Generalized Multi-Relational Graph Convolution Network

Donghan Yu 1 Yiming Yang 1 Ruohong Zhang 1 Yuexin Wu 1

Abstract

Graph Convolutional Networks (GCNs) have received increasing attention in recent machine learning. How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly optimizing the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the GEneralized Multi-relational Graph Convolutional Networks (GEM-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge-base embedding methods, and goes beyond. Our theoretical analysis shows that GEM-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of GEM-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.

1. Introduction

Graph Convolution Networks (GCNs) have received increasing attention in recent machine learning research as powerful methods for graph-based node feature induction and belief propagation, and been successfully applied to many real-world problems, including natural language processing (Kipf & Welling, 2016; Marcheggiani & Titov, 2017), computer vision (Wang et al., 2018a; Landrieu & Simonovsky, 2018), recommender systems (Monti et al., 2017; Ying et al., 2018), epidemiological forecasting (Wu et al., 2018), and more. Existing GCNs share the same core idea, i.e., using a graph to identify the neighborhood of each node, and to learn the embedding (vector representation) of that node via recursive aggregation of the neighborhood embeddings. However, most existing GCN models have a constraint in common, that is, the edges in the input graph must be of homogeneous kind, such as the links in a citation graph or the elements in a co-occurrence count matrix. This constraint (or assumption) significantly limit the applicability of GCNs to a broad range of real-world applications where the capability to model heterogeneous relations (edges) is crucial for the true utility of graph-based embedding and inference.

As an indirectly related area, methods for Knowledge Graph (KG) completion (a.k.a. knowledge graph embedding) have been intensively studied in recent years. Representative approaches include TransE (Bordes et al., 2013), DistMult (Yang et al., 2014), ComplEx (Trouillon et al., 2016), RotatE (Sun et al., 2019a), QuatE (Zhang et al., 2019) and more. The major difference of KG completion methods in contrast to GCNs is that the former do not explicitly leverage the belief propagation power of graph convolution in the representation learning process; instead, entity-relation-entity triplets are treated independently in their objective functions.

How to jointly leverage the strengths of both GCN models and KG completion methods for task-oriented representation learning of both entities and relations is an open challenge for research, which has not been studied in sufficient depth and is the focus of this paper. Representative works in this direction, or the only methods of this kind so far to our knowledge, are VR-GCN (Ye et al., 2019) and COMPGCN (Vashishth et al., 2019). They use a graph neural network to jointly learn multi-layer latent representations (embeddings) for both entities and relations. However, the relation embedding part of the learning process leaves the entity representations out of the picture. In other words, the graph structure is only used to propagate information from embedded nodes plus edges in the optimization of node embedding (which makes sense), but not used to propagate information from embedded nodes in the optimization of edge embedding, which is arguably sub-optimal and a fundamen-
Generalized Multi-Relational Graph Convolution Network

Figure 1. A simple realization of GEM-GCN compared to previous works VR-GCN and CompGCN, where H^l_e and H^l_r means the entity (node) embedding and relation (edge) embedding at layer l respectively. \ast denotes the graph convolution operation which aggregates the neighbour information. W is the model parameter of linear transformation and σ is the activation function. The names in the brackets below correspond to the incorporated KG completion models.

To address the aforementioned open challenge and the limitations of existing approaches, we propose novel framework, namely GEM-GCN (GEneralized Multi-relational Graph Convolution Network). It provides a theoretically sound generalization of existing GCN models, to allow the incorporation of various KG completion methods for task-oriented embeddings of both entities and relations via graph convolution operations. Especially, in order to capture the rich semantics of heterogeneous relations in knowledge graphs, both entity embeddings and relation embeddings in our model are used to enforce optimization of each other in a recursive aggregation process. Figure 1 illustrates the main differences between previous works and our model. Experimental results on benchmark datasets for knowledge graph alignment and entity classification tasks show that GEM-GCN consistently and significantly outperforms other representative baseline methods.

