
Hierarchically Attentive Graph Pooling with Subgraph Attention

Sambaran Bandyopadhyay 1 2 Manasvi Aggarwal 2 M. Narasimha Murty 2

Abstract
Graph neural networks got significant attention
for graph representation and classification in ma-
chine learning community. Different types of
neighborhood aggregation and pooling strategies
have been proposed in the literature. In this work,
we introduce a higher order hierarchical GNN al-
gorithm (SubGattPool) by employing (i) an atten-
tion mechanism which learns the importance and
aggregates neighboring subgraphs of a node in-
stead of first-order neighbors, and (ii) a hierarchi-
cal pooling strategy which learns the importance
of different hierarchies in a GNN. SubGattPool
is able to achieve state-of-the-art graph classifica-
tion performance on multiple real-world datasets.

1. Introduction
Graph neural networks (GNNs) gained significant interest
from the research community in the past few years (Deffer-
rard et al., 2016; Kipf & Welling, 2017). A GNN typically
uses a message passing framework to update a node rep-
resentation by aggregating information from its neighbors
(Gilmer et al., 2017; Hamilton et al., 2017). For a graph level
task such as graph classification (Xu et al., 2019; Duvenaud
et al., 2015), GNNs jointly derive the node embeddings and
use different pooling mechanisms (Ying et al., 2018; Lee
et al., 2019) to obtain a representation of the entire graph.

Attention mechanisms on graphs show promising results for
both node classification (Veličković et al., 2018) and graph
classification (Lee et al., 2019; 2018) tasks. Typically, atten-
tion for neighborhood aggregation in a GNN is computed
between a pair of nodes in the immediate neighborhood
to capture the importance between them (Veličković et al.,
2018; Lee et al., 2018). But in real world situation, cal-
culating importance up to a pair of nodes is not adequate.
In molecular biology or in social networks, the presence
of particular sub-structures, potentially of varying sizes, in
a graph often determines its label. Hence, all the nodes
collectively in such a substructure are important, and they

1IBM Research 2Indian Institute of Science, Bangalore. Corre-
spondence to: S. Bandyopadhyay <samb.bandyo@gmail.com>.

may not be important individually or in pairs to classify
the graph. In Figure 1, each node (indexed from a to g)
in the small synthetic graph can be considered as an agent
whose attributes determine its opinion (1:positive, 0: neu-
tral, -1: negative) about 4 products. Suppose the graph
can be labelled +1 only if there is a subset of connected (by
edges) agents who jointly have positive opinion about all the
products. In this case, the blue shaded connected subgraph
(a, b, c) is important to determine the label of the graph.

Figure 1. Example to motivate
subgraph attention

Please note that attention
over the pairs (Veličković
et al., 2018) is not enough
as (a, b) cannot make the
label of the graph +1 by
itself. Also, multiple
layers of graph convo-
lution (Kipf & Welling,
2017) with pair-wise at-
tention may not work as
the aggregated features of
a node get corrupted after
the feature aggregation by the first few convolution lay-
ers. Besides, recent literature also shows that higher order
GNNs that directly aggregate features from higher order
neighborhood of a node are theoretically more powerful
than 1st order GNNs (Morris et al., 2019). To the best of our
knowledge, (Yang et al., 2019) is the only work to propose
an attention mechanism on the shortest paths starting from
a node to generate the node embedding. However, their
computation of shortest path depends on the pairwise node
attention and this may fail in the cases when a collection
of nodes together is important, but not the individual pairs.
With these motivations, we develop a novel higher order
attention mechanism which operates in the subgraph level
in the vicinity of a node in a GNN framework.

On the other hand, different types of graph pooling mech-
anisms (Duvenaud et al., 2015; Morris et al., 2019) have
been proposed in the recent GNN literature. Among them,
hierarchical graph pooling (Ying et al., 2018) gains signifi-
cant interest as it is able to capture the intrinsic hierarchical
property of several real-world graphs. For example, in a so-
cial network, one must model both the ego-networks around
individual nodes, as well as the coarse-grained relationships
between entire communities (Newman, 2003; Morris et al.,

Hierarchically Attentive Graph Pooling with Subgraph Attention

2019). But hierarchical representation (Ying et al., 2018)
often fails to perform well in practice mainly because (i) of
significant loss of information in learning the sequential hi-
erarchies of a graph when the data is limited; (ii) it treats all
the nodes within a hierarchy, and all the hierarchies equally
while computing the entire graph representation; (iii) for
real-world graphs, the hierarchical structure if often noisy.
To address these issues, we again use attention to differenti-
ate different units of a hierarchical graph representation.

