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Abstract

Financial transactions constitute connections be-
tween entities and through these connections a
large scale heterogeneous weighted graph is for-
mulated. In this labyrinth of interactions that are
continuously updated, there exists a variety of
similarity-based patterns that can provide insights
into the dynamics of the financial system. With
the current work, we propose the application of
Graph Representation Learning in a scalable dy-
namic setting as a means of capturing these pat-
terns in a meaningful and robust way. We proceed
to perform a rigorous qualitative analysis of the
latent trajectories to extract real world insights
from the proposed representations and their evo-
lution over time that is to our knowledge the first
of its kind in the financial sector. Shifts in the
latent space are associated with known economic
events and in particular the impact of the recent
Covid-19 pandemic to consumer patterns. Cap-
turing such patterns indicates the value added to
financial modeling through the incorporation of
latent graph representations.

1. Introduction

Credit card transactions represent one form of transferring
assets between parties. A graph generated from transactions
can be information rich, in that the edges can contain in-
formation such as transaction amount and frequency while
nodes themselves can contain rich features such as FICO
score, income, and account balance. Graphs of financial
transactions have some very unique properties not typically
studied in traditional social networks. Properties such as
extreme power-law distributions and heterogeneity. They
also tend to be highly non-stationary in a multi-dimensional
way since transactions are processed in a continuous stream
and nodes can enter or be removed from each snapshot of
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this graph. Graph representation learning (GRL) is often
used as a generalized approach to feature generation from
such a graph structure that can be used in a number of down
stream applications. In financial services these include fraud
detection and credit decisions (Shumovskaia et al., 2020),
(Bruss et al., 2019). Many of the traditional representation
learning techniques assume stationarity in the underlying
structures that they embed.

To solve the problem of graph representation learning on
non-stationary financial graphs, this paper provides a de-
scription of our framework for training shallow embeddings
from highly dynamic graphs over multiple timeframes that
can empower down stream applications. We proceed to
perform an extensive in-depth qualitative analysis of embed-
ding shift over time and identification of meaningful shifts.
Temporal patterns in the representation space are associ-
ated with real world transaction dynamics (e.g. shopping
patterns, market changes) and merchant categories with a
particular focus on the effects of Covid-19 pandemic to fi-
nancial transactions. Time series analysis is employed to
filter rotational noise from the dynamic retraining process
and demonstration of how short-term representation shift
can be effectively inferred from prior shift of the embedding
space.

2. Related Works

Extending similar efforts from the NLP literature graph ap-
proaches to dynamic graph problems have focused on solv-
ing the problem of transmitting changing graph information
through time while while allowing full expressiveness at
each time step. Tracking this temporal information by learn-
ing dynamic representation through time using recurrent
architectures (Pareja et al., 2019; Goyal et al., 2018) is one
approach. Other approaches (Kumar et al., 2019) seek to
make explicit the temporal dependencies between graphs by
injecting this information into the embeddings themselves
by introducing the element of node trajectory. However, the
increase of volume of information quickly makes large tem-
poral graph problems intractable in a real world scenario as
the number of time steps considered increases. Additionally,
the set of time stamps might change dynamically and is not
often predefined and/or available from the initialization of
the process. Simplifications, such as restricting the change
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Figure 1. Dynamic training of skip-gram model for merchant em-
beddings

in size to the number of nodes, are necessary to make up for
the increase in graph size as well as increase in parameters
for more complicated models.

3. Methods

3.1. Embeddings Generation

The static baseline method for each snapshot of the transac-
tion graph is described in (Bruss et al., 2019). The incoming
data are represented in tabular format where each data entry
corresponds to a particular transaction between an account
and a merchant associated with a given timestamp. A bi-
partite graph of accounts and merchants connected through
transactions can subsequently be inferred from this dataset.
We consider each node of a particular type as a bridge that fa-
cilitates a connection between two nodes of another type by
interacting with both of them. In the present work, we focus
on connections between Brand Level Merchants, meaning
that merchants are represented by their brand name with-
out distinguishing between different locations of the same
merchant. This approach results in a highly interconnected
graph representing spending patterns across the nation.