2. Proposed Method

2.1. Reformulation of Vanilla GCN

In vanilla GCN (Kipf & Welling, 2016), the multi-layer node embedding is updated as follows (we omit the normalization coefficient part for brevity):

$$m_v^{l+1} = \sum_{u \in \mathcal{N}(v)} h_u^l$$

$$h_v^{l+1} = \sigma(W^l(m_v^{l+1} + h_v^l))$$

where we denote by h_v^l the embedding of node v at layer l, by $\mathcal{N}(v)$ the set of immediate neighbours of node v, by m_v^{l+1} the aggregated representation of those neighbors, by $\sigma(\cdot)$ an activation function (e.g., element-wise sigmoid or ReLU), and by W^l the matrix of model parameters to be learned by the GCN. We can reformulate the vanilla GCN by introducing a scoring function f that measures the plausibility of each edge. Edges observed in the graph tend to have higher scores than those that have not been observed. Specifically, for edge (u, v), if we define f as the inner product of the embeddings of the two connected nodes as $f(h_u, h_v) = h_u^T h_v$, then Equation 1 have the equivalent forms of:

$$m_v^{l+1} = \sum_{u \in \mathcal{N}(v)} \frac{\partial f(h_u^l, h_v^l)}{\partial h_v^l}$$

$$= \frac{\partial (\sum_{u \in \mathcal{N}(v)} f(h_u^l, h_v^l))}{\partial h_v^l}$$

(3)

It follows that $h_v^l + m_v^{l+1}$ can be regarded as one step gradient ascent to maximize the sum of scoring function $\sum_{u \in \mathcal{N}(v)} f(h_u^l, h_v^l)$, with learning rate of 1. Furthermore, Equation 2 can be viewed as a generalized projection onto the embedding space for downstream tasks.

The above reformulation provides an explicit view about what the vanilla GCN is optimizing, instead of how the updates are executed procedurally. More importantly, it sheds light on how to design a more powerful framework to enable more generalized multi-relational graph convolution over knowledge graphs, which we introduce in the next section.

2.2. The New Framework

Since the relations in knowledge graphs are of heterogeneous types, we need to define the scoring function f to measure the plausibility of entity-relation-entity triplets, instead of entity-entity pairs in vanilla GCN. Namely, triplets observed in the knowledge graph tend to have higher scores than those that have not been observed. For each triplet (u, r, v), where u, r, v denote head entity, relation, and tail entity respectively, the scoring value is calculated by $f(h_u, h_r, h_v)$ using their embedding vectors. Note that most knowledge graph embedding techniques can be used to define f.

Analogous to Equation 3, if we denote h_v^l the embedding of
entity \(v \) at layer \(l \), the entity updating rules are:

\[
m^{l+1}_v = \sum_{(u,r) \in N_{in}(v)} W^l_r \frac{\partial f_u(h_u^l, h_r^l, h_v^l)}{\partial h_v^l} + \sum_{(u,r) \in N_{out}(v)} W^l_r \frac{\partial f_{out}(h_u^l, h_r^l, h_v^l)}{\partial h_v^l} \tag{4}
\]

\[
h^{l+1}_v = \sigma_{ent}(m^{l+1}_v + W^l_{0}\hat{h}^l_v) \tag{5}
\]

where \(N_{in}(v) = \{(u, r) \mid u \xrightarrow{r} v\} \) is the set of immediate entity-relation neighbours of entity \(v \) with an in-link while \(N_{out}(v) = \{(u, r) \mid u \xleftarrow{r} v\} \) is the set of immediate neighbours with an out-link from \(v \). \(h_r^l \) means the embedding of relation \(r \) at layer \(l \). Notice that the linear transformation matrix \(W^l_r \) is relation-specific, and the scoring functions \(f_u \) are for the in-link neighbours and \(f_{out} \) are for the out-link neighbours, respectively. \(\sigma_{ent}(\cdot) \) denotes the activation function for entity update.