Contributions: We propose SubGattPool which (i) em-
ploys an attention mechanism to learn the importance and
aggregates neighboring subgraphs of a node instead of first-
order neighbors, and (ii) a hierarchical pooling strategy
which learns the importance of different hierarchies in a
GNN. Experimentally, we are able to achieve state-of-the-
art graph classification performance on multiple datasets.

2. Proposed Approach: SubGattPool
Figure 2 shows the high-level architecture of SubGattPool.
One major component of SubGattPool is the generation of
node representations through SubGraph attention (referred
as SubGatt) layer, which is described below.

2.1. Subgraph Attention Mechanism

The input to the subgraph attention network is an attributed
graph G = (V,E), where V = {v1, v2, · · · , vN} is the
set of N nodes and xi ∈ RD is the attribute vector of
the node vi ∈ V . The output of the model is a set of
node features (or embeddings) hi ∈ RK , ∀i ∈ [N] (K is
potentially different from D). We use [N] to denote the
set {1, 2, · · · , N} for any positive integer N . We define
the immediate (or first order) neighborhood of a node vi as
Ni = {vj |(vi, vj) ∈ E}. For the simplicity of notations, we
assume an input graph G to be undirected for the rest of the
paper, but extending it for directed graphs is straightforward.

2.1.1. SUBGRAPH SELECTION AND SAMPLING

For each node in the graph, we aim to find the importance
of the nearby subgraphs to that node. In general, subgraphs
can be of any shape or size. Motivated by the prior works
on graph kernels (Shervashidze et al., 2011), we choose to
consider only a set of rooted subtrees as the set of candidate
subgraphs. So for a node vi, any tree of the form (vi), or
(vi, vj) where (vi, vj) ∈ E, or (vi, vj , vk) where (vi, vj) ∈
E and (vj , vk) ∈ E, and so on will form the set of candidate
subgraphs of vi. We restrict the maximum size (i.e., number
of nodes) of a subtree to T . Also note that, node vi is
always a part of any candidate subgraph for the node vi
according to our design. For example, all possible subgraphs
of maximum size 3 for node a in Figure 1 are: (a), (a,b),
(a,d), (a,f), (a,b,c), (a,b,f), (a,b,g), (a,d,e), (a,f,e) and (a,f,b).

The number of candidate subgraphs for a node can be very
large. For example, the number of rooted subgraphs for the
node vi is dvi×

∑
vj∈N (vi)

(dvj−1)×
∑

vk∈N (vj)\{vi}
|N (vk)\

{vi, vj}|, where dv is the degree of node v and T = 4.
Clearly, computing attention over these many subgraphs for
each node is computationally difficult. So we employ a ran-
dom subgraph subsampling technique, inspired by the node
subsampling techniques for network embedding (Hamilton
et al., 2017). More precisely, we randomly select L sub-
graphs (i.e., subtrees of maximum size T) for each node
without replacement if number of candidate subgraphs is
more than L, otherwise use round robin sampling. For each
node, new sample of subgraphs is taken in each epoch. In
any epoch, let us use the notation Si = {Si1, · · · , SiL} to
denote the set (more precisely it is a multiset as subgraphs
can repeat) of sampled subgraphs for node vi.

2.1.2. SUBGRAPH ATTENTION NETWORK

This subsection describes the attention mechanism for neigh-
borhood aggregation. As mentioned, the node of interest is
always positioned as the root of each subgraph generated
for that node. To generate a feature for the subgraph, we
concatenate the attributes of all the nodes in the subgraph
in order. If the subgraph has less than T nodes, we append
zeros at the end to ensure equal length feature vector for all
the subgraphs. For example, if the maximum size of a sub-
graph is T = 4, then the feature of the subgraph (vi, vj , vk)
is [xi||xj ||xk||0] ∈ R4D, where || is the concatenation op-
eration and 0 is the zero vector in RD. Let us denote this
derived feature vector of any subgraph Sil as x̂il ∈ RTD,
∀i ∈ [N] and ∀l ∈ [L]. Next, we use self-attention on the
features for the sampled subgraphs for each node. As a first
step, we use a shared linear transformation, parameterized
by a trainable weight matrix W ∈ RK×TD, to the feature
of all the sampled subgraphs Sil, ∀i ∈ [N] and ∀l ∈ [L]
selected in an epoch. Next we introduce a trainable self at-
tention vector a ∈ RK to compute the attention coefficient
αil which captures the importance of the subgraph Sil of
node vi, as follows:

αil =
exp(σ(aTWx̂il))∑

l′∈[L]

exp(σ(aTWx̂il′))
, hi = σ

(L∑
l=1

αilWx̂il

)
(1)

We have used Leaky ReLU as the activation function σ() for
all the experiments. αil gives normalized attention scores
over the set of sampled subgraphs for each node. We use
them to compute the representation hi of node vi as shown
in Eq. 1. Needless to say, one can easily extend the above
subgraph attention by multi-head attention by employing
few independent attention mechanisms of Eq. 1 and con-
catenate the resulting representations (Vaswani et al., 2017).

Hierarchically Attentive Graph Pooling with Subgraph Attention

This completes one full subgraph attention layer. We can
stack such multiple layers to design a full SubGatt network.

Figure 2. SubGattPool Network for graph classification

2.2. Hierarchically Attentive Graph Pooling

The hierarchical structure of SubGattPool is motivated by
(Ying et al., 2018). As shown in Figure 2, there are R = 4
different levels of the graph in the hierarchical architecture.
The first level is the input graph. Let us denote these level
graphs by G1, · · · , GR. There is a GNN layer between the
level graphs Gr and Gr+1 which comprises of an embed-
ding layer to generate the embedding of the nodes of Gr

and a pooling layer which maps the nodes of Gr to the
nodes of Gr+1. Please note, number of nodes N1 in the
first level graph depends on the input graph, but we keep
the number of nodes Nr in the consequent level graphs Gr

(∀r = 2, · · · , R) fixed for all the input graphs (in a graph
classification dataset), which help us to design the shared hi-
erarchical attention mechanisms, as discussed later. As pool-
ing mechanisms shrink a graph, Nr > Nr+1, ∀r ≤ R− 1.

Any level graph Gr is defined by its adjacency matrix Ar ∈
RNr×Nr and the feature matrix Xr ∈ RNr×K . The rth
embedding layer and the pooling layer are defined by:

Zr =

{
SubGattembed(Ar, Xr) , r = 1

GINr,embed(Ar, Xr) , r > 1

Pr =

{
softmax(SubGattpool(Ar, Xr)) , r = 1

softmax(GINr,pool(Ar, Xr)) , 1 < r ≤ R− 1

(2)

Here, Zr ∈ RNr×K is the embedding matrix of the nodes
of Gr. The softmax after the pooling is applied row-wise.
(i, j)th element of Pr ∈ RNr×Nr+1 gives the probability of
assigning node vri in Gr to node vr+1

j in Gr+1. Based on
these, graph Gr+1 is constructed as, Ar+1 = PT

r ArPr and
Xr+1 = PT

r Zr.

As the embedding and pooling GNNs, we use SubGatt net-
works (Section 2.1) only after the level graph 1. This is
because other level graphs Gr (r > 1) have more number
of soft edges (i.e., with probabilistic edge weights) due to

use of softmax at the end of pooling layers. Hence, the
number of neighboring rooted subtrees will be high in those
level graphs and the chance of having discrete patterns will
be less. We use GINs (Xu et al., 2019) as the embedding
and pooling GNNs for Gr, r > 1. lth layer of GIN can be
defined as: hl+1

v =MLP l
(
(1+εl)hlv+

∑
u∈N (v)

hku

)
. Here,

hl+1
v ∈ RK is the hidden representation of the node v in
l + 1th layer of GIN and ε is a learnable parameter.

Intra-level attention layer: To alleviate the problem of
information loss and noisy hierarchical nature of graphs,
we propose to use attention mechanisms in the hierarchi-
cal graph pooling, to combine features from different level
graphs in the architecture. We consider level graphs G2 to
GR for this, as their respective numbers of nodes are same
across all the graphs in a dataset. We introduce intra-level
attention layer to obtain a global feature for each level graph
Gr, ∀r = 2, · · · , R. More precisely, we use the convolution
based self attention within the level graph Gr as:

er = softmax(D̃−
1
2

r ÃrD̃
− 1

2
r Xrθ) ∈ RNr ; xr = XT

r er ∈ RK

(3)
Here, the softmax to compute er is taken so that a compo-
nent of er becomes the normalized (i.e., probabilistic) im-
portance of the corresponding node in Gr. Ãr = Ar + INr

is the adjacency matrix with added self loops of Gr. D̃ is
the diagonal matrix of dimension Nr ×Nr with D̃(i, i) =
Nr∑
j=1

