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Abstract

Biomolecular graph analysis has recently gained
much attention in the emerging field of geomet-
ric deep learning. Here we focus on organiz-
ing biomolecular graphs in ways that expose
meaningful relations and variations between them.
We propose a geometric scattering autoencoder
(GSAE) network for learning such graph embed-
dings. Our embedding network first extracts rich
graph features using the recently proposed geo-
metric scattering transform. Then, it leverages
a semi-supervised variational autoencoder to ex-
tract a low-dimensional embedding that retains
the information in these features that enable pre-
diction of molecular properties as well as char-
acterize graphs. We show that GSAE organizes
RNA graphs both by structure and energy, accu-
rately reflecting bistable RNA structures. Also,
the model is generative and can sample new fold-
ing trajectories.

1. Introduction
While RNA is sometimes thought of as a linear sequence of
bases, non-coding RNA especially can fold into 3D struc-
ture that has functionality (Ganser et al., 2019). Each RNA
sequence has the propensity of folding into many different
structures transiently, but fewer structures stably. In gen-
eral, it helps explore the functionality of RNA structures if
we can embed them in ways that uncover features of their
folding landscape, and smoothly reflect their transitions.
This motivates the examination of graph embeddings gen-
erated by neural networks to see if they can organize RNA
graphs into coherent landscapes or folding manifolds. Using
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such embeddings, biologists could, for example, assess the
likelihood that the RNA could switch from one structure
to another to change functionality, i.e., whether it is a ri-
boswitch – a question that is difficult to answer normally
(Schroeder, 2018).

Our embedding procedure based on three goals: •Obtaining
faithful embeddings where neighbors are close in both in
terms of graph structure and in terms of molecular prop-
erties. • Enabling visual exploration and interpretation of
biomolecular structures using the embedding space. • Gen-
erating trajectories of folds and decode them into molecular
folds. We define these desiderata more formally in Section
3.

Here, we propose a new framework for organizing biomolec-
ular structures called geometric scattering autoencoder
(GSAE). First, GSAE encodes molecular graphs based on
scattering coefficients (Gao et al., 2019; Gama et al., 2019a)
of dirac signals placed on their nodes. Next, it uses an
autoencoder architecture to further refine and organize the
scattering coefficients into a reduced and meaningful embed-
ding based on both a reconstruction penalty and auxiliary
penalties to predict molecular properties. Finally, to gen-
erate graphs we train a scattering inversion network (SIN)
that takes scattering coefficients as inputs and generates
adjacency matrices.

1.1. Contributions

In this work (1) we introduce graph scattering transforms
to an autoencoder framework in the form of GSAE, (2) we
demonstrate that GSAE can be used for the faithful embed-
ding and visualization spaces of RNA structures as well as
synthetic graphs, (3) we show that SIN allows for the gener-
ation of quasi-trajectories in the RNA folding domain. We
compare our results to several of the most prominent GNN-
based graph representation approaches including GAE (Kipf
and Welling, 2016a), GVAE (Kipf and Welling, 2016a), as
well as non-trainable methods like embeddings of the WL-
kernel computed on graphs (Shervashidze et al., 2011) or
embeddings of graph edit distance matrices on toy and RNA
datasets.
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2. Background
The geometric scattering transform (Gao et al., 2019; Gama
et al., 2019b) is based on a cascade of graph wavelets, typi-
cally constructed via diffusion wavelets (Coifman and Mag-
gioni, 2006). These are constructed using a lazy random
walk diffusion operator P = 1

2 (I + AD−1), where A is the
adjacency matrix of the analyzed graph and D is a diagonal
matrix of its vertex degrees. Then, P t, t > 0, contains t-
step diffusion transition probabilities between graph nodes.
These powers of P can also be interpreted as lowpass fil-
ters that average signals over multiscale diffusion neigh-
borhoods, where the size (or scale) of the neighborhood is
determined by t. Therefore, given a graph signal f , the fil-
tered signal Ptf only retains intrinsic low frequencies over
the graph. Similarly, I − P t, t > 0, form a highpass filters
whose scales is determined by t. The diffusion wavelets
transform (Coifman and Maggioni, 2006) combines these
lowpass and highpass filters to form bandpass filters of the
form Ψj = P2j−1−P2j = P2j−1

(I−P2j−1

), with dyadic
scales 2j , j = 1, . . . , J where J defines the widest scales
considered (corresponding to 2J random walk steps). The
resulting wavelet transform then yields wavelet coefficients
Wf = {Ptf, Ψjf}log2 t

j=1 that decompose f into a fam-
ily of signals that capture complementary aspects of f at
different scales (i.e., intrinsic frequency bands on the graph).

