implemented using the efficient deep
graph learning (DGL) (Wang et al., 2019).

1. Introduction
The timeline of the Covid-19 pandemic showcases the dire
need for fast development of effective treatments for new
diseases. Drug-repurposing is a drug discovery strategy
from existing drugs that significantly shortens the time
and reduces the cost compared to de novo drug discov-
ery (Sertkaya et al., 2014; Avorn et al., 2015; Setoain et al.,
2015). Drug-repurposing leverages the fact that common
molecular pathways contribute to different diseases and
hence some drugs may be reused (Ashburn & Thor, 2004).
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Drug-repurposing relies on identifying novel interactions
among biological entities like genes and compounds and can
be posed as a link prediction task over a biological network.
Several machine learning approaches have been developed
for addressing the drug-repurposingtask for Covid-19; see
e.g. (Gramatica et al., 2014; Zhou et al., 2020; Udrescu
et al., 2016; Ioannidis et al., 2020). Towards assisting such
machine learning techniques (Ioannidis et al., 2020) created
a comprehensive biological knowledge graph relating genes,
compounds, diseases, biological processes, side effects and
symptoms termed Drug Repurposing Knowledge Graph
(DRKG).

However, for novel diseases like Covid-19 only a few in-
teractions are available among viral proteins and possible
chemical compounds that may inhibit the related genes.
This motivates the framework of few-shot link prediction,
where a certain edge type is rare and the model is called to
make predictions on the particular edge type.

1.1. Related works

Link prediction has been addressed by several works in
the context of knowledge-graph (KG) completion. These
models rely on embedding the nodes and edges of the KG
to a vector space and then train by maximizing the score
for existing edges in the KGs; see e.g., (Wang et al., 2017a).
An efficient implementation of these models in DGL is
presented in (Zheng et al., 2020). Nevertheless, these KGE
models do not naturally generalize in the few-shot scenario,
where only a few edges are available for a rare edge type,
which challenges learning the relation embedding. This
was addressed in (Chen et al., 2019), where a meta-learning
model is proposed to learn the relation embeddings in an
inductive fashion. However, this inductive-relation KGE
model require a specialized training scheme, can not learn
inductive node embeddings, and can not incorporate node
features if available.

Graph convolutional networks learn embeddings for nodes
and edges in the graph by applying a sequence of nonlin-
ear operations parametrized by the graph adjacency matrix
and utilize node and edge features (Kipf & Welling, 2017;
Schlichtkrull et al., 2018). An inductive implementation
of these models allows for learning node embeddings in
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an inductive fashion (Hamilton et al., 2017). The RGCN
model (Schlichtkrull et al., 2018) has been successful in
link prediction, where the RGCN is supervised by KGE
models (Wang et al., 2017a). However, these GCN models
for link prediction inherit the limitation of the KGE models,
and are challenged in learning relation embeddings for rare
edges types.

1.2. Contributions

This paper addresses the aforementioned limitation of GCN
models by introducing a novel inductive-RGCN that learns
the relation and the node embeddings in an inductive fashion.
The proposed I-RGCN naturally addresses the few-shot
link prediction and outperforms competing state-of-the-art
models. I-RGCN is also tested in the DRKG for Covid-
19 drug-repurposing. The drug discovery task is naturally
formulated in a few-shot learning setting. The preliminary
results indicate that several drugs used in clinical trials are
discovered as possible drug candidates. While this study,
by no means recommends specific drugs, it demonstrates a
powerful deep learning methodology to prioritize existing
drugs for further investigation, which holds the potential of
accelerating therapeutic development for COVID-19.

2. Few-shot link prediction formulation
Consider the heterogeneous graph with T node types and R
relation types defined as G := {{Vt}Tt=1, {Er}Rr=1}. The tth
node type is defined as Vt := {vtn}

Nt
n=1 and may represent

Genes or Chemical compounds in the DRKG. The rth rela-
tion type holds all interactions of a certain type among N t

and N t′ Er := {(vtn, vt
′

n ) ∈ N t ×N t′} and may represent
that a chemical compound inhibits a gene or that a disease
is treated by a chemical compound.

Consider also that each node nt is associated with a F × 1
feature vector xnt

. This feature may represent an embed-
ding of the protein sequence associated with a gene (Wang
et al., 2017b). In KGs some node types may not have fea-
tures for these we use an embedding layer to represent their
features.

