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Abstract
Many problems in machine learning can be cast
as learning functions from sets to graphs, or more
generally to hypergraphs; in short, Set2Graph
functions. Examples include clustering, learning
vertex and edge features on graphs, and learning
features on triplets in a collection.
A natural approach for building Set2Graph mod-
els is to characterize all linear equivariant set-to-
hypergraph layers and stack them with non-linear
activations. This poses two challenges: (i) the
expressive power of these networks is not well
understood; and (ii) these models would suffer
from high, often intractable computational and
memory complexity, as their dimension grows
exponentially.

This paper advocates a family of neural network
models for learning Set2Graph functions that is
both practical and of maximal expressive power
(universal), that is, can approximate arbitrary con-
tinuous Set2Graph functions over compact sets.
Testing these models on an important particle
physics problem, we find them favorable to exist-
ing baselines.1

1. Introduction
We consider the problem of learning functions taking sets of
vectors in Rdin to graphs, or more generally hypergraphs; we
name this problem Set2Graph, or set-to-graph. Set-to-graph
functions appear in machine-learning applications such as
clustering, predicting features on edges and nodes in graphs,
and learning k-edge information in sets.

Mathematically, we represent each set-to-graph function
as a collection of set-to-k-edge functions, where each set-
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Figure 1. Set-to-graph functions are represented as collections of
set-to-k-edge functions.

to-k-edge function learns features on k-edges. That is,
given an input set X = {x1, . . . ,xn} ⊂ Rdin we consider
functions Fk attaching feature vectors to k-edges: each
k-tuple (xi1 , . . . ,xik) is assigned with an output vector
Fk(X )i1,i2,...,ik,: ∈ Rdout . Now, functions mapping sets to
hypergraphs with hyper-edges of size up-to k are modeled
by (F1,F2, . . . ,Fk). For example, functions mapping sets
to standard graphs are represented by (F1,F2), see Figure 1.

Set-to-graph functions are well-defined if they satisfy a
property called equivariance, and therefore the set-to-graph
problem is an instance of the bigger class of equivariant
learning (Cohen and Welling, 2016; Ravanbakhsh et al.,
2017; Kondor and Trivedi, 2018). A natural approach for
learning equivariant set-to-graph model is using out-of-the-
box full equivariant model as in (Maron et al., 2019b).

A central question is: Are equivariant models universal for
set-to-graph functions? That is, can equivariant models ap-
proximate any continuous equivariant function? In equivari-
ant learning literature set-to-set models (Zaheer et al., 2017;
Qi et al., 2017) are proven equivariant universal (Keriven
and Peyré, 2019; Segol and Lipman, 2020; Sannai et al.,
2019; Maron et al., 2020). In contrast, the situation for
graph-to-graph equivariant models is more intricate: some
models, such as message passing (a.k.a. graph convolutional
networks), are known to be non-universal (Xu et al., 2019;
Morris et al., 2018; Maron et al., 2019a; Chen et al., 2019),
while high-order equivariant models are known to be uni-
versal (Maron et al., 2019c) but require using high order
tensors and therefore not practical. Universality of equivari-
ant set-to-graph models is not known, as far as we are aware.
In particular, are high order tensors required for universality
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(as the graph-to-graph case), or low order tensors (as in the
set-to-set case) are sufficient?

In this paper we: (i) show that low order tensors are suffi-
cient for set-to-graph universality, and (ii) build an equiv-
ariant model for the set-to-graph problem that is both prac-
tical (i.e., small number of parameters and no-need to
build high-order tensors in memory) and provably univer-
sal. We achieve that with a composition of three networks:
Fk = ψ ◦ β ◦ φ, where φ is a set-to-set model, β is a non-
learnable broadcasting set-to-graph layer, and ψ is a simple
graph-to-graph network using only a single Multi-Layer
Perceptron (MLP) acting on each k-edge independently.

Our main motivation for this work comes from an important
set-to-2-edges learning problem in particle physics: parti-
tioning (clustering) of simulated particles generated in the
Large Hadron Collider (LHC). We demonstrate our model
produces state of the art results on this task compared to
relevant baselines.