While the wavelet coefficients Wf give a complete and in-
vertible representation of f , the representation provided by
Ψjf is not guaranteed to provide stability or invariance to
local deformations of the graph structure. To obtain such rep-
resentation, Gao et al. (2019) propose to follow the same ap-
proach as in expected scattering of traditional signals (Mal-
lat, 2012; Bruna and Mallat, 2013) to aggregate wavelet
coefficients by taking statistical moments after applying
nonlinearity in form of absolute value. Their first-order scat-
tering features are S1f = [‖ |Ψjf | ‖q]1≤j≤J,1≤q≤Q, which
capture the statistics of signal variations over the graph.
They are complimented on one hand by zeroth-order scat-
tering, consisting of statistical moments of f itself (without
filtering), and on the other hand with higher order scattering
coefficients that capture richer variations eliminated by the
aggregation in the above equation. In general, mth order
scattering features are computed by a cascade of m wavelet
transforms and absolute-value nonlinearities, creating a de-
signed (i.e., non-learned) multiscale graph neural network:
Sm[j1, . . . , jm, q]f = ‖ |Ψjm | · · · |Ψj1f | · · · || ‖, with fea-
tures indexed by moment q and scales j1, . . . , jm. Due to
the multiresolution nature of these features, they provide a
rich and stable description of f (see Gao et al., 2019; Perl-
mutter et al., 2019; Gama et al., 2019a;b, for more details).

3. Problem setup
Given a set of graphs G = {G1, G2, . . . , Gn}, we aim
to find an embedding ZG = {z1, z2, . . . , zn} in Eu-
clidean space, i.e., where each graph Gi is mapped to a
d-dimensional vector zi ∈ Rd, where the embedding sat-
isfies the following properties, which we will validate em-
pirically for our proposed construction: 1. Faithfulness:
the embedding should be faithful to the graphs in G in
the sense that graphs that are near each other in terms of
graph edit distance should be close to each other in the
embedding space, and vice versa. Formally we aim for
‖zi − zj‖ < ε, for some small ε, to be (empirically) equiv-
alent to ged(Gi, Gj) < ν for some small ν where ged
is graph edit distance. 2. Smoothness: the embedding
should be smooth in terms of a real valued meta-property
M = {m1,m2, . . . ,mn}, where mi ∈ Rn, which is only
given on the training data. 3. Invertibility: it should be
possible to generate new graphs by interpolating points
in the embedded space and then inverting them to obtain
interpolated graphs between training ones. Formally, for
any two points zx, zy in the embedding space, we expect
z = (zx + zy)/2 to match the embedding of a valid graph,
with properties specified in the previous criteria, and with a
constructive way to (approximately) reconstruct this graph.

To explain the second criterion, given an affinity ma-
trix of vectors in ZG , denoted AZG , where AG(i, j) =
similarity(zi, zj), we define a Laplacian matrix of this
embedding as L = D − AG where D is a diagonal matrix
whose entry D(i, i) =

∑
j A(i, j), we want the dirichlet

energy MTLM to be small. However, the difficulty in bi-
ological graphs is that M is an emergent property that can
be difficult to compute from the graph. In principle, this
smoothness could be enforced for multiple meta properties.

4. Geometric Scattering Autoencoder
To derive an embedding that has the properties described in
the previous section, we propose a novel framework based
on the untrained geometric scattering, a trained autoencoder,
and a scattering inversion network, as shown in Figure 1.

The first step in our construction is to extract scattering fea-
tures from an input graph, thus allowing us to further process
the data in a Euclidean feature space. Since the biomolecule
graphs considered in this work do not naturally provide us
with graph signals, we have to define characteristic signals
that will reveal the intrinsic graph structure. However, since
we mostly focus here on RNA folding applications, we as-
sume there is node correspondence between graphs, and
thus we can produce a set of diracs di = {0, . . . , 1, . . . , 0}
that provide one-hot encoding of each node vi in the graph
(i.e., di[j] = 1 iff i = j; zero otherwise).