Ãij . θ ∈ RK is the trainable vector of parameters of

intra-level attention, which is shared across all the level
graphs Gr, ∀r = 2, · · · , R. Intuitively, θ contains the im-
portance of individual attributes and the components of Nr

dimensional Xrθ gives the same for each node. Finally,
multiplying that with D̃−

1
2

r ÃrD̃
− 1

2
r produces the (normal-

ized) importance of a node based on its own features and
the features of immediate neighbors (for one layer of intra-
level attention). Hence, xr is a learnable weighted sum of
the features of the nodes in Gr. Representing level graphs
separately by the proposed intra-level attention makes their
impact more prominent.

Inter-level attention layer: This layer aims to get the final
representation, referred as xG ∈ RK , of the input graph
from x2, · · · , xR; as obtained from the intra-level attention
layers. As different level graphs of the hierarchical represen-
tation have different importance to determine the label of the
input graph, we propose to use the following self-attention
mechanism.

ẽ = softmax(Xinter θ̃) ∈ RR−1 and xG = XT
inter ẽ ∈ RK

(4)
Xinter is the R − 1 ×K dimensional matrix whose rows
correspond to xr (the output of intra-level attention layer
for Gr), r = 2, · · · , R. θ̃ ∈ RK is a trainable self attention

Hierarchically Attentive Graph Pooling with Subgraph Attention

Algorithms MUTAG PTC PROTEINS NCI1 NCI109 IMDB-B IMDB-M

GK (Shervashidze et al., 2009) 81.39±1.7 55.65±0.5 71.39±0.3 62.49±0.3 62.35±0.3 NA NA
RW (Vishwanathan et al., 2010) 79.17±2.1 55.91±0.3 59.57±0.1 NA NA NA NA

PK (Neumann et al., 2016) 76±2.7 59.5±2.4 73.68±0.7 82.54±0.5 NA NA NA
WL (Shervashidze et al., 2011) 84.11±1.9 57.97±2.5 74.68±0.5 84.46±0.5 85.12±0.3 NA NA

AWE-DD (Ivanov & Burnaev, 2018) NA NA NA NA NA 74.45±5.8 51.54±3.6
AWE-FB (Ivanov & Burnaev, 2018) 87.87±9.7 NA NA NA NA 73.13±3.2 51.58±4.6

node2vec (Grover & Leskovec, 2016) 72.63±10.20 58.85±8.00 57.49±3.57 54.89±1.61 52.68±1.56 NA NA
sub2vec (Adhikari et al., 2017) 61.05±15.79 59.99±6.38 53.03±5.55 52.84±1.47 50.67±1.50 55.26±1.54 36.67±0.83

graph2vec (Narayanan et al., 2017) 83.15±9.25 60.17±6.86 73.30±2.05 73.22±1.81 74.26±1.47 71.1±0.54 50.44±0.87
InfoGraph (Sun et al., 2020) 89.01±1.13 61.65±1.43 NA NA NA 73.03±0.87 49.69±0.53
DGCNN (Zhang et al., 2018) 85.83±1.7 58.59±2.5 75.54±0.9 74.44±0.5 NA 70.03±0.9 47.83±0.9
PSCN (Niepert et al., 2016) 88.95±4.4 62.29±5.7 75±2.5 76.34±1.7 NA 71±2.3 45.23±2.8

DCNN (Atwood & Towsley, 2016) NA NA 61.29±1.6 56.61±1.0 NA 49.06±1.4 33.49±1.4
ECC (Simonovsky & Komodakis, 2017) 76.11 NA NA 76.82 75.03 NA NA
DGK (Yanardag & Vishwanathan, 2015) 87.44±2.7 60.08±2.6 75.68±0.5 80.31±0.5 80.32±0.3 66.96±0.6 44.55±0.5

DIFFPOOL (Ying et al., 2018) 83.56 NA 76.25 NA NA NA 47.91
IGN (Maron et al., 2018) 83.89±12.95 58.53±6.86 76.58±5.49 74.33±2.71 72.82±1.45 72.0±5.54 48.73±3.41