2. Learning hypergraphs from sets
We would like to learn functions of sets of n vectors in
Rdin to hypergraphs with n nodes (think of the nodes as
corresponding to the set elements), and arbitrary k-edge
feature vectors in Rdout , where a k-edge is defined as a k-
tuple of set elements. A function mapping sets of vectors
to k-edges is called set-to-k-edge function and denoted Fk :

Rn×din → Rnk×dout . Consequently, a set-to-hypergraph
function would be modeled as a sequence (F1,F2, . . . ,FK),
for target hypergraphs with hyperedges of maximal size
K. For example, F2 learns pairwise relations in a set; and
(F1,F2) is a function from sets to graphs (outputs both node
features and pairwise relations); see Figure 1.

Our goal is to design equivariant neural network models
for Fk that are as-efficient-as-possible in terms of number
of parameters and memory usage, but on the same time with
maximal expressive power, i.e., universal.

Representing sets and k-edges. A matrix X =
(x1,x2, . . . ,xn)

T ∈ Rn×din represents a set of n vectors
xi ∈ Rdin and therefore should be considered up to re-
ordering of its rows. We denote by Sn = {σ} the sym-
metric group, that is the group of bijections (permutations)
σ : [n]→ [n], where [n] = {1, . . . , n}. We denote by σ ·X
the matrix resulting in reordering the rows ofX by the per-
mutation σ, i.e., (σ ·X)i,j = Xσ−1(i),j . In this notation,
X and σ ·X represent the same set, for all permutations σ.

k-edges are represented as a tensor Y ∈ Rnk×dout , where
Yi,: ∈ Rdout denotes the feature vector attached to the k-
edge defined by the k-tuple (xi1 ,xi2 , . . . ,xik), where i =
(i1, i2, . . . , ik) ∈ [n]k is a multi-index with non-repeating
indices. Similarly to the set case, k-edges are considered up-
to renumbering of the nodes by some permutation σ ∈ Sn.

That is, if we define the action σ·Y by (σ·Y)i,j = Yσ−1(i),j ,
where σ−1(i) = (σ−1(i1), σ

−1(i2), . . . , σ
−1(ik)), then Y

and σ · Y represent the same k-edge data, for all σ ∈ Sn.

Equivariance. A sufficient condition for Fk to represent
a well-defined map between sets X ∈ Rn×din and k-edge
data Y ∈ Rnk×dout is equivariance to permutations, namely

Fk(σ ·X) = σ · Fk(X), (1)

for all sets X ∈ Rn×din and permutations σ ∈ Sn. Equiv-
ariance guarantees, in particular, that the two equivalent sets
X and σ ·X are mapped to equivalent k-edge data tensors
Fk(X) and σ · Fk(X).

Set-to-k-edge models. In this paper we explore the fol-
lowing neural network model family for approximating Fk:

Fk(X; θ) = ψ ◦ β ◦ φ(X), (2)

where φ,β, and ψ will be defined soon. For Fk to be equiv-
ariant it is sufficient that its constituents, namely φ,β,ψ,
are equivariant. That is, φ,β,ψ all satisfy equation 1.

Set-to-graphs models. Given the model of set-to-k-edge
functions, a model for a set-to-graph function can now
be constructed from a pair of set-to-k-edge networks
(F1,F2). Similarly, set-to-hypergraph function would re-
quire (F1, . . . ,FK), where K is the maximal hyperedge
size. Figure 1 shows an illustration of set-to-k-edge and
set-to-graph functions

φ component. φ : Rn×din → Rn×d1 is a set-to-set equiv-
ariant model, that is φ is mapping sets of vectors in Rdin to
sets of vectors in Rd1 . To achieve the universality goal we
will need φ to be universal as set-to-set model; that is, φ
can approximate arbitrary continuous set-to-set functions.
Several options exists (Keriven and Peyré, 2019; Sannai
et al., 2019) although probably the simplest option is either
DeepSets (Zaheer et al., 2017) or one of its variations; all
were proven to be universal in (Segol and Lipman, 2020).