The relation updating rules can be defined in a similar manner:

\[
m^{l+1}_r = \sum_{(u,v) \in \mathcal{N}(r)} \frac{\partial f_r(h_u^l, h_v^l, h_r^l)}{\partial h_r^l} \tag{6}
\]

\[
h^{l+1}_r = \sigma_{rel}(W^l_{rel}(m^{l+1}_r + h^l_r)) \tag{7}
\]

where \(\mathcal{N}(r) = \{(u,v) \mid u \xrightarrow{r} v\} \) means the set of immediate entity neighbours of relation \(r \), where the left side of tuple is head entity and the right side is tail entity. \(\sigma_{rel}(\cdot) \) denotes the activation function for relation update. Notice that our framework is very general and can subsume other representative methods, which is introduced in Appendix A.

Moreover, the derivative \(\partial f / \partial h \) in Equation 4 and Equation 6 can be calculated by Auto Differentiation (AD) package of many existing libraries including Pytorch (Paszke et al., 2017) and Tensorflow (Abadi et al., 2016), which makes our model easy to implement. Notice that this AD happens in the inference process, instead of backpropagation during the training process.

To apply our model on the downstream tasks, denoting the number of layers as \(L \), we use the output entity embedding \(\{h_v^{(L)}\} \) and relation embedding \(\{h_r^{(L)}\} \) of the final layer to construct loss functions. For example, in entity classification task, we use cross-entropy loss based on entity labels; in knowledge graph alignment, we use the distance between the embedding vectors of two entities from different knowledge graphs for loss function. For details of loss functions, please refer to Appendix C.2 and E.3. The training manners are end-to-end in both tasks.

3. Experiments

3.1. Basic Settings

In this section, we conduct extensive experiments on two well-known tasks of knowledge graphs, graph alignment and entity classification, to demonstrate the effectiveness of our model. Note that due to the page limit, we show the results of entity classification in Appendix E. In this paper, following previous works (Schlichtkrull et al., 2018; Vashishth et al., 2019), the input features of entities and relations are random vectors initialized by truncated normal distribution so that our model will rely solely on graph structure. Our model is evaluated by combining the following representative knowledge graph embedding methods: TransE (Bordes et al., 2013), DistMult (Yang et al., 2014), TransH (Wang et al., 2014), TransD (Ji et al., 2015) RotateE (Sun et al., 2019a) and QuatE (Zhang et al., 2019), where the details are shown in Appendix B. We leave other embedding methods for future work.

3.2. Knowledge Graph Alignment

Knowledge graph alignment refers to the task which aims to find entities/relations in two different knowledge graphs \(KG_1 \) and \(KG_2 \) that represent the same real-world entity/relation. A detailed description can be found in Appendix C. Note that we only show the main results of entity alignment in the following sections while leaving relation alignment in Appendix D.

3.2.1. Datasets and Baselines

We use DBP15K (Sun et al., 2017) which contains three datasets built from multi-lingual DBpedia, namely DBPZH-EN (Chinese-English), DBPZH-EN (Japanese-English) and DBPFREN (French-English) for knowledge graph alignment. A summary statistics of these datasets is provided in Appendix C.1. Following previous work (Cao et al., 2019; Sun et al., 2019b), we report Hits@1, Hits@10, Mean Reciprocal Rank (MRR) to evaluate the alignment performance.

To demonstrate the effectiveness of GEM-GCN, we compare it with several representative multi-relational GCN baseline methods including R-GCN (Schlichtkrull et al., 2018), W-GCN (Shang et al., 2019), VR-GCN (Ye et al., 2019) and CompGCN (Vashishth et al., 2019). We also include other baseline methods which are designed specifically for knowledge graph alignment task for a comprehensive comparison: MTransE (Chen et al., 2017), IPRTransE (Zhu et al., 2017), JAPE (Sun et al., 2017), AlignE (Sun et al., 2018), GCN-Align (Wang et al., 2018b), MuGNN (Cao et al., 2019), and AliNet (Sun et al., 2019b). Note that since our model solely relies on structure information, we do not compare with the alignment models which
incorporate the surface information of entities into their representations like (Xu et al., 2019; Wu et al., 2019).