Few shot link prediction. Given R − 1 sets of edges
{Er}R−1r=1 , a nodal attribute vector xnt per node nt, and a
small set of links in the few-shot relation ER with |ER| ≤ K,
the few-shot link prediction amounts to inferring the miss-
ing links of the rare type R. In the DRKG, this few-shot
relation is for example coronavirus treatment.

3. Learning inductive embedding for GNNs
The relational GCN (RGCN) (Schlichtkrull et al., 2018)
extends the graph convolution operation (Kipf & Welling,
2017) to heterogenous graphs. An RGCN model is com-

prised by a sequence of RGCN layers. The lth layer com-
putes the nth node representation h

(l+1)
n as follows

h(l+1)
n := σ

 R∑
r=1

∑
n′∈N r

n

h
(l)
n′W

(l)
r

 (1)

where N r
n is the neighborhood of node n under relation r,

σ the rectified linear unit non linear function, and W
(l)
r is a

learnable matrix associated with the rth relation. Essentially,
the output of the RGCN layer for node n is a nonlinear com-
bination of the hidden representations of neighboring nodes
weighted based on the relation type. The node features are
the input of the first layer in the model i.e. h

(0)
n = xn,

where xn is the node feature for node n. For node types
without features we use an embedding layer that takes as
input an one-hot encoding of the node id.

The RGCN model in this paper is supervised by a DistMult
model (Yang et al., 2014) for link prediction. The loss
function

min
∑

nt,r,nt′∈D+∪D−
log(1 + exp(−y × h>nt

diag(hr)hnt′ ))

(2)

where h> denotes the transpose of a matrix, diag(r) denotes
a diagonal matrix with r on its diagonal, hnt

, hr, hnt′

are the embedding of the head entity nt, relation r and
the tail entity nt′ , respectively and D+ and D− are the
positive and negative sets of triplets and y = 1 if the triplet
corresponds to a positive example and −1 otherwise. The
scalar represented by h>diag(hr)t denotes the score of
triplet (h, r, t) as given by the DistMult model (Yang et al.,
2014). The entity embeddings are obtained by the final
layer of the RGCN. The relation type embedding are trained
directly from (2).

Such a model (2) is vulnerable when only few training edges
are available for a certain relation type. The small number
of edges will challenge the learning of the embedding vector
r for the rare relation.

3.1. Inductive RGCN

Certain relation-types may be rare in the training set of
links and require a specialized architecture. To address
such a few-shot scenario, we introduce a MLP to learn the
relation embeddings. Consider the node embeddings {hnt

}
and {hnt′} extracted from the ultimate layer of the RGCN
model where nt ∈ Vt and nt′ ∈ Vt′ . The proposed MLP
learns an embedding for the rth relation as follows

hr :=
1

|Er|
∑

(nt,nt′ )∈Er

σ(W1σ(W2(hnt
||hnt′ )) (3)
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Table 1. Statistics of datasets.
Nodes Edges Relation types

IMDb
movie : 4,278

director : 2,081
actor : 5,257

17,106 12

DBLP

author : 4,057
paper : 14,328
term : 7,723
venue : 20

119,783 12

where || denotes the vector concatenation. Note that the
relation embedding hr is calculated as a nonlinear function
of the node embedding for all node pairs (nt, nt′) partici-
pating to a certain relation type (nt, nt′) ∈ Er. This allows
the I-RGCN to learn relation embeddings in an inductive
fashion. This model is supervised by the following loss

LFSLP := log(1 + exp(−y × h>nt
diag(hr)hnt′ )) (4)

where h>nt
diag(hr)hnt′ denotes the triple score and y is −1

for the negative triples and 1 stands for the positive ones. We
create negative triples by fixing the head node of a positive
triple and randomly selecting a tail node of the same type
as the original tail node. Differently from (2), the relation
embedding hr is learned in an inductive fashion from the
participating node pairs (nt, nt′ ). Hence, upon learning the
MLP parameters W1,W2 the relation embedding will be
computed with a forward pass. This obviates the few-shot
learning hurdle and enables the model to generalize to rare
or even unseen relations.

4. Experiments
4.1. Few shot link prediction

Baselines.We consider the state-of-the-art KGE models Ro-
tatE (Sun et al., 2019), ComplEx (Trouillon et al., 2016),
and the RGCN model (Schlichtkrull et al., 2018) as base-
lines for comparison. The parameters of these methods have
been optimized via cross validation. We use the IMDB and
DBLP datasets (Fu et al., 2020) detailed in Table 1. The
total number of edges in the few-shot relation are 1559 for
the IMDB and 3534 for the DBLP. In the experiments. we
train with only K links from the few-shot relation and all
the links from the other relations and test on the rest edges
of the few-shot relation, which are |ER| − K. The nodes
in the IMDB and DBLP graphs are associated with feature
vectors. Further, information on the datasets is included in
the Appendix.