β component. β : Rn×d1 → Rnk×d2 is a non-learnable
linear broadcasting layer mapping sets to k-edges. In the-
ory, as shown in (Maron et al., 2019b) the space of equiv-
ariant linear mappings Rn×d1 → Rnk×d2 is of dimension
d1d2bell(k + 1) which can be very high since bell num-
bers have exponential growth. Interestingly, in the set-to-
k-edge case one can achieve universality with only k lin-
ear operators. We define the broadcasting operator to be
β(X)i,: = [xi1 ,xi2 , . . . ,xik ] where i = (i1, . . . , ik) and
brackets denote concatenation in the feature dimension, that
is, for A ∈ Rnk×da , B ∈ Rnk×db their concatenation is
[A,B] ∈ Rnk×(da+db). Therefore, the feature output di-
mension of β is d2 = kd1.

As an example, consider the graph case, where k = 2. In
this case β(X)i1,i2,: = [xi1 ,xi2 ]. This function is illus-
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Figure 2. The model architecture for the Set-to-graph and set-to-2-
edge functions.

trated in Figure 2 broadcasting data in Rn×d1 to Rn2×d2 .

To see that the broadcasting layer is equivariant, it is enough
to consider a single feature β(X)i = xi1 . Permuting
the rows of X by a permutation σ we get β(σ ·X)i,j =
xσ−1(i1),j = β(X)σ−1(i),j = (σ · β(X))i,j .

ψ component. ψ : Rnk×d2 → Rnk×dout is a mapping of k-
tensors to k-tensors. Here the theory of equivariant operators
indicates that the space of linear equivariant maps is of
dimension d2doutbell(2k) that suggests a huge number of
model parameters even for a single linear layer. Surprisingly,
universality can be achieved with much less, in fact a single
linear operator (i.e., scaled identity) in each layer. In the
multi-feature multi-layer case this boils to applying a Multi-
Layer Perceptron m : Rd2 → Rdout independently to each
feature vector in the input tensor X ∈ Rnk×d2 . That is, we
use ψ(X)i,: =m(Xi,:). Figure 2 illustrates set-to-2-edges
and set-to-graph models incorporating the three components
φ,β,ψ discussed above.

3. Universality of set-to-graph models.
The model Fk introduced above, is universal, in the sense
it can approximate arbitrary continuous equivariant set-to-
k-edge functions Gk : Rn×din → Rnk×dout over compact
domains K ⊂ Rn×din .

Theorem 1. The model Fk is set-to-k-edge universal.

Due to the page limit, we provide a simpler universality
proof (under some mild extra conditions) for the set-to-2-
edge model, F2, based on the Singular Value Decomposition
(SVD). We refer the reader to the full version of the paper
for a general proof (Serviansky et al., 2020).

3.1. A simple proof for universality of second-order
tensors

It is enough to consider the dout = 1 case; the general case is
implied by applying the argument for each output feature
dimension independently. Let G2 be an arbitrary continuous
equivariant set-to-2-edge function G2 : K ⊂ Rn×din →
Rn×n. We want to approximate G2 with our model F2.
First, note that without losing generality we can assume
G2(X) has a simple spectrum (i.e., eigenvalues are all dif-

ferent) for all X ∈ K. Indeed, if this is not the case we
can always choose λ > 0 sufficiently large and consider
G2 + λdiag(1, 2, . . . , n). This diagonal addition does not
change the 2-edge values assigned by G2, and it guarantees a
simple specturm using standard hermitian matrix eigenvalue
perturbation theory (see (Stewart, 1990), Section IV:4).

Now let G2(X) = U(X)Σ(X)V (X)T be the SVD of
G2(X), where U = [u1, . . . ,un] and V = [v1, . . . ,vn].
Since G2(X) has a simple spectrum, U ,V ,Σ are all con-
tinuous inX; Σ is unique, andU ,V are unique up to a sign
flip of the singular vectors (i.e., columns of U ,V ) (O’Neil,
2005). Let us first assume that the singular vectors can be
chosen uniquely also up to a sign, later we show how we
achieve this with some additional mild assumption.