3.2.2. RESULTS OF ENTITY ALIGNMENT

Table 1 shows the experiment results in DBP15K datasets comparing with all the baseline methods. Our model achieves the best or highly competitive results in all the three datasets, outperforming the baseline methods by a large margin. Specifically, our model outperforms the best baseline methods by 5.7%, 6.5%, and 6.6% in MRR on DBP\textsubscript{ZH-EN}, DBP\textsubscript{JA-EN}, and DBP\textsubscript{FR-EN} respectively. Note that even equipped with the recent state-of-the-art knowledge graph embedding methods, i.e., RotatE (Sun et al., 2019a) and QuatE (Zhang et al., 2019), COMPGCN (Vashishth et al., 2019) still obtains much lower performance than GEM-GCN. The results demonstrate the effectiveness of graph convolution updating for relation embeddings.

We also report the performance of our proposed model with different knowledge graph embedding techniques, including TransE (Bordes et al., 2013), DistMult (Yang et al., 2014), TransH (Wang et al., 2014), TransD (Ji et al., 2015), RotatE (Sun et al., 2019a), and QuatE (Zhang et al., 2019), as shown in Table 1. Note that the choice of embedding techniques does have a large impact on the performance, and QuatE (Zhang et al., 2019) achieves the best results, which is reasonable since it also outperforms other methods in knowledge graph completion task, and satisfies the essential of relational representation learning (i.e., modeling symmetry, anti-symmetry and inversion relation).

4. Conclusion

This paper presents a novel framework which leverages various knowledge graph embedding methods into GCNs for multi-relational graph modelling, and more importantly, update both entity and relation representation using graph convolution operation. We show that our model originates from a new intuition behind graph convolution in the view of generalized projected gradient ascent, and subsumes other representative methods as its special and restricted cases. Experiments show that the proposed model obtains the state-of-the-art results in benchmark datasets of two well-known tasks: knowledge graph alignment and entity classification. In the future, we plan to apply our framework into a broader range of domains containing knowledge graphs, including Q&A, recommender system, computer vision and time series analysis. It’s also worth exploring to go beyond triplets and extend our framework for knowledge hypergraphs.
References

Sun, Z., Wang, C., Hu, W., Chen, M., Dai, J., Zhang, W., and Qu, Y. Knowledge graph alignment network
Generalized Multi-Relational Graph Convolution Network

A. Unified View of Representative Methods

In the following we provide a unified view of several representative GCN methods for knowledge graph modeling (Schlichtkrull et al., 2018; Shang et al., 2019; Vashishth et al., 2019), by showing that they are restricted versions under our framework.

A.1. CompGCN

CompGCN (Vashishth et al., 2019) is most relevant to our method. We denote the set of immediate neigbours of entity v as $\mathcal{N}(v) = \{(u, r)\}$ where u is the entity connected with v by relation r. In the $(l+1)$-th layer of CompGCN, the embeddings of each entity and relation are updated as:

- **Entity update:**
 \[
 \mathbf{m}_u^{l+1} = \sum_{(u, r) \in \mathcal{N}_u(v)} W_r^{l}\phi(h_u^l, h_r^l) + \sum_{(u, r) \in \mathcal{N}_u(v)} W_r^{l}\phi(h_u^l, h_r^l)
 \]
 \[\mathbf{h}_u^{l+1} = \sigma(\mathbf{m}_u^{l+1} + W_0^{l}\mathbf{h}_u^l)\]
 \[\text{Proposition 1} \text{ CompGCN can be fully recovered by GEM-GCN when 1) } f_{in}(h_u^l, h_r^l, h_v^l) = f_{out}(h_u^l, h_r^l, h_v^l) = (h_u^l)^T h_r^l; \text{ and 2) } f_r = 0; \text{ and 3) } \sigma(\cdot) \text{ is the identity function.} \]

As shown above, in CompGCN, the relation embedding is only updated by linear transformation. While in GEM-GCN, the relation representation update process aggregates neighbour entity representations, shown in Equation 6 and 7, to capture the rich semantics of heterogeneous relations and learn better context-based relation embeddings. Additionally, our framework is more general since the scoring functions $f(h_u, h_r, h_v)$ are not restricted to be $\phi(h_u^l, h_r^l)^T h_v^l$, and other forms of knowledge graph encoding techniques such as TransH (Wang et al., 2014), TransD (Ji et al., 2015), MLP (Dong et al., 2014), and NTN (Socher et al., 2013) can also be incorporated.

