
HNHN: Hypergraph Networks with Hyperedge Neurons

Yihe Dong 1 Will Sawin 2 Yoshua Bengio 3

Abstract
Hypergraphs provide a natural representation
for many real world datasets. We propose a
novel framework, HNHN, for hypergraph rep-
resentation learning. HNHN is a hypergraph
convolution network with nonlinear activation
functions applied to both hypernodes and hyper-
edges, combined with a normalization scheme
that can flexibly adjust the importance of high-
cardinality hyperedges and high-degree vertices
depending on the dataset. We demonstrate im-
proved performance of HNHN in both classifica-
tion accuracy and speed on real world datasets
when compared to state of the art methods. Our
code is available at https://github.com/
twistedcubic/HNHN.

1. Introduction
Much real world data can be represented as graphs, as data
come in the form of objects and relations between the ob-
jects. In many cases, a relation can connect more than two
objects. A hypergraph can naturally represent such struc-
tures. Our goal is to learn representations of such structured
data with a novel hypergraph convolution algorithm. First
let’s recall the vanilla graph neural network (GNN): fix a
graph G with n vertices, and let A ∈ Rn×n be its adjacency
matrix. Choosing a suitable d, we define node representa-
tions X ∈ Rn×d, as well as weights W ∈ Rd×d and bias
b ∈ Rd, and a nonlinear activation function σ. In each
layer of the GNN, the node representations are updated as:
X ′ = σ(AXW + b).

Some prior research has generalized this to hypergraphs by
defining an appropriate hypergraph analogue of the adja-
cency matrix A (Feng et al., 2018; Bai et al., 2019). For
vertices i and j, the entry Aij can be defined as a sum over
hyperedges containing both i and j of a weight function,
that may depend on the number of vertices in the hyperedge.
However, these approaches do not fully utilize the hyper-
graph structure. In fact, the matrix A defined this way can
be seen to equal the adjacency matrix of the graph obtained

1Microsoft 2Department of Mathematics, Columbia University
3Mila, Université de Montréal.

by replacing each hyperedge with a (weighted) clique. Thus,
the hypergraph algorithm will have no better accuracy on a
given task than the corresponding graph algorithm, applied
to this graph built from cliques.

Hyperedge nonlinearity. To solve this problem, we treat
hyperedges as objects worthy of study in their own right.
We therefore train a network with one representation XV

for hypernodes and another representation XE for hyper-
edges. We can then use the hypernode-hyperedge incidence
matrix for the convolution step. A nonlinear function σ then
acts on both hypernodes and hyperedges. By making this
change, we allow the network to learn nonlinear behavior
of individual hyperedges, which plausibly exists in many
real-world data sets. For instance, the probability that one
author of a paper with unknown research interests works in
a particular research area might be a nonlinear function of
the number of other authors of the paper that work in that
research area.

Normalization. In addition, we take a different, more flexi-
ble approach to normalization. Normalization ensures nu-
merical stability during training. Different options exist
for normalization, depending on how we weight the dif-
ferent vertices (as a function of their degrees). We allow
these choices to depend on hyperparameters that are opti-
mized for a given data set. Indeed, there is little reason
to suspect that the most mathematically elegant normaliza-
tion formula, for instance using the symmetric normalized
Laplacian, D−1/2LD−1/2, necessarily gives the best accu-
racy for prediction tasks. Instead, normalization represents
a choice of how to weight vertices of large degree compared
to vertices of smaller degree, and is dataset-dependent.

2. Model architecture and analysis
First some notation: we define a hypergraphH to consist of
a set V of hypernodes and set E of hyperedges, where each
hyperedge is itself a set of hypernodes. Let n = |V | and
m = |E|. Indexing the hypernodes as vi for i ∈ {1, ..., n},
and the hyperedges as vj for j ∈ {1, ...,m}, we define the
incidence matrix A ∈ Rn×m by Aij = 1 if vi ∈ ej and
Aij = 0 if vi /∈ ej .

