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Abstract

We present WIKI-CS, a novel dataset derived
from Wikipedia for benchmarking Graph Neu-
ral Networks. The dataset consists of nodes cor-
responding to Computer Science articles, with
edges based on hyperlinks and 10 classes rep-
resenting different branches of the field. We
use the dataset to evaluate semi-supervised node
classification and single-relation link prediction
models. Our experiments show that these meth-
ods perform well on a new domain, with struc-
tural properties different from earlier benchmarks.
The dataset is publicly available, along with
the implementation of the data pipeline and the
benchmark experiments, at https://github.
com/pmernyei/wiki-cs—-dataset.

1. Introduction

In recent years, significant advances have been made in
learning representations of graph-structured data and pre-
dicting quantities of interest for nodes, edges or graphs them-
selves (Kipf & Welling, 2016a; Velickovic et al., 2017). This
new subfield has attracted an increasing amount of interest,
leading to the development of numerous methods (Wu et al.,
2019). However, several earlier works have noted issues
with existing standard benchmarks, which make it difficult
to rigorously compare results and accurately distinguish be-
tween the performance of competing architectures (Shchur
et al., 2018; Klicpera et al., 2018).

Our primary focus is semi-supervised node classification:
given labels of a small subset of nodes (typically 1-5%)
and features of all nodes, as well as their connectivity in-
formation, the task is to predict all other labels. This setup
is often used to assess the performance of various Graph
Neural Network (GNN) architectures (Kipf & Welling,
2016a; Velickovi¢ et al., 2017). These methods are usually
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evaluated on three citation network datasets (Cora, Cite-
Seer, PubMed) introduced by Yang et al (2016). Unfor-
tunately, different training splits are used across studies,
which makes comparisons challenging, especially since the
performance on this task is very sensitive to the choice of
training split (Shchur et al., 2018). Furthermore, all three
benchmarks are derived from the same domain, with simi-
lar structural properties. In contrast, WIKI-CS has a much
higher connectivity rate, hence it provides a different kind
of distribution for these methods to be tested on.

Similar datasets have also been used in single-relation link
prediction (Kipf & Welling, 2016b; Haonan et al., 2019).
We further use WIKI-CS to benchmark relational methods
for this task, along with a non-structural SVM baseline.

2. Related Work

The most commonly used semi-supervised node classifica-
tion benchmarks are the previously-described citation net-
work graphs, proposed by Yang et al. (2016). Larger datasets
have also been used, such as Reddit and PPI (Hamilton et al.,
2017). However, due to the standard split sizes proposed
for these benchmarks, state-of-the-art methods have already
achieved F1 scores of 0.995 and 0.97 respectively (Zeng
et al., 2019), making it difficult for further improvements to
be properly gauged.

Due to the issues with existing datasets, there has been
significant concurrent work on establishing robust GNN
benchmarks:

e The Open Graph Benchmark (Hu et al., 2020) (OGB)
has recently developed a range of datasets, focusing
on diversity of domains, graph sizes and types of tasks
and unified evaluation methods. A Wikidata Knowl-
edge Graph is included for a link prediction task—note
that this source material is entirely different from the
article hyperlink graph used for Wik1-CS. OGB also
proposes challenging domain-specific splits based on
some aspect of the data (for exaxmple, time or molecu-
lar structure), instead of selecting this randomly.

e Dwivedi et al. (2020) similarly proposed several
datasets to rigorously distinguish the aspects of GNN
architectures that significantly contribute to good per-
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formance on challenging benchmarks. To achieve this,
they used largely synthetic graphs.

Our contribution complements the existing ones by pro-
viding a dataset and experimental results based on a new
domain. We thus further establish the generality of GNN
methods and extend the range of available benchmarks.

3. The Dataset

3.1. Article Selection and Label Generation

We processed Wikipedia datadumps from August 2019 to
extract a subgraph where accurate class labels could be pro-
vided, based on the categories of each article. Unfortunately,
these category tags were not suitable for direct use as class
labels, as most of them are highly specific and inconsistently
applied to a small number of pages—there were around 1.5
million different categories defined on the 6 million pages,
at the time of the snapshot that we used.

This problem was mitigated by using the category sanitizer
tool made available by Boldi & Monti (2016), with some
modifications. Their method relies on the subcategory re-
lation to aggregate articles belonging to subcategories to
their parent categories. A small set of prominent categories
is selected based on harmonic centrality measures in the
subcategory graph; other nodes in the subcategory graph are
aggregated to one of their nearest ancestors (see Figure 1
for an example subgraph). See Boldi & Monti (2016) for
the details of the process. This avoids aggregation through
many indirect steps, which would often lead to articles be-
ing mapped to categories which they have little semantic
overlap with.