A.2. R-GCN

R-GCN (Schlichtkrull et al., 2018) extends vanilla GCN with relation-specific linear transformations, without considering relation representations. The embedding update can be listed as follows:

- **Entity update:**
 \[
 \mathbf{m}_u^{l+1} = \sum_{(u, r) \in \mathcal{N}_u(v)} W_r^{l}\mathbf{h}_u^l
 \]
 \[+ \sum_{(u, r) \in \mathcal{N}_u(v)} W_r^{l}\mathbf{h}_u^l \]
 \[= \mathbf{h}_u^{l+1} = \sigma(\mathbf{m}_u^{l+1} + W_0^{l}\mathbf{h}_u^l)\]
 \[\text{Proposition 2} \text{ R-GCN can be fully recovered by GEM-GCN when 1) } f_{in}(h_u^l, h_r^l, h_v^l) = f_{out}(h_u^l, h_r^l, h_v^l) = (h_u^l)^T h_r^l; \text{ and 2) } h_v^l = 0 \text{ (no relation embedding).} \]

A.3. W-GCN

W-GCN (Shang et al., 2019) treats the relation as learnable weights of edges, and applies vanilla GCN on the weighted simple graph. The update process can be written as:

- **Entity update:**
 \[
 \mathbf{m}_v^{l+1} = \sum_{(u, r) \in \mathcal{N}_v(v)} W_0^{l}\alpha_r^l h_u^l
 \]
 \[+ \sum_{(u, r) \in \mathcal{N}_v(v)} W_0^{l}\alpha_r^l h_u^l \]
 \[= \mathbf{h}_v^{l+1} = \sigma(\mathbf{m}_v^{l+1} + W_0^{l}\mathbf{h}_v^l)\]
 \[\text{Proposition 3} \text{ W-GCN can be fully recovered by GEM-GCN when 1) } f_{in}(h_u^l, h_r^l, h_v^l) = f_{out}(h_u^l, h_r^l, h_v^l) = (h_u^l)^T h_r^l; \text{ and 2) } W_r^l = W_r^l\alpha_r^l; \text{ and 3) } h_v^l = 0 \text{ (no relation embedding).} \]

B. Scoring Functions of Knowledge Graph Embedding Methods

Our model is evaluated by combining the following representative knowledge graph embedding methods, with embedding of head entity, relation, and tail entity denoted as h_u, h_r, and h_v respectively. For each method, we show the corresponding scoring function in GEM-GCN, which may be slightly different with the original scoring function.

- **TransE** (Bordes et al., 2013): For h_u, h_r, and h_v in \mathbb{R}^d,
 \[
 f(h_u, h_r, h_v) = -\|h_u + h_r - h_v\|^2_2. \]
- **DistMult** (Yang et al., 2014): For h_u, h_r, and h_v in \mathbb{R}^d,
 \[
 f(h_u, h_r, h_v) = h_u^T \text{diag}(h_r)h_v. \]
which utilize two GCNs with shared parameters to model the distances. The alignment can be also performed from output from each final layer of KG alignment. Particularly, KG entity/relation alignment. More specifically, to align from one knowledge graph in the experiments, we report the averaged means concatenation of two vectors.

For \(h_u, h_v, h_r \in \mathbb{R}^d \),

\[
\begin{align*}
\mathcal{L} &= \sum_{u,v \in S} \sum_{(u',v') \in \mathcal{S}_u} l(u, v, u', v') \quad (27) \\
l(u, v, u', v') &= \left[\| h_u - h_v \|_1 + \gamma - \| h_{u'} - h_{v'} \|_1 \right]_+ \quad (28)
\end{align*}
\]

2) We also test on relation alignment task to demonstrate the importance of our proposed relation embedding update process. Since the number of reference aligned relations is very small, we train the model on the entity alignment task mentioned above and directly use the trained relation embedding for relation alignment (as zero-shot evaluation).

C.1. Data Statistics

DBP15K (Sun et al., 2017) contains three datasets built from multi-lingual DBpedia, namely DBPZH-EN (Chinese-English), DBPJZ-EN (Japanese-English) and DBPFR-EN (French-English) for knowledge graph alignment. A summary statistics of these datasets is shown in Table 3.