Tables 2 and 3 report the MRR, Hit-1 and Hit-10 scores of
the baseline methods along with the inductive RGCN and
the RGCN in the task of few-shot link prediction for the
IMDB and DBLP datasets respectively. The I-RGCN sig-
nificantly outperforms the alternative methods in the task of
few-shot link prediction. Specifically, forK=10 the MRR of

the inductive method is one order of magnitude greater. This
corroborates the advantage of the inductive relation learning
for the few-shot learning task. As the number of training
edges increases at K=1000, it is observed that the RGCN
performance approaches the performance of the I-RGCN.
This suggests that the I-RGCN method performs well also
in non few-shot learning tasks. The worse performance of
KGE models is explained since these do not account for
node features and do learn inductive relation embeddings.

To further validate the performance of the I-RGCN we con-
duct a general link prediction evaluation by splitting the
links in training, validation, and testing at random irrespec-
tive of their relation type. The results for different percent-
ages of training links are reported in Table 4. I-RGCN
outperforms even in this training scenario the RGCN and
KGEs baselines, which further corroborates the efficiency
of the model.

4.2. Drug-repurposing via I-RGCN

For this experiment we will utilize the drug-repurposing
knowledge graph (DRKG) constructed in (Ioannidis et al.,
2020). The DRKG collects interactions from a collec-
tion of biological databases such as Drugbank (DS et al.,
2017b), GNBR (Percha & Altman, 2018), Hetionet (DS
et al., 2017a), STRING (D et al., 2019), IntAct (Orchard
et al., 2014) and DGIdb (Cotto et al., 2017).

Drug-repurposing aims at discovering the most effective ex-
isting drugs to treat a certain disease. Drug-repurposing can
be formulated as predicting direct links in the DRKG such
as predicting whether a drug treats a disease or as predicting
whether a compound inhibits a certain gene which is related
to the target disease. Drug-repurposing can be viewed as
a few-shot link prediction task since only a few edges are
available related to novel diseases in the DRKG.

We use corona-virus related diseases, including SARS,
MERS and SARS-COV2, as target diseases representing
Covid-19 as their functionality is similar. We aim at pre-
dicting links among gene entities associated with the target
disease and drug entities.We select FDA-approved drugs in
Drugbank as candidates, while we exclude for simplicity
drugs with molecule weight less than 250 daltons, as many
of certain drugs are actually health drugs. This amounts to
8104 candidate drugs.

We also obtain 442 Covid-19 related genes from the rela-
tions extracted from (Gordon et al., 2020; Zhou et al., 2020).
Similarly, we obtain the node embeddings for the gene and
drugs, and the embeddings for the corresponding relations.
Next, we score all triples and rank them per target gene.
This way we obtain 442 ranked lists of drugs. Finally, to
assess whether our prediction is in par with the drugs used
for treatment, we check the overlap among the top 100 pre-
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Table 2. Experiment results (%) on the IMDb dataset for k-shot link prediction.
MRR Hit 1 Hit 10

K ComplEx RotatE RGCN I-RGCN ComplEx RotatE RGCN I-RGCN ComplEx RotatE RGCN I-RGCN
10 6.88 11.80 1.32 33.56 1.75 6.74 0.13 25.32 14.25 18.35 1.07 53.55
50 8.48 12.56 15.26 53.24 3.34 7.76 7.42 45.14 15.70 19.12 28.88 69.32

100 8.61 12.57 18.78 53.63 3.44 7.86 9.59 40.27 15.71 18.40 36.84 77.38
1000 68.37 70.09 95.23 96.06 65.48 67.52 91.72 93.56 72.23 73.50 99.72 99.81

Table 3. Experiment results (%) on the DBLP dataset for k-shot link prediction.
MRR Hit 1 Hit 10

K ComplEx RotatE RGCN I-RGCN ComplEx RotatE RGCN I-RGCN ComplEx RotatE RGCN I-RGCN
10 5.97 7.41 7.42 27.95 1.37 2.13 2.95 13.78 11.81 15.36 12.51 60.51
50 6.32 7.87 17.25 83.42 1.55 2.26 10.95 72.54 12.59 16.64 26.84 96.82