However, the output still required further clean-up: some
aggregated categories still contained unrelated articles. Ad-
ditionally, if the subcategory graph related to some topic
is very dense, the selected prominent categories and the
aggregation choices can be very arbitrary.

WIKI-CS was created by inspecting the list of 10,000
prominent categories selected by the sanitizer and picking
a subject area with few such issues. We identified three
possible candidate subjects (branches of biology, US states,
branches of CS), and sampled 20 pages from every class of
these candidates. Although all of these had some issues, we
were able to clean up the CS data by dropping some cate-
gories and manually disabling aggregation across specific
subcategories to prune bad pages from others. This resulted
in a dataset with 10 classes corresponding to branches of
computer science, with very high connectivity. See Ap-
pendix B for the set of prominent categories we used for
each label. Finally, we dropped the articles that would have
been mapped to multiple classes.
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Figure 1. A subgraph of the subcategory relation graph. Nodes
with dark borders are the prominent categories chosen based on
centrality. The others were aggregated to the nearest marked
ancestor as denoted by their colors, with ties broken arbitrarily.

3.2. Node Features

Similarly to previous work (Yang et al., 2016), our node
features were derived from the text of the corresponding
articles. However, they were calculated as the average of pre-
trained GloVe word embeddings (Pennington et al., 2014)
instead of using binary bag-of-words vectors. This allowed
us to encode rich features corresponding to a large vocabu-
lary in relatively small 300-dimensional input vectors, which
can be an advantage for training large models on a GPU.

3.3. Training Splits

It has been shown that the choice of the training split can
seriously affect model performance for semi-supervised
node classification (Shchur et al., 2018). Therefore, using
multiple training splits can improve the robustness of a
benchmark (Klicpera et al., 2018). For this reason, we
randomly selected 20 different training splits from the data
that was not used for testing.

More specifically, we split the nodes in each class into two
sets, 50% for the test set and 50% potentially visible. From
the visible set, we generated 20 different splits of training,
validation and early-stopping sets: 5% of the nodes in each
class were used for training in each split, 22.5% were used
to evaluate the early-stopping criterion, and 22.5% were
used as the validation set for hyperparameter tuning. We
stored the resulting mask vectors with the rest of the dataset,
so that they can be used consistently across all future work.

3.4. Statistics and Structural Properties

Table 1 summarises the key statistics of the citation network
and the WIKI-CS datasets. Note the significantly higher
rate of connectivity compared to existing benchmarks and
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Table 1. Comparison of key dataset statistics between WIKI-CS
and standard citation network benchmarks. SP stands for shortest
path length.

| Cora CiteSeer PubMed | Wiki-CS

Classes 7 6 3 10
Nodes 2708 3327 19717 11701
Edges 5429 4732 44338 216123
Features dim. | 1433 3703 500 300
Label rate 3.6% 5.2% 0.3% 5%
Mean degree 4.00 2.84 4.50 36.94
Average SP 6.31 9.32 6.34 3.01
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Figure 2. Distribution of the ratio of neighbors belonging to the
same class. In all three the citation network datasets, almost two-
thirds of all nodes have all neighbors belonging to the same class.
The distribution of WIKI-CS is considerably more balanced.

the short average distance between any two nodes. This
suggests that progress could be made on the benchmark by
designing more involved computations within the neighbor-
hood of a node, rather than focusing on long-range connec-
tions. This makes WIKI-CS a useful and complementary
addition to existing node classification datasets.

This connectivity also leads to more varied node neigh-
borhoods: for each node, we calculated the proportion of
neighbors that belong to the same class as the node itself,
and plotted this distribution for WIKI-CS as well as the
existing citation network benchmarks. The results shown in
Figure 2 show that the existing datasets have a large share
of nodes in homogeneous neighborhoods, while WIKI-CS
is significantly more varied.

We also visualized the structure of all four datasets using
Deep Graph Mapper (Bodnar et al., 2020), an unsupervised

(c) PubMed
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Figure 3. Deep Graph Mapper (DGM) visualisation of benchmarks.
Each node in the figure corresponds to a cluster of similar nodes in
the original graph, with edge thickness representing the amount of
connections between clusters. Colors represent the most frequent
class in each cluster. The DGM unsupervised embedding process
did not take labels into account, only relying on the node features
and edges. The hyperparameters are described in Appendix A.