GIN (Xu et al., 2019) 89.4±5.6 64.6±7.0 76.2±2.8 82.7±1.7 NA 75.1±5.1 52.3±2.8
1-2-3GNN (Morris et al., 2019) 86.1± 60.9± 75.5± 76.2± NA 74.2± 49.5±
3WL-GNN (Maron et al., 2019) 90.55±8.7 66.17±6.54 77.2±4.73 83.19±1.11 81.84±1.85 72.6±4.9 50±3.15

SubGattPool 93.29±4.78 67.13±6.45 76.92±3.44 82.59±1.42 80.95±1.76 76.49±2.94 52.46±3.48
Rank 1 1 2 3 3 1 1

Table 1. Classification accuracy (%) of different algorithms (21 in total) for graph classification. NA denotes the case when the result of a
baseline algorithm could not be found on that particular dataset from the existing literature. The last row ‘Rank’ is the rank (1 being the
highest position) of our proposed algorithm SubGattPool among all the algorithms present in the table.

vector. Similar to Eq. 3, softmax is taken to convert ẽ to
a probability distribution of importance of different graph
levels. Finally, xG is fed to a classification layer of the GNN,
which is a dense layer followed by a softmax to classify the
entire input graph in an end-to-end fashion. This completes
the construction of SubGattPool architecture.

It can be shown that total number of parameters of Sub-
GattPool network is O(KTD +RKD), which is indepen-
dent of both the average number of nodes and the number of
graphs in the dataset. We use ADAM (with learning rate set
to 0.001) on the cross-entropy loss of graph classification to
train these parameters. In contrast to existing hierarchical
GNNs (Ying et al., 2018; Morris et al., 2019), SubGattPool
does not only rely on the last level of the hierarchy to obtain
the final graph representation. SubGattPool may have more
than 1 node in the last level graph. SubGattPool is also
less prone to information loss in the hierarchy and is able
to learn importance of individual nodes in a hierarchy (i.e.,
level graph) and the importance of different hierarchies. In
terms of design, we propose subgraph attention mechanism
through SubGatt network and use it along with GIN for
different embedding and pooling layers of SubGattPool.

3. Experiments on Graph Classification
We use 5 bioinformatics graph datasets (MUTAG - NCI09)
and 2 social network datasets (IMDB-BINARY and IMDB-
MULTI) to evaluate the performance for graph classification.
The details of these datasets can be found in Appendix. To
compare the performance of SubGattPool, we choose twenty
state-of-the-art baseline algorithms from the domains of
graph kernels, unsupervised graph representation and graph

neural networks (Table 1). We adopt the same experimental
setup as there in (Xu et al., 2019; Maron et al., 2019). This
helps us to collect the reported accuracy numbers of the
baselines directly from the literature to avoid any degrada-
tion of performance due to insufficient parameter tuning.

We keep the values of the hyperparameters to be the same
across all the datasets, based on the averaged validation
accuracy. We set the pooling ratio (defined as γ = Nr+1

Nr
,

∀r < R− 1) at 0.5, the number of levels R=3 and the maxi-
mum subgraph size (T) to be 3. We sample L=12 subgraphs
for each node in each epoch of SubGatt. Following most
of the literature, we set the embedding dimension K to be
128. We use L2 normalization and dropout in SubGattPool
architecture to make the training stable. Table 1 shows that
SubGattPool is able to improve the state-of-the-art on MU-
TAG, PTC, IMDB-B and IMDB-M for graph classification.
On PROTEINS, the performance gap with the best perform-
ing baseline (which is 3WL-GNN (Maron et al., 2019)) is
less than 1%. But on NCI1 and NCI109, WL kernel turns
out to be the best performing algorithm with a good margin
(> 1%) over all the GNN based algorithms. In terms of
standard deviation, SubGattPool is highly competitive and
is often better than most of the better performing GNNs.

4. Conclusion
We have proposed a novel GNN based graph classification
algorithm called SubGattPool which uses higher order atten-
tion over the subgraphs of a graph and also addresses some
shortcomings of the existing hierarchical graph representa-
tion techniques. We believe this work encourages further
development in the area of hierarchical graph representation.

Hierarchically Attentive Graph Pooling with Subgraph Attention

References
Adhikari, B., Zhang, Y., Ramakrishnan, N., and Prakash,

B. A. Distributed representations of subgraphs. In 2017
IEEE International Conference on Data Mining Work-
shops (ICDMW), pp. 111–117. IEEE, 2017.