We then update the hypernode representations XV ∈ Rn×d
and hyperedge representations XE ∈ Rm×d by a con-

https://github.com/twistedcubic/HNHN
https://github.com/twistedcubic/HNHN

HNHN : Hypergraph Network with Hyperedge Neurons (Page 2)

volution using the incidence matrix A. Thus, our up-
date rule is given by the formulas X ′E = σ(ATXVWE +
bE) and X ′V = σ(AX ′EWV + bV), where σ is a nonlinear
activation function, WV ,WE ∈ Rd×d are weight matrices,
and bV , bE ∈ RD are bias matrices.

We use Ni throughout to denote the edge neighborhood of
vi, i.e. the set of j with vi ∈ ej . Similarly, Nj denotes the
vertex neighborhood of ej , i.e. the set of i with vi ∈ ej .

2.1. Relationship with clique and star expansions

In this subsection, we discuss how HNHN hypergraph con-
volution relates to graph convolution. To apply graph con-
volution to hypergraph problems, we must build a graph G
from our hypergraph H . There are two main approaches to
this in the literature.

The first, the clique expansion (Sun et al., 2008; Zhou et al.,
2007; Tu et al., 2018; Muhan Zhang & Chen, 2018) pro-
duces a graph whose vertex set is V by replacing each
hyperedge e = {v1, . . . , vk} with a clique on the vertices
{v1, . . . , vk}. A slight variant of this produces a weighted
graph where the weight of each edge in the clique is equal to
some fixed function of k. We will consider another variant
Gc, where we replace each hyperedge with a clique plus an
edge from each vertex v1, . . . , vk to itself.

The second, the star expansion or bipartite graph model
(Zien et al., 1999), produces a graph G∗ whose vertex set
is V ∪ E, with an edge between a hypernode v and a hy-
peredge e if v ∈ e, and with no edges between hypernodes
and hypernodes or hyperedges and hyperedges, making the
graph bipartite. (For e = {v1, . . . , vk} a hyperedge, the
subset {e, v1, . . . , vk} is a star graph, explaining the name.)

We briefly summarize the relationships between our method
and graph convolution on these two graphs:

• If we use the same weights for hypernodes and hyper-
edges, setting WE = WV and bE = bV , then HNHN
is equivalent to graph convolution on the star expansion
G∗.

• If we apply the nonlinear activation function σ only
to hypernodes, and not to hyperedges, then HNHN is
equivalent to graph convolution on the clique expan-
sion Gc.

These claims will be formally justified in the weight simpli-
fication section and Lemma 2.1.

Note here that if we remove both the nonlinear activation
function and the weight matrix, so we consider only the
linear action of the adjacency matrix, then graph convolution
on Gc and G∗ are equivalent to each other, because the
spectra of the adjacency matrices of Gc and G∗ are related

Figure 1. The Fano plane, and a copy with the nodes 3 and 6 per-
muted. The six straight lines and the circle represent hyperedges.
When given the hypernode label numbers, or other equivalent
information, as input features, approaches based on the clique
expansion will not be able to distinguish these two hypergraphs,
while HNHN and other approaches can.

by a simple operation (explained after Lemma 2.1).

We now explain the advantages of our method over graph
convolution on both the clique and star expansion.

Comparison with clique expansion. The clique expansion
is a problematic approach to studying any hypergraph
problem because it entails a loss of information - i.e. there
can be two distinct hypergraphs on the same vertex set
with the same clique expansion. An example is provided
by the Fano plane, which is the hypergraph F with
vertex set {1, 2, 3, 4, 5, 6, 7} and the seven hyperedges
{{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7}, {3, 4, 7},
{3, 5, 6}}. Because each pair of distinct vertices lies in
exactly one hyperedge, the clique expansion of F is the
complete graph K7 on seven vertices.

If we permute the seven hypernodes of F by an arbitrary
permutation in S7, changing the hyperedges appropriately,
we will obtain another hypergraph whose clique expansion
is again K7 for the same reason. However, it will usually
not be the same hypergraph. In fact, by the orbit-stabilizer
theorem we can obtain 7!

168 = 30 different hypergraphs this
way, where 168 is the number of permutations that stabilize
F .

Hence graph convolution on the clique expansion will not
be able to solve problems on F whose answers change
when the hypernode labels are permuted. More generally,
examples of this kind can be produced of hypergraphs on
q2 + q + 1 hypernodes for any prime power q, using finite
projective planes.