<table>
<thead>
<tr>
<th>Datasets</th>
<th>#Entities</th>
<th>#Relations</th>
<th>#Triplets</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBPZH-EN</td>
<td>66,469</td>
<td>2,830</td>
<td>153,929</td>
</tr>
<tr>
<td>DBPJ-EN</td>
<td>98,125</td>
<td>2,317</td>
<td>237,674</td>
</tr>
<tr>
<td>DBPFR-EN</td>
<td>65,744</td>
<td>2,043</td>
<td>164,373</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Datasets</th>
<th>#Aligned Entities</th>
<th>#Aligned Relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBPZH-EN</td>
<td>15,000</td>
<td>891</td>
</tr>
<tr>
<td>DBPJZ-EN</td>
<td>15,000</td>
<td>582</td>
</tr>
<tr>
<td>DBPFR-EN</td>
<td>15,000</td>
<td>75</td>
</tr>
</tbody>
</table>

C.2. Loss Function

We denote the training entity alignment set as \(S = \{(u, v)\} \), where \(u \) is the entity in \(KG_1 \) while entity \(v \) belongs to \(KG_2 \) and they refer to the same real-world entity. For the loss function, we follow previous work (Wang et al., 2018b) to use margin-based ranking loss:

\[
\begin{align*}
\mathcal{L} &= \sum_{(u,v) \in S} \sum_{(u',v') \in S(u)} l(u, v, u', v') \quad (27) \\
l(u, v, u', v') &= \left[\| h_u - h_v \|_1 + \gamma - \| h_{u'} - h_{v'} \|_1 \right]_+ \quad (28)
\end{align*}
\]
Table 4. Knowledge graph relation alignment results over 5 different runs on DBP15K datasets. All the models are incorporated with the same KG completion method TransE (Bordes et al., 2013). The highest score are marked in bold.

<table>
<thead>
<tr>
<th>Model</th>
<th>DBPZH-EN</th>
<th>DBPIA-EN</th>
<th>DBPF-EN</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR-GCN</td>
<td>0.352 ± 0.006</td>
<td>0.335 ± 0.008</td>
<td>0.280 ± 0.017</td>
</tr>
<tr>
<td>ComPGCN</td>
<td>0.366 ± 0.007</td>
<td>0.347 ± 0.009</td>
<td>0.284 ± 0.015</td>
</tr>
<tr>
<td>GEM-GCN</td>
<td>0.514 ± 0.006</td>
<td>0.466 ± 0.011</td>
<td>0.412 ± 0.021</td>
</tr>
</tbody>
</table>

where \([x]_+ = \max\{0, x\}\). \(S'_r(u,v)\) denotes the set of negative entity alignments constructed by corrupting \((u, v)\), i.e. replacing \(u\) or \(v\) with a randomly chosen entity in \(KG_1\) or \(KG_2\). \(\gamma\) means the margin hyper-parameter separating positive and negative entity alignments. Suppose for each positive entity alignment, we randomly choose \(k\) negative alignments. Following (Wang et al., 2018b), we set \(\gamma = 3\) and \(k = 5\).

C.3. Implementation Details

We perform grid search for hyperparameters in the following values: the learning rate \(l\) in \([0.001, 0.005, 0.01, 0.05]\), \(\alpha\) in \([0.1, 0.2, \ldots, 0.9]\), the hidden dimension \(d\) for entity and relation in \(\{50, 100, 200, 300\}\), the number of layers \(L\) in \(\{1, 2, 3, 4, 5\}\). The final selected setting is \(l_r = 0.01\), \(\alpha = 0.3\), \(d = 200\), and \(L = 4\). The activation function is set as ReLU. We train our model in full-batch setting using Adam (Kingma & Ba, 2014).

D. Results of Relation Alignment

To directly test the effect of our proposed relation embedding update process, we use the relation embedding for the relation alignment task mentioned in Appendix C. The results over 5 different runs are shown in Table 4, where we see that our model significantly outperforms ComPGCN (Vashishth et al., 2019) and VR-GCN (Ye et al., 2019). This demonstrate the importance of incorporating entity representation into the update of relation embeddings. Note that we do not compare with R-GCN (Schlichtkrull et al., 2018) and W-GCN (Shang et al., 2019) since relation embeddings are not involved in their models.