We form monthly snapshots at the end of each month (in the
range 2017-11 to 2020-03) following the aforementioned
methodology. One issue that has been contemplated in liter-
ature (Levy & Goldberg, 2014; Hamilton et al., 2017) is the
random rotation of the embedding space in the skip-gram
model. This rotation would constitute each snapshot’s em-
beddings radically different in values compared to the pre-
vious and therefore their use in downstream models would
be compromised. To address this matter, we opt for a warm-
start training where each snapshot’s model is initialized with
the previous month’s final state. Once a merchant has en-
tered the embedding space its position is maintained and
receives updates only when new training pairs appear that
include this merchant. Considering a set of T snapshots
which correspond to time stamps ¢y < t1 < ... < tp. For
each time step ¢;, nj positive context pairs are generated
based on co-occurrence of transactions within a given time
window, while n; pairs are sampled for negative context.
Details of training process are depicted in Figure 1.

3.2. Quantifying Shift

In order to associate representation shift as measured by
first-order statistics in the latent space with real-world shift,
i.e. semantic shift. Our selected metrics are Euclidean
distance and cosine distance to measure both magnitude
shift by the absolute values of the embedding dimensions
but also similarity shifts as measured by the angle between
embedding vectors. For a time stamp ¢ with ¢ € [0, 77,
Amag,t and Ay are defined as:

Amag,t = ||Ut - Ut—lHQ (1)
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Of particular interest is the timing of maximum shift for
each merchant or a subset of them. We add normalization
by the cumulative shift of all the nodes /N within time stamp
t to ensure that the shift ranking is sensitive to the nodes
that drifted more compared to the drift of the rest of the
nodes. For each merchant across a set of time stamps 7', the
maximum shift is defined as:
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3.3. Time Series Analysis

Shift trajectories In order to formalize the quantification of
shift over time we aggregate the first order statistics across
different timeframes that differ by ¢ and create a time series
of shifts:

TACOS,t = {Acos,toa Acos,thréta ceey A(:os,T} (4)

The resulting time series may be viewed as a state space
model where individual components such as a financial
trend component or a seasonal one are combined to produce
the observed values of shift. By decomposing the time series
into its constituent components we aim to identify the effects
of the trend component as well as the expected random
component that arises from the rotation of the embedding
space after multiple rounds of training. A particular method
of time series filtering that has been utilized in conjunction
with embedding approaches is Kalman filtering (Kumar
et al., 2019; Bamler & Mandt, 2017). The Kalman filter
operates on a series of measurements observed over time,
e.g. the embedding shift, and assumes that they contain
some level of Gaussian noise or inaccuracy, using the time
series to estimate P(x¢|zo.7—1) as given by the equations
below.

Top1 = Ager + b + N(0,Q1) (%)

Zt = Cta:t + dt +N(O, Rt) (6)
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We applied Kalman smoothing to embeddings (normalized
using Ay,q4,c) elementwise, by assuming an independent
difference vector, namely velocity, for each embedding com-
ponent and calculating the next time step components as a
linear combination of predicted and actual values calculated
by an EM algorithm. We therefore compute the normal-
ized difference vector Av; € R? or velocity, where d is the
dimension of the embedding vectors.

AUy = 0y — Uy @)

Finally, a predictive sequence model is applied to attempt
inference of future shifts given past observations. If there
are meaningful short-term and/or long-term dependencies
then a sequence model should be able to identify them and
outperform a naive average based baseline. A Long Short
Term Memory (LSTM) model for regression is utilized to
predict shift in A, time stamps in the future by looking back
at [ time stamps.

4. Results

Semantic Shift The question arises whether all merchant
embeddings shift at the same pace or whether there exist cat-
egories that showcase larger shifts in particular time periods.
We measure the percentage of each merchant category and
repeat this calculation amongst the top 10,000 shifting mer-
chants (according to A, +) between different time stamps.
In Figure 2 we report results for time periods of interest.
The first chart showcases the effect of seasonal spending
patterns such as holiday seasons that cause the categories
of Retail and Social to exhibit the largest shift between De-
cember and February. Services as well as Travel follow a
similar trend. An interesting pattern appears in the next
two charts, by comparing the shift in 2019-03 and 2020-03.
It appears that Social, Retail and Services achieve higher
percentages amongst the maximum shifting merchants com-
pared to the same time last year, which is in line with the
effects of the Covid-19 pandemic in consumer behavior.
Similar patterns appear when we explore the maximum shift
in magnitude maxA,,q4,+ from Equation 3. From the time
series of A,q4,¢ for each merchant, the month in which
the merchant exhibited the highest shift compared to the
total magnitude shift of all merchants in that same month
is selected as max shift month. By displaying the counts of
merchants that exhibit their max shift in each given month,
we notice trends appearing that coincide with known finan-
cial events. In the beginning of 2019 and then again in the
summer of 2019 market volatility may have influenced con-
sumer behavior. Interestingly, counts appear to spike in the
first few months of 2020 with a peak in March 2020 when
the Covid-19 pandemic caused major changes in spending
patterns.