Atwood, J. and Towsley, D. Diffusion-convolutional neural
networks. In Advances in Neural Information Processing
Systems, pp. 1993–2001, 2016.

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-
volutional neural networks on graphs with fast localized
spectral filtering. In Advances in neural information pro-
cessing systems, pp. 3844–3852, 2016.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell,
R., Hirzel, T., Aspuru-Guzik, A., and Adams, R. P. Con-
volutional networks on graphs for learning molecular fin-
gerprints. In Advances in neural information processing
systems, pp. 2224–2232, 2015.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pp. 1263–1272. JMLR,
2017.

Grover, A. and Leskovec, J. node2vec: Scalable feature
learning for networks. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discov-
ery and data mining, pp. 855–864. ACM, 2016.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In Advances in Neural
Information Processing Systems, pp. 1025–1035, 2017.

Ivanov, S. and Burnaev, E. Anonymous walk embeddings.
arXiv preprint arXiv:1805.11921, 2018.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations, 2017.

Lee, J., Lee, I., and Kang, J. Self-attention graph pooling.
In International Conference on Machine Learning, pp.
3734–3743, 2019.

Lee, J. B., Rossi, R., and Kong, X. Graph classification
using structural attention. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1666–1674. ACM, 2018.

Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y.
Invariant and equivariant graph networks. arXiv preprint
arXiv:1812.09902, 2018.

Maron, H., Ben-Hamu, H., Serviansky, H., and Lip-
man, Y. Provably powerful graph networks. In
Wallach, H., Larochelle, H., Beygelzimer, A.,
dAlché-Buc, F., Fox, E., and Garnett, R. (eds.),
Advances in Neural Information Processing Sys-
tems 32, pp. 2153–2164. Curran Associates, Inc.,
2019. URL http://papers.nips.cc/paper/
8488-provably-powerful-graph-networks.
pdf.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and leman go
neural: Higher-order graph neural networks. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 4602–4609, 2019.

Narayanan, A., Chandramohan, M., Venkatesan, R., Chen,
L., Liu, Y., and Jaiswal, S. graph2vec: Learning
distributed representations of graphs. arXiv preprint
arXiv:1707.05005, 2017.

Neumann, M., Garnett, R., Bauckhage, C., and Kersting,
K. Propagation kernels: efficient graph kernels from
propagated information. Machine Learning, 102(2):209–
245, 2016.

Newman, M. E. The structure and function of complex
networks. SIAM review, 45(2):167–256, 2003.

Niepert, M., Ahmed, M., and Kutzkov, K. Learning con-
volutional neural networks for graphs. In International
conference on machine learning, pp. 2014–2023, 2016.

Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K.,
and Borgwardt, K. Efficient graphlet kernels for large
graph comparison. In Artificial Intelligence and Statistics,
pp. 488–495, 2009.

Shervashidze, N., Schweitzer, P., Leeuwen, E. J. v.,
Mehlhorn, K., and Borgwardt, K. M. Weisfeiler-lehman
graph kernels. Journal of Machine Learning Research,
12(Sep):2539–2561, 2011.

Simonovsky, M. and Komodakis, N. Dynamic edge-
conditioned filters in convolutional neural networks on
graphs. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 3693–3702,
2017.

Sun, F.-Y., Hoffman, J., Verma, V., and Tang, J. Infograph:
Unsupervised and semi-supervised graph-level represen-
tation learning via mutual information maximization. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=r1lfF2NYvH.

http://papers.nips.cc/paper/8488-provably-powerful-graph-networks.pdf
http://papers.nips.cc/paper/8488-provably-powerful-graph-networks.pdf
http://papers.nips.cc/paper/8488-provably-powerful-graph-networks.pdf
https://openreview.net/forum?id=r1lfF2NYvH
https://openreview.net/forum?id=r1lfF2NYvH

Hierarchically Attentive Graph Pooling with Subgraph Attention

van der Maaten, L. and Hinton, G. Visualizing data us-
ing t-SNE. Journal of Machine Learning Research, 9:
2579–2605, 2008. URL http://www.jmlr.org/
papers/v9/vandermaaten08a.html.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. In
International Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=rJXMpikCZ.