Comparison with star expansion. The star expansion does
not lose information in this way. However, it treats hypern-
odes and hyperedges the same. Because, in many datasets,
hypernodes and hyperedges describe completely different
objects, it is reasonable to give them different weight ma-
trices, and we expect the additional expressive power to
improve accuracy.

(Agarwal et al., 2006) showed that clique expansion and star
expansion are equivalent in a certain sense, and has been

HNHN : Hypergraph Network with Hyperedge Neurons (Page 3)

cited to claim that they are equivalent in general. However,
(Agarwal et al., 2006) worked in a linear setting, considering
just the action of the adjacency matrix. In a neural network
setting, when a nonlinear activation function σ is included,
their proof does not apply.

Weight simplification. We now explain how removing the
distinction between WV and WE reduces HNHN to graph
convolution on G∗.

For this purpose, let B ∈ R(n+m)×(n+m) be the adjacency

matrix of G∗. Then B =

(
0 A
AT 0

)
. If we set WE =

WV =W and bE = bV = b in the update rule, we have for
all i:

Xi+1
E = σ(ATXi

VW + b) and Xi+1
V = σ(AXi+1

E W + b)

and for all i we define X2i to be the concatenation of Xi
V

with the m× d matrix of zeroes, and X2i+1 to be the con-
catenation of the n×d matrix of zeroes with Xi+1

E , then for
all i we have Xi+1 = σ(BXiW + b), because the matrix
B sends the E coordinates to the V coordinates and vice
versa.

Linear simplification. LetC be the adjacency matrix ofGc.
The following lemma shows that convolution on convolution
on H , with the nonlinear activation function σ applied only
to hypernodes, is equivalent to convolution on Gc. All
proofs are in the supplement.

Lemma 2.1. If we define

X ′E = ATXVWE+bE and X ′V = σ(AX ′EWV+bV)

then X ′V = σ(CXVWc + bc), where Wc ∈ Rd×d, and
bc ∈ Rd.

A key step in the proof is the following lemma, which relates
the adjacency matrix C of Gc to the incidence matrix A.

Lemma 2.2. We have C = AAT .

Relationship between clique and star expansions. It is a
classical result that the eigenvalues of B are equal to the
set of square roots of eigenvalues of AAT = C together
with m− n additional zeroes (see e.g. (Bhattacharya et al.,
2008)). Thus, the spectral theory of G∗ is no more complex
or simpler than the spectral theory of Gc.

Additional connections to prior work. Both HGNN
(Feng et al., 2018) and the method of HCHA (Bai et al.,
2019) (when the optional attention module is not used) are
mathematically equivalent to ordinary graph convolution on
the clique expansion. As shown above with the Fano plane,
these approaches don’t utilize all structural information in
the hypergraph.

HyperGCN (Yadati et al., 2019) relies on replacing a hyper-
graph with a graph, but in a more subtle way than a clique

expansion. Rather than replacing a hyperedge {v1, . . . , vk}
by a clique, i.e., an edge between every pair of vertices, they
pick two special vertices from {v1, . . . , vk}, called “medi-
ators”, and keep only the edges connecting to at least one
of the two mediators (Chan & Liang, 2020). This also does
not always retain the full information from the hypergraph
structure. In fact, in the case where every hyperedge con-
tains at most three hypernodes, HyperGCN is equivalent
to the clique expansion, because every edge in the clique
touches at least one mediator.

Another hypergraph learning method, Hyper-SAGNN
(Zhang et al., 2019), uses a very different architecture.
Rather than studying the global graph structure, Hyper-
SAGNN focuses on a fixed set of vertices to predict whether
they are connected by a hyperedge, treating them symmetri-
cally when doing so.

On the other hand, some prior graph convolution works have
taken a similar approach to HNHN by placing neurons on
each hyperedge. These include (Kearnes et al., 2016), and,
building on their work, (Gilmer et al., 2017). Unlike HNHN,
these works restrict to the case of graphs, and they do not
use our normalization scheme, discussed below.