Now, uniqueness of the SVD together with the equivariance
of G2 imply that U ,V are continuous set-to-set equivariant
and Σ is a continuous set invariant function:

(σ ·U(X))Σ(X)(σ · V (X))T

= σ ·G(X) = G(σ ·X) (3)

= U(σ ·X)Σ(σ ·X)V (σ ·X)T .

Lastly, since φ is set-to-set universal there is a choice of
its parameters so that it approximates arbitrarily well the
equivariant set-to-set function Y = [U ,V ,11TΣ]. The
ψ component can be chosen by noting that G2(X)i1,i2 =∑n
j=1 σjUi1,jVi2,j = p(β(Y )i1,i2,:), where σj are the sin-

gular values, and p : R6n → R is a cubic polynomial. To
conclude pickm to approximate p sufficiently well so that
ψ ◦ β ◦ φ approximates G2 to the desired accuracy.

To achieve uniqueness of the singular vectors up-to a sign
we can add, e.g., the following assumption: 1Tui(X) 6=
0 6= 1Tvi(X) for all singular vectors and X ∈ K. Using
this assumption we can always pick ui(X), vi(X) in the
SVD so that 1Tui(X) > 0, 1Tvi(X) > 0, for all i ∈ [n].
Lastly, note that equation 3 suggests that also outer-product
can be used as a broadcasting layer.

4. Applications
4.1. Model variants and baselines
Variants of our model. We consider two variations of our
model: S2G: This is Our basic model. We used the F2 and
F3 (resp.) models for these learning tasks. for F2, φ is im-
plemented using DeepSets (Zaheer et al., 2017) with 5 layers
and output dimension d1 ∈ {5, 80}; ψ is implemented with
an MLP,m, with {2, 3} layers with input dimension d2 de-
fined by d1 and β. β is implemented according to Section
2: for k = 2 it uses d2 = 2 ∗ d1 output features. S2G+:
For the k = 2 case we have also tested a more general (but
not more expressive) broadcasting β defined using the full
equivariant basis Rn → Rn2

from (Maron et al., 2019b) that
contains bell(3) = 5 basis operations. This broadcasting
layer gives d2 = 5 ∗ d1.
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Model F1 RI ARI
S2G 0.646±0.003 0.736±0.004 0.491±0.006
S2G+ 0.655±0.004 0.747±0.006 0.508±0.007
GNN 0.586±0.003 0.661±0.004 0.381±0.005

B SIAM 0.606±0.002 0.675±0.005 0.411±0.004
SIAM-3 0.597±0.002 0.673±0.005 0.396±0.005
MLP 0.533±0.000 0.643±0.000 0.315±0.000
AVR 0.565 0.612 0.318
trivial 0.438 0.303 0.026
S2G 0.747±0.001 0.727±0.003 0.457±0.004
S2G+ 0.751±0.002 0.733±0.003 0.467±0.005
GNN 0.720±0.002 0.689±0.003 0.390±0.005

C SIAM 0.729±0.001 0.695±0.002 0.406±0.004
SIAM-3 0.719±0.001 0.710±0.003 0.421±0.005
MLP 0.686±0.000 0.658±0.000 0.319±0.000
trivial 0.610 0.472 0.078
AVR 0.695 0.650 0.326
S2G 0.972±0.001 0.970±0.001 0.931±0.003
S2G+ 0.971±0.002 0.969±0.002 0.929±0.003
GNN 0.972±0.001 0.970±0.001 0.929±0.003

L SIAM 0.973±0.001 0.970±0.001 0.925±0.003
SIAM-3 0.895±0.006 0.876±0.008 0.729±0.015
MLP 0.960±0.000 0.957±0.000 0.894±0.000
trivial 0.910 0.867 0.675
AVR 0.970 0.965 0.922

Table 1. Results: partitioning for particle physics.