GNN-based visualisation technique. The results shown in
Figure 3 suggest that WIKI-CS might have a more central-
ized, hierarchical structure than the citation networks, which
seems plausible considering the different source domains.

4. Experiments
4.1. Semi-Supervised Node Classification

As described in Section 3.3, 20 different training splits were
created for the node classification task, each consisting of
5% of nodes from each class. The same test set (50% of the
nodes) was evaluated for all splits. In each split, a different
22.5% of nodes is used for early-stopping: we finish training
when the loss calculated on this set has not improved for
100 epochs, and evaluate the model snapshot that produced
the lowest loss.

This evaluation was performed 5 times on each of the 20
splits; we report the mean accuracy with a 95% confidence
interval based on bootstrap resampling from these results
with 1,000 samples.

Three GNN models were evaluated: GCN (Kipf & Welling,
2016a), GAT (Velickovi¢ et al., 2017) and APPNP (Klicpera
et al., 2018). Hyperparameter tuning was performed using
the same training setup and measuring validation perfor-
mance on 22.5% of the nodes disjoint from the training and
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early-stopping sets. For efficiency, only the first 10 (out of
20) splits were used for hyperparameter tuning. The model
configurations are described in Appendix A.

Two non-structural baselines were also included: a multi-
layer perceptron (MLP) and a support vector machine
(SVM). These predicted the class for each node individually,
based on the node features. Since SVMs are deterministic,
we only had a single data point from each training split and
report the mean accuracy.

The results are shown in Table 2. The relative model per-
formances align well with the results on citation network
benchmarks, providing evidence that these are indeed good
general-purpose methods. It is perhaps surprising that the
attention mechanism of GAT improved very little on the
GCN result despite the large neighborhoods—one reason
might be that it is difficult to learn what to attend to in the
semi-supervised setting, as discussed in-depth by Knyazev
etal. (2019).

The model predictions were also visualised with Deep Graph
Mapper, and are included in Appendix C. This was based
on training each model once, on the first of the 20 training
splits. As expected, the mistakes and disagreements are
largely located near boundaries of classes. This reinforces
the idea that more complex neighborhood aggregation meth-
ods might be able to improve prediction accuracy. There are
also some less connected clusters that seem to produce con-
sistent incorrect predictions under all models—this might be
due to not having good training samples in their proximity.

Table 2. Performance of semi-supervised node classification meth-
ods on the WIKI-CS dataset. Accuracies are represented as the
average over 100 runs, with 95% confidence intervals calculated
by bootstrapping.

| ACCURACY
SVM 72.63%
MLP 73.17 £ 0.19%
GCN 77.19 +0.12%
GAT 77.65+0.11%
APPNP | 79.84 £ 0.10%
4.2. Link Prediction

For the link prediction benchmark, we followed the ex-
perimental setup of studies performing single-relation link
prediction on the Cora, CiteSeer and PubMed datasets (Kipf
& Welling, 2016b; Haonan et al., 2019). We split the data as
follows: 85% of the real edges for training, 5% for valida-
tion and 10% for testing. For each group, the same number
of negative examples (non-edge node pairs) was sampled
uniformly at random.

Two GNN methods were benchmarked for link predic-

Table 3. Performance of link prediction methods on the WIKI-CS
dataset. Metrics are represented as the average over 50 runs of
VGAE, 20 runs of the MLP and 10 runs of GraphStar, with 95%
confidence intervals calculated by bootstrapping.

| ROC-AUC AP
MLP | 0.9785+0.0001 0.9761 £ 0.0002
VGAE 0.9553 £ 0.0008  0.9608 £ 0.0007
GRAPHSTAR | 0.9793 £0.0002 0.9896 &+ 0.0001

Table 4. Performance of link prediction methods trained on only
10, 000 examples of each class.

\ ROC-AUC AP
MLP \ 0.9192 +0.0004 0.9119 £ 0.0006
VGAE 0.8546 +0.0024 0.8427 £ 0.0032
GRAPHSTAR | 0.9577 +0.0006 0.9795 4+ 0.0003

tion: GraphStar (Haonan et al., 2019) and VGAE (Kipf
& Welling, 2016b). They were trained using the configura-
tions reported in the original works, except for the hidden
layer size of GraphStar: a maximum size of 256 would fit
on the GPU. Details are included in Appendix A. An MLP
baseline was also trained using concatenated pairs of node
feature vectors.