2.2. Hypergraph normalization

One common message passing scheme is to normalize
the messages by the cardinality of the neighborhood af-
ter message pooling. In the case of passing messages
from hyperedges to hypernodes, this can be expressed as
X ′V = σ(D−1V AX ′EWV + bV), where DV ∈ Rn×n is the
diagonal matrix where the ith diagonal entry (DV)ii is |Ni|.
This ensures, for unbounded activation functions σ like
ReLU, that the representation vector does not grow rapidly
from one layer to the next when vi has large degree, and,
for bounded activation functions σ, that the input of σ is not
too large. We could also multiply on the left and right by
D
−1/2
V , which would be equivalent for activation functions

like ReLU that commute with multiplication by a positive
real number.

However, the contribution of each hyperedge is given the
same weight, regardless of its degree. We consider a gener-
alization where, before summing over hyperedges incident
to a given hypernode, we weight the contribution of each
hyperedge by a power of its degree, depending on a real
parameter α:

X ′V = σ(D−1V,l,αADE,r,αX
′
EWV + bV)

where DE,r,α ∈ Rm×m and DV,l,α ∈ Rn×n are the diago-
nal matrices with diagonal terms: (DE,r,α)jj = |Nj |α, and
(DV,l,α)ii =

∑
j∈Ni

|Nj |α. If α = 0, then DE,r,α is the
identity matrix and DV,l,α = Dv, so this generalizes the
normalization above.

HNHN : Hypergraph Network with Hyperedge Neurons (Page 4)

Equivalently, to calculate the (i, t)th entry ofX ′V , the matrix
multiplication above gives the following formula:

(X ′V)it = σ

(∑
j∈Ni

|Nj |α
∑d
s=1(X

′
E)is(WV)st∑

j∈Ni
|Nj |α

+ (bV)t

)
Here the DE,r,α matrix produces the factor |Nj |α in each
term in the numerator. After including DE,r,α we choose
the DE,l,α matrix to produce the factor

∑
j∈Ni

|Nj |α in the
denominator, to normalize for the total size of the numerator.

When α > 0, the contributions of hyperedges with large
degrees are increased compared with the previous normal-
ization, while if α < 0, their contributions are decreased.
We treat α as a hyperparameter to be optimized for a given
data set. By fixing α = 0, as is equivalent to the normaliza-
tion in many prior works (Kipf & Welling, 2017; Bai et al.,
2019; Feng et al., 2018), we would be assuming that hyper-
edges of different sizes have equal importance, on average,
for learning the representation of vertices. Instead, we be-
lieve that on some datasets, hyperedges with a large number
of vertices are an ineffective guide to labels, compared to
hyperedges with a small number of vertices, while for other
datasets it may be the other way around. For instance, in
coauthorship graphs, papers with a large number of authors
may frequently reflect large collaborations between scien-
tists of different fields, and thus will not be as predictive
as papers with a smaller number of authors. By allowing
a varying hyperpameter α, we can choose a weighting for
hyperedges that is appropriate for a given dataset.

Analogously, we weight vertices in terms of their de-
grees according to hyperparameter β ∈ R: X ′E =
σ(D−1E,l,βADV,r,βXVWE + bE) where the diagonal ma-
trices DE,l,β and DV,r,β are given by: (DE,l,β)jj =∑
i∈Nj

|Ni|β , and (DV,r,β)ii = |Ni|β .

Implementation. As outlined in Algorithm 1 in the supple-
ment, the inputs of our algorithm are the incidence relations
between the hypernodes and hyperedges, the input feature
vectors of the hypernodes, and the target labels for a sub-
set of the hypernodes. From the hypergraph structure, we
extract neighborhood information to compute the normaliza-
tion factors as in §2.2, then each layer of HNHN hypergraph
convolution relays signals from the hypernodes to the hyper-
edges, with a nonlinearity and node-specific normalization,
then analogously from hyperedges to hypernodes. Finally
the loss is calculated using cross entropy between the pre-
dicted labels based on the learned node representations and
the given target labels. Dropout is added to any convolution
layer that’s not the last to mitigate overfitting (Srivastava
et al., 2014). ReLU (Glorot et al., 2011) is used as the
nonlinearity throughout.