Vishwanathan, S. V. N., Schraudolph, N. N., Kondor, R.,
and Borgwardt, K. M. Graph kernels. Journal of Machine
Learning Research, 11(Apr):1201–1242, 2010.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In International Conference
on Learning Representations, 2019. URL https://
openreview.net/forum?id=ryGs6iA5Km.

Yanardag, P. and Vishwanathan, S. Deep graph kernels.
In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pp. 1365–1374. ACM, 2015.

Yang, Y., Wang, X., Song, M., Yuan, J., and Tao, D. Spagan:
shortest path graph attention network. In Proceedings
of the 28th International Joint Conference on Artificial
Intelligence, pp. 4099–4105. AAAI Press, 2019.

Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., and
Leskovec, J. Hierarchical graph representation learning
with differentiable pooling. In Advances in Neural Infor-
mation Processing Systems, pp. 4800–4810, 2018.

Zhang, M., Cui, Z., Neumann, M., and Chen, Y. An end-to-
end deep learning architecture for graph classification. In
Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

A. Insights from a Synthetic Experiment
Subgraph attention is a key component of SubGattPool.
Here, we validate the learned attention values on different
subgraphs by conducting an experiment on a small synthetic
dataset containing 50 graphs, and each graph having 8 nodes.
Each graph has 2 balanced communities and exactly for
50% of the graphs, one community consists of a clique of
size 4. We label a graph with +1 if the clique of size 4
is present, otherwise the label is -1. We run SubGattPool
on this synthetic dataset, with K = 16, T = 4, L = 12

Dataset #Graphs #Max Nodes #Labels #Attributes

MUTAG 188 28 2 NA
PTC 344 64 2 NA

PROTEINS 1113 620 2 1
NCI1 4110 111 2 NA

NCI109 4127 111 2 NA
IMDB-BINARY 1000 136 2 NA
IMDB-MULTI 1500 89 3 NA

Table 2. Summary of the datasets used in our experiments, further
details can be found at (https://bit.ly/39T079X)

#SubGatt layers=1, γ = 0.75 and R = 3. Once the training
is complete, we randomly select a graph and a node in it and
plot the attention values of all the subgraphs selected in the
last epoch for that node, in Figure 3. Clearly, the attention
value corresponding to the clique is much higher than that to
the other subgraphs. Hence, our algorithm is able to identify
and pay more importance to the structure which determines
the label of the graph.

(a) Sample Graph (b) Normalized Attention Values

Figure 3. Attention values of different subgraphs selected for the
node 7 of the Graph in (a). Clearly, attention to the clique of size 4
is more than all the other subgraphs.

B. Model Ablation Study and Sensitivity
Analysis

SubGattPool has mainly two novel components. They are
the SubGatt layer, and the intra-level and inter-level atten-
tion layers.Figure 4 shows the graph visualization using
t-SNE (van der Maaten & Hinton, 2008) on MUTAG. We
choose DIFFPOOL as the base model because it is also a
hierarchical graph representation technique. Fig. 4(b) and
4(c) explain the incremental improvement by only intra and
inter level attentions, and SubGatt layer respectively. Fi-
nally, Fig. 4(d) shows the performance by SubGattPool,
which combines all these components into a single network.
We also conduct sensitivity analysis of SubGattPool w.r.t.
all the important hyperparameters, as explained in Figure
5. It turns out that SubGattPool is reasonably stable with
respect to them.

http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://bit.ly/39T079X

Hierarchically Attentive Graph Pooling with Subgraph Attention

(a) DIFFPOOL (b) SubGattPool \SubGatt (c) SubGattPool \I-I-L-A (d) SubGattPool

Figure 4. t-SNE visualization of the graphs from MUTAG (different colors show different labels of the graphs) by the representations
generated by: (a) DIFFPOOL; (b) SubGattPool, but the SubGatt embedding and pooling layers being replaced by GIN; (c) SubGattPool
without intra and inter layer attention; (d) the complete SubGattPool network. Compared to (a), there are improvement of performances
for both the SubGatt layer and intra/inter-level attention individually. Finally different classes are separated most by SubGattPool which
again shows the merit of the proposed algorithm.

(a) (b) (c) (d)

Figure 5. Sensitivity analysis of SubGattPool for graph classification on MUTAG with respect to different hyper-parameters: (a) Maximum
subgraph size, (b) Number of subgraphs sampled per epoch for each node, (c) Embedding dimension and (d) Number of SubGatt layers in
SubGattPool.