The results are shown in Table 3. Note the extremely high
performance of all models, even the MLP baseline. It ap-
pears that randomly selected false edges are very easy to
distinguish from true edges in this dataset, and harder nega-
tive samples would be needed for more meaningful bench-
marking. The large number of edges aggravates this, but it
is not the main cause: we performed an experiment where
we trained the models on just 10000 examples of each class,
and found the metrics to be still comfortably above 0.9. See
Table 4 for the results.

5. Conclusion

We have presented WIKI-CS, a new benchmark for GNN
methods. We have described how its structural properties
are significantly different from commonly used datasets.
Our experiments show existing GNN architectures for semi-
supervised node classification and link prediction perform-
ing similarly to their results on other benchmarks, which is
further evidence that they are good general-purpose methods
for graph-learning tasks. Our dataset is available for further
study, broadening the range of available benchmarks.
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A. Hyperparameter settings
A.1. Node classification

The following hyperaparameters were used for the node
classification models:

e MLP: 2 layers, 35 units in the hidden layer, 0.35
dropout probability, learning rate 0.003.

o SVM: radial basis function kernel with C' = 8.

e GCN: 2 layers, 33 hidden neurons, learning rate 0.02,
0.25 dropout probability.

e GAT: 2 layers, 5 attention heads for the hidden layer
outputting 14 units each, 0.5 dropout probability, learn-
ing rate 0.007.

e APPNP: learning rate 0.02, 0.4 dropout probability,
propagation iterations k = 2, teleport probability o =
0.11.

Additionally, all models used an L2 loss coefficient of 5 x
10~*, and the evaluation was performed with self-loops
added to all nodes.

A.2. Link prediction

e GraphStar: the original training code with a dynami-
cally varying learning rate schedule was used, trained
for 1,000 epochs and the test metrics reported from the
epoch with the highest average validation metrics. A
hidden layer size of 256 was used to fit into memory
and all other parameters as given by the authors: 3
layers, no dropout, 5 x 10~% L2 regularisation.

e VGAE: largely the same setup was used as the original
paper: 16-dimensional latent space, GCN encoders
with a shared hidden layer of 32 neurons, no dropout,
trained for 200 epochs. However, we found improved
performance when discarding the KL regularisation
loss on the latent space distributions.

e MLP: a fully connected network with 3 hidden layers
of 128 units each, trained for 100 epochs with 0.2
dropout probability after each layer, learning rate 10~
and no weight decay.

A.3. DGM visualisations

All DGM plots in Figures 3 and 4 were created with the
SDGM variant (which visualises the original graph struc-
ture), the unsupervised DGI lens, ¢-SNE reduction, 20 inter-
vals, and the following additional parameters:

e Cora: ¢ = 0.05, min component size 8.
e CiteSeer: ¢ = (.03, min component size 8.

e PubMed: ¢ = 0.25, min component size 12.

o Wiki-CS: ¢ = 0.05, min component size 10.

B. List of categories for each label

Table 5 shows the list of categories used to construct each
class. The listed categories have been selected by the san-
itizer tool as aggregation targets, so each class consists of
pages that were aggregated to one of the corresponding
targets. Some subcategories of these targets that added un-
suitable results were manually excluded.

Table 5. List of aggregated Wikipedia categories used to construct
each class.

ID | MAIN CATEGORIES

0 \ COMPUTATIONAL LINGUISTICS

1 | DATABASES

2 OPERATING SYSTEMS
OPERATING SYSTEMS TECHNOLOGY

COMPUTER ARCHITECTURE

4 COMPUTER SECURITY
COMPUTER NETWORK SECURITY
ACCESS CONTROL

DATA SECURITY
COMPUTATIONAL TRUST
COMPUTER SECURITY EXPLOITS

INTERNET PROTOCOLS

COMPUTER FILE SYSTEMS

DISTRIBUTED COMPUTING ARCHITECTURE

0| J| | W

WEB TECHNOLOGY
WEB SOFTWARE
WEB SERVICES

9 PROGRAMMING LANGUAGE TOPICS
PROGRAMMING LANGUAGE THEORY
PROGRAMMING LANGUAGE CONCEPTS
PROGRAMMING LANGUAGE CLASSIFICATION
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C. Deep Graph Mapper visualisation of
model predictions

(d) GAT predictions (e) APPNP predictions

Figure 4. Deep Graph Mapper visualisation of the predictions of
different node classification models. The top image colors each
cluster according to its most frequent true label, similar to Figure
3d. The other plots have clusters colored according to the most
frequent prediction of the appropriate model. Note that this can
hide differences that do not change the majority prediction in a
cluster. The specific parameters used are described in Appendix A.