E. Knowledge Graph Entity Classification

Entity Classification is the task of predicting the labels of entities in a given knowledge graph. We follow previous work (Schlichtkrull et al., 2018; Vashishth et al., 2019) to use the entity output of the last layer in GEM-GCN for label classification.

E.1. Datasets and Baselines

We conduct experiments on the following datasets: AM (Ristoski et al., 2016), WN (Bordes et al., 2013; Tu et al., 2018), and FB15K (Bordes et al., 2013; Xie et al., 2016). The details and statistics of these datasets are shown in Appendix E.2. Each entity in AM and WN datasets has at most one label while entities in FB15K can have multiple labels. In AM and WN, Accuracy are reported to evaluate the entity classification performance. While in FB15K, we report Precision@1 (P@1), Precision@5 (P@5) and NDCG@5 (N@5).

We compare GEM-GCN with vanilla GCN (Kipf & Welling, 2016) and the relation-based GCN models including R-GCN (Schlichtkrull et al., 2018), W-GCN (Shang et al., 2019) and ComPGCN (Vashishth et al., 2019). For vanilla GCN, we transform the multi-relational graphs to simple graphs with only entities, by setting the weight of edge between two entities as the number of their relations.

E.2. Data Statistics

AM (Ristoski et al., 2016) contains relationship between different artifacts in Amsterdam Museum. WN (Bordes et al., 2013; Tu et al., 2018) consists of a collection of triplets (synset, relation, synset) extracted from WordNet 3.0 (Miller, 1995). FB15K (Bordes et al., 2013; Xie et al., 2016) is extracted from a typical large-scale knowledge graph Freebase (Bollacker et al., 2008). The statistics of these datasets are shown in Table 5.

For AM dataset, we follow the train/test split convention as (Ristoski et al., 2016; Schlichtkrull et al., 2018). As for WN and FB15K datasets, we randomly split the labeled entities into train/valid/test by the ratio of 10%/10%/80% for semi-supervised learning.

Table 5. Number of entities, relations, edges and classes along with the number of labeled entities for each dataset in entity classification task. Labeled denotes the subset of entities that have labels and that are to be classified. Classes denotes the total number of categories of labels.

<table>
<thead>
<tr>
<th>Datasets</th>
<th>AM</th>
<th>WN</th>
<th>FB15K</th>
</tr>
</thead>
<tbody>
<tr>
<td>#Entities</td>
<td>1,666,764</td>
<td>40,551</td>
<td>14,904</td>
</tr>
<tr>
<td>#Relations</td>
<td>133</td>
<td>18</td>
<td>1,341</td>
</tr>
<tr>
<td>#Triplets</td>
<td>5,988,321</td>
<td>145,966</td>
<td>579,654</td>
</tr>
<tr>
<td>#Labeled</td>
<td>1,000</td>
<td>31,943</td>
<td>13,445</td>
</tr>
<tr>
<td>#Classes</td>
<td>11</td>
<td>24</td>
<td>50</td>
</tr>
</tbody>
</table>

1Please refer to (Tu et al., 2018) and (Xie et al., 2016) for details of label collection in WN and FB15K datasets respectively.
E.3. Loss Function

In this paper we conduct experiments on both multi-class classification and multi-label classification. Denoting \(N \) as the number of entities, \(C \) as the number of classes, and \(Y_L \) as the set of entity indices that have labels. For multi-class classification, we use the following loss:

\[
L = - \sum_{u \in Y_L} \sum_{c=1}^{C} Y_{uc} \ln \hat{Y}_{uc}
\]

(29)

where \(Y_{uc} = 1 \) means that the true class of entity \(u \) is \(c \), otherwise \(Y_{uc} = 0 \). \(\hat{Y} \in \mathbb{R}^{N \times C} \) is the output of GCN model, which comes after a row-wise softmax function.