Baselines. We compare our results to the following base-
lines: MLP: A standard multilayer perceptron applied to the
flattened set features. SIAM: A popular similarity learning
model (see e.g., (Zagoruyko and Komodakis, 2015)) based
on Siamese networks. This model has the same structure as
in equation 2 where φ is a Siamese MLP (a non-universal
set-to-set function) that is applied independently to each
element in the set. We use the same loss we use with our
model (according to the task at hand). SIAM-3: The same
architecture as SIAM but with a triplet loss (Weinberger
et al., 2006) on the learned representations based on l2 dis-
tance, see e.g., (Schroff et al., 2015). Edge predictions are
obtained by thresholding distances of pairs of learned repre-
sentations. GNN: A Graph Neural Network (Morris et al.,
2018) applied to the k-NN (k ∈ {0, 5, 10}) induced graph.
Edge prediction is done via outer-product (Kipf and Welling,
2016). AVR: A non-learnable geometric-based baseline
called Adaptive Vertex Reconstruction (Waltenberger, 2011)
typically used for the particle physics problem we tackle.

More applications, architecture, implementation and hyper-
parameter details and number of parameters can be found
in full paper (Serviansky et al., 2020).

4.2. Partitioning for particle physics

We tackle learning set-to-2-edge functions. Here, each
training example is a pair (X,Y ) where X is a set X =
(x1,x2, . . . ,xn)

T ∈ Rn×din and Y ∈ {0, 1}n×n is an ad-
jacency matrix (the diagonal of Y is ignored). Our main
experiment tackles an important particle physics problem.

Problem statement. In particle physics experiments, such
as the Large Hadron Collider (LHC), beams of incoming
particles are collided at high energies. The results of the
collision are outgoing particles, whose properties (such as
the trajectory) are measured by detectors surrounding the
collision point. A critical low-level task for analyzing this
data is to associate the particle trajectories to their progeni-

tor, which can be formalized as partitioning sets of particle
trajectories into subsets according to their unobserved point
of origin in space. This task is referred to as vertex recon-
struction in particle physics and is illustrated in Figure 3.
We cast this problem as a set-to-2-edge problem by treating
the measured particle trajectories as elements in the input
set and nodes in the output graph, where the parameters
that characterize them serve as the node features. An edge
between two nodes indicates that the two particles come
from a common progenitor or vertex.

Observed Particles

Figure 3. Illustration of a particle
physics experiment. The task is
to partition the set of observed
particles based on their point of
origin (in blue).

Data. We consider three
different types (or fla-
vors) of particle sets
(called jets) correspond-
ing to three different
fundamental data gener-
ating processes labeled
bottom-jets, charm-jets,
and light-jets (B/C/L).
The important distinction
between the flavors is the
typical number of parti-
tions in each set. Since it is impossible to label real data
collected in the detectors at the LHC, algorithms for particle
physics are typically designed with high-fidelity simulators,
which can provide labeled training data. These algorithms
are then applied to and calibrated with real data collected by
the LHC experiments. The generated sets are small, ranging
from 2 to 14 elements each, with around 0.9M sets divided
to train/val/test using the ratios 0.6/0.2/0.2. Each set element
has 10 features (din). More information can be found in the
supplementary material.

Evaluation metrics, loss and post processing. We con-
sider multiple quantities to quantify the performance of the
partitioning: the F1 score, the Rand Index (RI), and the
Adjusted Rand Index (ARI = (RI− E[RI])/(1− E[RI])).
All models are trained to minimize the F1 score. We make
sure the adjacency matrix of the output graph encodes a
valid partitioning of nodes to clusters by considering any
connected components as a clique.

Results. We compare the results of all learning based meth-
ods and a typical baseline algorithm used in particle physics
(AVR). We also add the results of a trivial baseline that pre-
dicts that all nodes have the same progenitor. All models
have roughly the same number of parameters. We performed
each experiment 11 times with different random initializa-
tions, and evaluated the model F1 score, RI and ARI on
the test set. The results are shown in Table 1. For bottom
and charm jets, which have secondary vertices, both of our
models significantly outperform the baselines by 5%-10%
in all performance metrics. In light-jets, without secondary
decays, our models yield similar scores.
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