Time complexity. For a hypergraph H with n hypernodes,
m hyperedges, average vertex degree δV , and hidden dimen-
sion d, the time complexity of HNHN is O(nδV d+ nd2 +

Accuracy
DBLP Cora CiteSeer PubMed

HyperGCN 71.3±1.2 55.0±.9 54.7±9.8 60.0±10.7
* Fast 70.5±14.3 45.2±12.9 56.1±11.2 54.4±10.0
HGNN 77.6±.4 58.2±.3 61.1±2.2 63.3±2.2
HNHN 85.1±.2 63.9±.8 64.8±1.6 75.9±1.5

Timing
HyperGCN 563.4±27.8 183.4±2.7 15.6±.2 171.1±2.8

* Fast 11.5±.1 2.9±.1 1.1±0. 2.5±.1
HGNN 802.9±59.2 298.4±12.2 30.5±.8 270.1±10.5
HNHN 44.2±1.3 13.6±5.4 1.3±.1 26.6±.4

Table 1. Hypernode classification accuracy and timing results. Ac-
curacies are in %, timings are measured in seconds. * Fast stands
for HyperGCN Fast.

md2). For derivation please refer to the supplement. Thus,
HNHN is similar to the most computationally efficient exist-
ing hypergraph convolution algorithms, such as HyperGCN,
and is faster than hypergraph algorithms based on clique
expansions.

3. Experiments
Datasets. We evaluate the quality of HNHN hypergraph rep-
resentations on several commonly used benchmark datasets:
CiteSeer (Bhattacharya & Getoor, 2007) and PubMed (Na-
mata et al., 2012), both co-citation datasets, Cora (Liu &
Getoor, 2003; Sen et al., 2008) and DBLP (for Informatics),
both co-authorship datasets. Please see the appendix for
additional experiments, including studies on normalization.

Hypernode prediction. Given a hypergraph and node la-
bels on a small subset of hypernodes, this task is to pre-
dict labels on the remaining hypernodes. To train, cross-
entropy loss is calculated between the predicted and tar-
get labels. We use the Adam (Kingma & Ba, 2015) opti-
mizer with a learning rate scheduler that multiplicatively
reduces the learning rate at regular intervals. As shown
in Table 1, HNHN outperforms state of the art techniques
across datasets, while achieving competitive timing results.

Reducing feature dimensions. We experiment with node
prediction after reducing the input feature dimensions us-
ing latent semantic analysis (Deerwester et al., 1990). As
expected, this led to faster training, at the cost of slightly re-
duced accuracy. On Cora, after the input feature dimension
is reduced from 1000 to 300, the accuracies are 63.69±0.58,
56.63±0.33, and 42.4±1.58, for HNHN , HGNN, and Hy-
perGCN, respectively, with corresponding training times,
10.84±0.14, 152.34±1.14, and 182.56±2.38 seconds. This
is a drop of 0.17, 1.52, and 12.6 points in accuracy, re-
spectively, while the running time is 79.5%, 51.1%, and
98.8% that of the non-reduced case. The accuracy advan-
tage of HNHN over state of the art methods is preserved in
this setting, showing it is also suitable when computational
resources are limited.

HNHN : Hypergraph Network with Hyperedge Neurons (Page 5)

References
Agarwal, S., Branson, K., and Belongie, S. Higher order

learning with graphs. In Proceedings of the 23rd Inter-
national Conference on Machine Learning, pp. 17–24,
2006.

Bai, S., Zhang, F., and Torr, P. H. Hypergraph convolution
and hypergraph attention. arXiv:1902.09702, 2019.

Bhattacharya, A., Friedland, S., and Peled, U. N. On the first
eigenvalue of bipartite graphs. The Electronic Journal of
Combinatorics, 15, 2008.

Bhattacharya, I. and Getoor, L. Collective entity resolution
in relational data. TKDD, 2007.

Chan, T. H. H. and Liang, Z. Generalizing the hypergraph
Laplacian via a diffusion process with mediators. Theo-
retical Computer Science, 806:416–428, 2020.