Visualizing and filtering trajectories We proceed to ex-
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Figure 2. Percentages of different merchant categories in the set
of most frequent merchants and in the set of top 10,000 shifting
merchants
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Figure 3. Normalized count of merchants that exhibit their maxi-
mum shift in each time stamp.
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plore the sequence of A, as a whole and attempt to
identify its constituent components. We calculate 120 differ-
ent 2 hop neighborhoods with k£ = 100 neighboring nodes
and, after normalizing these embeddings using As,agn ¢, We
smooth them using Kalman smoothing on a per-merchant
basis and take their element-wise difference per time stamp
to generate velocity vectors. Subsequently, the velocity
vectors Avy;, from equation 7, of all merchants across all
time stamps are aggregated and passed through t-SNE di-
mensionality reduction. As we observe in Figure 4, for the
non smoothed velocity embeddings two clusters emerge
that correspond to regions of high and low frequency. Af-
ter smoothing (second chart), the frequency pattern was
maintained and by shading according to A, ; quartiles we
notice higher degree of separation among the clusters high
frequency region. In these clusters, the denser ones appear
to be correlated with high A, ;. In the last chart of Fig-
ure 4 we observe that neighborhood memberships expand
across regions of zero and non-zero movement (low and
high frequency) which indicates that the inclusion of non-
updating nodes in our sequential training workflow allows
nodes to maintain connections from previous time frames
and expand their neighborhood in both highly changing and
more stable regions.

Finally, we explore the predictability of representation shift
as measured by A, : and attempt to identify the effect
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Figure 4. t-SNE of 2020-03 velocity vectors shaded by log fre-
quency, quartile cosine distance, and neighborhood membership
out of 120 neighborhoods. Center and right are Kalman smoothed,
while left chart is raw embeddings.

of long- and short-term dependencies in the latent space.
Sequence and training length for our experiments varies
between 1 and 7 months, meaning A, ; of each month
with the previous one are available for 1 to 7 months. A
naive baseline is added as a frame of reference, where we
estimate the next month’s A+ as a moving average of
the past sequence values. For performance evaluation Mean
Square Error is reported. Results are shown in Tables 1
and 2 for the test month of 2 different time periods. Steady
increase in performance is observed over the baseline for
all sequence and training lengths which indicates that non
trivial temporal and perhaps repetitive patterns arise in the
embedding space. It appears that extending the sequence
length up to the 5 previous time steps achieves the highest
performance; however increasing the sequence length offers
limited to no benefit. This could be attributed to seasonal
trends that move embeddings further than their representa-
tion 7 time steps ago as well as the overall rotation of the
embedding space. Moreover, error values are on average
higher for March 2020 when an unprecedented change in
consumer behavior occurred due to the Covid-19 pandemic.

Table 1. Mean Square Error (x 10%) for naive baseline model and
LSTM with training month up to 2019-12 and test month 2020-01
training length

sequence : LSTM
length  Baseline ] 3 3 5

1 1.75 1.08 095 094 0.92

3 1.52 0.68 0.64 0.62 0.61

5 1.37 0.62 056 0.56 047

7 1.38 0.63 059 058 0.50

5. Conclusions

We introduce a dynamic scalable graph representation work-
flow deployed on financial graphs and a qualitative analysis
is performed to extract patterns from the evolution of the
consumer behavior over time.

Table 2. Mean Square Error (x 10%) for naive baseline model and
LSTM with training month up to 2020-02 and test month 2020-03
training length

sequence . LSTM
length Baseline I 3 5 5
1 1.38 095 091 091 0.89
3 1.30 0.70 0.69 0.70 0.69
5 1.21 0.69 0.68 0.68 0.62
7 1.26 0.70 0.69 0.68 0.63
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