100 7.24 10.66 32.45 90.00 1.99 04.43 23.46 85.27 14.96 20.92 49.85 97.61
1000 36.56 46.51 91.34 96.82 30.62 39.83 86.43 94.41 46.45 59.27 98.59 99.81

Table 4. Experiment results (%) on the IMDb dataset for link prediction.
Metrics MRR Hit 1 Hit 10

Training links ComplEx RotatE RGCN I-RGCN ComplEx RotatE RGCN I-RGCN ComplEx RotatE RGCN I-RGCN
95% 94.15 93.97 93.38 95.12 93.75 93.48 89.31 92.75 94.74 94.56 99.29 98.24
90% 88.87 88.89 89.30 93.98 88.25 87.87 83.45 91.52 89.74 90.35 97.66 98.12
80% 78.55 78.90 83.46 90.03 77.45 76.83 76.59 86.70 79.96 81.94 94.72 95.93
70% 69.59 69.56 82.73 87.00 67.98 66.73 76.09 82.95 71.89 73.49 93.76 94.07
60% 60.40 60.90 78.16 81.53 58.49 57.60 70.63 77.01 62.92 65.57 91.14 90.27

dicted drugs and the drugs used in clinical trials per gene.
We used 32 clinical trial drugs for Covid-19 to validate our
predictions1. Table 5 lists the clinical drugs included in
the top-100 predicted drugs across all the genes with their
corresponding number of hits for the RGCN and I-RGCN.
It can be observed, that several of the widely used drugs
in clinical trials appear high on the predicted list, and that
I-RGCN shows a higher hit rate than RGCN. Hence, the
inductive relation prediction module is more appriopriate in
predicting links when information about the nodes is limited,
such as is the case with the novel Covid-19 disease node.

5. Conclusion
In this paper we develop a novel I-RGCN that learns in-
ductive relation embeddings and can be applied for few-
shot link prediction and drug repurposing. I-RGCN consis-
tently outperforms baseline models in the IMDB and DBLP
datasets for few-shot link prediciton. We also formulate the
Covid-19 drug-repurposing task as a link prediction over the
DRKG. I-RGCN successfully identifies a subset of clinical
trial drugs for Covid-19 and can be used to assist researchers
and prioritize existing drugs for further investigation in the
Covid-19 treatment.

1The clinical trial drugs were collected from http://www.
covid19-trails.com/

Table 5. Drug inhibits gene scores for Covid-19. Note that a ran-
dom classifier will result to approximately 5.3 per drug. This
suggests that the reported predictions are significantly better than
random.

I-RGCN RGCN
Drug name # hits Drug name # hits

Dexamethasone 240 Chloroquine 69
Ribavirin 142 Colchicine 41

Colchicine 128 Tetrandrine 40
Chloroquine 115 Oseltamivir 37

Methylprednisolone 86 Azithromycin 36
Tofacitinib 75 Tofacitinib 33

Thalidomide 70 Ribavirin 32
Losartan 64 Methylprednisolone 30

Hydroxychloroquine 48 Deferoxamine 30
Oseltamivir 46 Thalidomide 25

Deferoxamine 34 Dexamethasone 24
Ruxolitinib 23 Bevacizumab 21

Azithromycin 23 Hydroxychloroquine 19
Nivolumab 11 Losartan 19
Tradipitant 11 Ruxolitinib 13

Bevacizumab 10 Eculizumab 12
Eculizumab 7 Tocilizumab 11
Baricitinib 6 Anakinra 11
Sarilumab 6 Sarilumab 8
Tetrandrine 6 Nivolumab 6

http://www.covid19-trails.com/
http://www.covid19-trails.com/
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Bouchard, G. Complex embeddings for simple link pre-
diction. International Conference on Machine Learning
(ICML), 2016.
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A. Datasets
We use the IMDB and DBLP datasets (Fu et al., 2020)
detailed in Table 1, where the third column denotes the total
size of edges in the few-shot relation that is |ER|. The nodes
in the IMDB and DBLP graphs are associated with feature
vectors. The original datasets in (Fu et al., 2020) are used
for node classification. We adapt the datasets and create new
edge types, where the edges are parametrized by the label of
the associated nodes. For example, the edge type (director,
directed, movie) becomes (director, directed drama, movie)
if the associated movie is in the drama genre, and the same
transformation undergoes the (actor, played, movie) relation.
Since, there are 3 labels for movies, this way the original 4
edge types become 12. The same transformation happens in
the DBLP dataset.