Deerwester, S., Dumais, S. T., Furnas, G. W., Lan-
dauer, T. K., and Harshman, R. Indexing by
latent semantic analysis. Journal of the Ameri-
can Society for Information Science, 41(6):391–407,
1990. doi: 10.1002/(SICI)1097-4571(199009)41:6〈391::
AID-ASI1〉3.0.CO;2-9. CiteSeerX 10.1.1.108.8490.

Feng, Y., You, H., Zhang, Z., Ji, R., and Gao, Y. Hypergraph
neural networks. AAAI, 2018.

for Informatics, L. C. DBLP. https://dblp.uni-trier.de/.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In Proceedings of the 34th International Confer-
ence on Machine Learning - Volume 70, ICML’17, pp.
1263–1272. JMLR.org, 2017.

Glorot, X., Bordes, A., and Bengio, Y. Deep sparse rectifier
neural networks. AISTATS, 2011.

Group, U. S. R. L. Citeseer for document classification.
https://linqs.soe.ucsc.edu/data.

Kearnes, S., McCloskey, K., Berndl, M., Pande, V., and
Riley, P. Molecular graph convolutions: moving be-
yond fingerprints. Journal of Computer-Aided Molec-
ular Design, 30(8):595–608, 2016. doi: 10.1007/
s10822-016-9938-8. URL https://doi.org/10.
1007/s10822-016-9938-8.

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. In International Conference for Learning
Representations, 2015.

Kipf, T. and Welling, M. Semi-supervised classification
with graph convolutional networks. In International Con-
ference on Learning Representations, 2017.

Liu, Q. and Getoor, L. Link-based classification. In
ICML’03: Proceedings of the Twentieth International
Conference on International Conference on Machine,
2003.

Mccallum, A. Cora information extraction data.
https://people.cs.umass.edu/ mccallum/data.html.

Muhan Zhang, Zhicheng Cui, S. J. and Chen, Y. Beyond
link prediction: Predicting hyperlinks in adjacency space.
In Proceedings of the Thirty-Second Conference on As-
sociation for the Advancement of Artificial Intelligence,
2018.

Namata, G., London, B., Getoor, L., and Huang, B. Query-
driven active surveying for collective classification. In
Proceedings of the Workshop on Mining and Learning
with Graphs, 2012.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. AI magazine, 29(3), 2008.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Sun, L., Ji, S., and Ye, J. Hypergraph spectral learning for
multi-label classification. In ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pp. 668–676, 2008.

Tu, K., Cui, P., Wang, X., Wang, F., and Zhu, W. Struc-
tural deep embedding for hypernetworks. In Proceedings
of the Thirty-Second Conference on Association for the
Advancement of Artificial Intelligence, 2018.

Xu, Q., Jeon, H., and Annavaram, M. Graph processing on
GPUs: where are the bottlenecks? IEEE International
Symposium on Workload Characterization, 2018.

Yadati, N., Nimishakavi, M., Yadav, P., Nitin, V., Louis,
A., and Talukdar, P. Hypergcn: A new method for train-
ing graph convolutional networks on hypergraphs. In
Advances in Neural Information Processing Systems, pp.
1509–1520. 2019.

Zhang, R., Zou, Y., and Ma, J. Hyper-SAGNN: a self-
attention based graph neural network for hypergraphs.
https://arxiv.org/abs/1911.02613, 2019.

Zhou, D., Huang, J., and Schölkopf, B. Learning with
hypergraphs: clustering, classification, and embedding.
In Advances in Neural Information Processing Systems,
pp. 1601–1608, 2007.

https://doi.org/10.1007/s10822-016-9938-8
https://doi.org/10.1007/s10822-016-9938-8

HNHN : Hypergraph Network with Hyperedge Neurons (Page 6)

Zien, J. Y., Schlag, M. D., and Chan, P. K. Multilevel
spectral hypergraph partitioning with arbitrary vertex
sizes. IEEE Transactions on computer-aided design of
integrated circuits and systems, 18(9):1389–1399, 1999.

HNHN : Hypergraph Network with Hyperedge Neurons (Page 7)

Appendix
We first provide proofs to lemmas 2.1 and 2.2, followed by an algorithm outline for HNHN and further analysis such as time
complexity, finally we give additional details on dataset processing and empirically study HNHN properties, such as effects
of the normalization parameters.