For multi-label classification, we use:

\[
L = - \sum_{u \in Y_L} \sum_{c=1}^{C} \left[Y_{uc} \ln \hat{Y}_{uc} + (1 - Y_{uc}) \ln(1 - \hat{Y}_{uc}) \right]
\]

(30)

\(Y_{uc} = 1 \) means that entity \(u \) contains label \(c \), otherwise \(Y_{uc} = 0 \). \(\hat{Y} \in \mathbb{R}^{N \times C} \) is the output of GCN model, which comes after an element-wise sigmoid function.

E.4. Implementation Details

Grid search are conducted for hyperparameters in the following values: the learning rate \(l_r \) in \(\{0.001, 0.005, 0.01, 0.05\} \), \(\alpha \) in \(\{0.1, 0.2, \cdots, 0.9\} \), the hidden dimension \(d \) for entity and relation in \(\{8, 16, 32, 64\} \), the number of layers \(L \) in \(\{1, 2, 3, 4, 5\} \). The final selected setting is \(l_r = 0.01 \), \(\alpha = 0.3 \), \(d = 32 \), and \(L = 4 \). The activation function is set as ReLU. We train our model in full-batch setting using Adam (Kingma & Ba, 2014).

E.5. Results

The experiment results over 5 different runs are shown in Table 6, where the average of classification accuracy is reported. The results on FB15K dataset under metrics of P@1, P@5, N@5 are shown in Table 7. From these results, GEM-GCN outperforms all the baseline GCN methods, which demonstrate the effectiveness of our proposed model in entity classification task, including multi-class classification and multi-label classification. We report the best results of ComprGCN (Vashishth et al., 2019) and GEM-GCN incorporated with different knowledge graph embedding methods, and surprisingly, combining TransE (Bordes et al., 2013) achieves the highest performance. Additionally, we see that vanilla GCN performs worse than any relational GCNs in all the datasets, which demonstrates that relation modelling is significant for entity classification.

<table>
<thead>
<tr>
<th>Models</th>
<th>AM</th>
<th>WN</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCN</td>
<td>86.2 ± 1.4</td>
<td>53.4 ± 0.2</td>
</tr>
<tr>
<td>R-GCN</td>
<td>89.3*</td>
<td>55.1 ± 0.6</td>
</tr>
<tr>
<td>W-GCN</td>
<td>90.2 ± 0.9*</td>
<td>54.2 ± 0.5</td>
</tr>
<tr>
<td>COMPGCN</td>
<td>90.6 ± 0.2*</td>
<td>55.9 ± 0.4</td>
</tr>
<tr>
<td>GEM-GCN</td>
<td>91.2 ± 0.2</td>
<td>57.8 ± 0.5</td>
</tr>
</tbody>
</table>

Table 6. The mean and standard deviation of classification accuracy over 5 different runs on AM and WN datasets for multi-class classification task. * indicates the results that are directly taken from (Vashishth et al., 2019).

<table>
<thead>
<tr>
<th>Models</th>
<th>P@1</th>
<th>P@5</th>
<th>N@5</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCN</td>
<td>86.1 ± 0.3</td>
<td>69.0 ± 0.3</td>
<td>82.7 ± 0.2</td>
</tr>
<tr>
<td>R-GCN</td>
<td>91.7 ± 0.6</td>
<td>73.0 ± 0.4</td>
<td>89.5 ± 0.6</td>
</tr>
<tr>
<td>W-GCN</td>
<td>91.2 ± 0.6</td>
<td>72.8 ± 0.3</td>
<td>88.6 ± 0.5</td>
</tr>
<tr>
<td>COMPGCN</td>
<td>92.5 ± 0.1</td>
<td>74.0 ± 0.3</td>
<td>90.1 ± 0.2</td>
</tr>
<tr>
<td>GEM-GCN</td>
<td>94.3 ± 0.2</td>
<td>74.7 ± 0.2</td>
<td>91.6 ± 0.2</td>
</tr>
</tbody>
</table>

Table 7. The mean and standard deviation of Precision@1 (P@1), Precision@5 (P@5), NDCG@5 (N@5) over 5 different runs on FB15K dataset for multi-label classification task.