1. Proofs to lemmas
We prove the lemmas on the linear simplification of HNHN . Recall that C is the adjacency matrix of Gc.

Lemma 2.2. We have C = AAT .

Proof. By definition
(AAT)i1i2 =

∑
j

Ai1jAi2j =
∑
j

vi1∈ej
vi2∈ej

1

and Ci1i2 is the number of edges from vi1 to vI2 in Gc. Recall that Gc is the graph obtained from H by replacing each
hyperedge with a clique and a union of self-edges. The clique obtained from a hyperedge ej contains an edge from vi1 to
vi2 if and only if vi1 ∈ ej , vi2 ∈ ej , and vi1 6= vi2 , and the self-edges obtained from a hyperedge e contain an edge from
vi1 to vi2 if and only if vi1 = vi2 ∈ ej , so in total the number of edges from vi1 to vi2 of Gc is the number of hyperedges
containing both vi1 and vi2 .

Because each entry of C equals the corresponding entry of AAT , it follows that C = AAT .

With this, we can now prove:

Lemma 2.1. If we define
X ′E = ATXVWE + bE and X ′V = AX ′EWV + bV

then
X ′V = CXVWc + bc (1)

where Wc ∈ Rd×d, and bc ∈ Rd.

Proof. We have

X ′V = AX ′EWV + bV = A(ATXVWE + bE)WV + bV

= AATXVWEWV +AbEWV + bV .

Setting Wc =WEWV and bc = AbEWV + bV , and using C = AAT , we obtain (1).

2. Algorithm outline
Algorithm 1 gives an outline of the HNHN hypergraph convolution applied to hypernode classification. While Algorithm 1
is stated in terms of the incidence matrix A for clarity, HNHN convolution doesn’t require any explicit instantiation of A,
which has size O(mn). Even though the number of nonzero entries in A is usually much smaller and thus can be represented
as a sparse matrix, never instantiating A is more advantageous for training, as GPUs are much more adaptable for dense over
sparse operations (Xu et al., 2018). Our implementation uses efficient GPU operations that only uses indices of hyperedges
connected to a hypernode and of hypernodes connected a hyperedge, without ever instantiating the incidence matrix. This
contributes to the fast HNHN runtimes as reported in Table 1.

3. Time Complexity
For a hypergraph H with n hypernodes, m hyperedges, average vertex degree δV , and hidden dimension d, the time
complexity of HNHN is O(nδV d+ nd2 +md2). This complexity is because multiplying XV by AT or XE by A takes
time proportional to the number of nonzero entries of A, which is nδV , times d. Multiplying by WV takes O(nd2) while
multiplying byWE takes timeO(md2). Finally, applying σ to each entry takes timeO(nd+md) which is≤ O(nd2+md2).

HNHN : Hypergraph Network with Hyperedge Neurons (Page 8)

Algorithm 1 HNHN hypergraph convolution algorithm for node prediction
Input: Hypergraph incidence matrix A ∈ Zn×m, hypernode representations XV

Input: Set of target labels {y}k∈L
Compute: DE,l,α, DV,r,α, DV,l,α, and DE,r,α as in § 2.2
for i = 1 to n epochs do

Initialize XE ← 0̃. Project XV to hidden dimension
for j = 1 to n layers do

Normalize hypernodes: X̃V = D−1E,l,βADV,r,βXV

Update hyperedges: XE = σ(X̃VWE,j + bE,j)

Normalize hyperedges: X̃E = D−1V,l,αADE,r,αXE

Update hypernodes: XV = σ(X̃EWV,j + bV,j)
end for
Compute cross-entropy loss between {y}k∈L and predictions using {XV }k∈L
Backpropagate on loss and optimize parameters e.g. {WE}j , {WV }j {bE}j , {bV }j

end for
Return: Learned representations XV , XE for prediction tasks

Thus, HNHN is similar to the most computationally efficient existing hypergraph convolution algorithms, such as HyperGCN.
HyperGCN replaces each hyperedge ej with 2|Nj | − 3 = O(|Nj |) edges, thus replacing H with a graph that has
O(mδE) = O(nδV) edges, where δE is the average hyperedge degree of H . Applying graph convolution on this graph then
takes time proportional to the number of edges, which is again O(nδV).

HNHN is faster than hypergraph algorithms based on clique expansion, which require replacing a hyperedge ej with
|Nj |(|Nj |−1)

2 = O(|Nj |2) edges, for a total of O(mδ2E) = O(nδV δE) edges, producing a graph on which graph convolution
takes time O(nδV δEd).

Table 1 describes the timing results for training node classification. Consistent with the above analysis, algorithms that
expand each hyperedge into a linear number of edges perform faster than clique expansion-based algorithms.

4. Dataset processing
We give further details on the datasets used and the data processing pipeline. Co-authorship data consist of a collection
of papers with their authors. To create a hypergraph, each paper becomes a hypernode and each author a hyperedge. The
hypernodes v1, ..., vk are connected to a hyperedge e if the papers corresponding to v1, ..., vk are written by the author
corresponding to e. Co-citation data consists of a collection of papers and their citation links. To create a hypergraph, each
hypernode represents a paper, the hypernodes v1, ..., vk are connected to the hyperedge e if the papers corresponding to
v1, ..., vk are cited by e.

To create the initial hypernode representation vectors XV , TFIDF representations are created based on contents in the paper.
The vocabulary used for the TFIDF vectors consist of the most common words in each dataset. CiteSeer and PubMed data
were obtained from (Group), DBLP was processed according to (Yadati et al., 2019), and Cora was parsed and processed
from the source (Mccallum). Nodes not connected to any hyperedge, as well as hyperedges containing only one hypernode,
were removed.

5. Additional experiments
Implementation details. Hyperparameters α and β are determined by 5-fold cross-validation on the training set. We tune
hyperparameters such as the number of layers and dropout rate. In practice, at most two convolution layers are needed to
achieve the reported accuracies. Experiments are done on a 24-core 2.6 GHz-CPU machine with a Nvidia P40 GPU. As
shown in Table 1, HNHN outperforms state of the art techniques across datasets, while achieving competitive timing results.

HNHN : Hypergraph Network with Hyperedge Neurons (Page 9)

Figure 2. Node classification accuracy on CiteSeer as a function of the normalization parameter α while fixing β = 0 (left) and β while
fixing α = 0 (right). This shows normalization has tangible effects on accuracy, and that the commonly used normalization corresponding
to α = β = 0 is not always optimal.

5.1. Effects of normalization parameters

As discussed in §2.2, the normalization parameter α controls how much weight difference exists between hyperedges of
different cardinalities. When α > 0, larger-sized hyperedges are given greater weight; when α < 0, smaller hyperedges are
weighted more. Analogously for β on weights of hypernodes. Figure 2 demonstrates the effects of α and β on CiteSeer
node prediction accuracy, showing that the commonly used normalization corresponding to the special case α = β = 0 is
not necessarily optimal for node prediction. We note that the effects of β on the accuracy shown in Figure 2 are greater than
the effects of α. This is likely because the vertex degrees (which we raise to the power β) vary more than the edge degrees
(which we raise to the power α). Indeed, the vertex degrees on this dataset have a standard deviation of 3.08, compared to
an average degree of 2.07, for a ratio of 1.49, while the edge degrees have a standard deviation of 1.67 with an average
degree of 2.8, for a ratio of only 0.60.

5.2. Edge representations learning

Compared to approaches that rely on hyperedge expansions, HNHN has the advantage in that it produces one dedicated
vector representation per hyperedge. This differs from prior works that expand out a hyperedge into multiple nodes or select
a representative subset of hypernodes for each hyperedge (Feng et al., 2018; Yadati et al., 2019). Hence HNHN learned
representations can be easily adapted for downstream edge-related tasks such as edge prediction. Indeed, on the co-citation
dataset CiteSeer where both hypernodes and hyperedges represent papers, when given 15% of hyperedge labels (and no
hypernode labels), the hyperedge classification accuracy is 62.79±1.43. This is comparable with the 64.76±1.63 hypernode
prediction accuracy (when only 15% of the hypernodes are labeled), reflecting the hyperedge-hypernode symmetry in
HNHN.