Next, we map an input graph to a Euclidean feature space
given by the scattering features of these dirac signals over
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Figure 1. A. GSAE, B. Inverse transform transform network. C.
Scattering Transform network (S)

the graph. For each dirac signal di, we take the zeroth, first
and second order scattering and concatenate them across
orders. Then, we concatenate the scattering coefficients
of all the dirac signals over the graph to obtain its en-
tire scattering feature vector. Formally, let Π denote the
concatenation operator, then this feature vector is given
by S(G) = Πn

i=1Π2
m=0S

(G)
m di is constructed using graph

wavelets from a lazy random walk over the graph G, where
the superscript indicates the scattering operation.

The scattering representation provided by S(G) encodes the
graph geometry in a Euclidean feature space that is high di-
mensional and often highly redundant. Indeed, as shown in
(Gao et al., 2019), it is often possible to reduce significantly
the dimensionality of scattering representations while still
maintaining the relations between graphs encoded by them.
Therefore, the next step in our embedding construction is to
apply an autoencoder to the scattering features in S(G). For-
mally, we train an encoder E(·) and decoder D(·) such that
Ŝ(G) = D(E(G)) will approximately reconstruct S(G) via
a MSE penalty ‖S(G)−Ŝ(G)‖2. However, as mentioned in
Sec. 3, in addition to the unsupervised information captured
and provided by S(G), we also aim for our embedding to
follow physical properties of the biomolecules represented
by the graphs. These are encoded by meta properties avail-
able at the graph level, denoted here by m(G). Therefore,
in addition to the reconstruction penalty, we also introduce
a supervised penalty in the loss for predicting m(G) via an
auxiliary network H(·) operating on the latent embedding.
Formally, this penalty is added to the autoencoder loss via a
term ‖m(G)−H(E(S(G)))‖2.

Finally, since we aim for our embedding to be approximately
invertible, we must also construct a transform that maps em-
bedded representations into viable graphs. We recall that
our data consists of graphs that all share the same nodes, and
therefore this construction is only required to infer an adja-

Table 1. Results show structural organization of the various em-
beddings on the two bistable datasets. Graph dirichlet energy with
respect to the graph edit distance from the two stable energy min-
ima are reported. Here ”+ H” refers to the addition of the energy
prediction auxilliary network H

SEQ3 SEQ4
Min 1 Min 2 Min1 Min 2

GED 0.442 ± 0.0003 0.517 ± 0.0002 0.045 ± 0.0003 0.058 ± 0.0003
Scat. Coeff. 0.0604 ± 0.0003 0.0732 ± 0.0002 0.066 ± 0.0002 0.0859 ± 0.0005
GAE 0.035 ± 0.001 0.045 ± 0.002 0.038 ± 0.001 0.053 ± 0.003
GAE + H 0.044 ± 0.006 0.06 ± 0.006 0.043 ± 0.003 0.062 ± 0.003
VGAE 0.425 ± 0.006 0.478 ± 0.008 0.443 ± 0.007 0.528 ± 0.008
VGAE + H 0.392 ± 0.005 0.46 ± 0.008 0.405 ± 0.006 0.469 ± 0.006
WL-Kernel 0.185 ± 0.0012 0.225 ± 0.001 0.2 ± 0.0016 0.263 ± 0.0016
GSAE - AE 0.069 ± 0.001 0.087 ± 0.002 0.069 ± 0.001 0.085 ± 0.002
GSAE (no H) 0.337 ± 0.021 0.381 ± 0.027 0.112 ± 0.004 0.038 ± 0.001
GSAE 0.346 ± 0.076 0.402 ± 0.074 0.103 ± 0.004 0.124 ± 0.005

cency matrix from embedded coordinates. The autoencoder
trained in the previous step naturally provides a decoder that
(approximately) inverts the latent representation into geo-
metric scattering features. Furthermore, to ensure stability
of this inversion to perturbation of embedded coordinates,
as well as enable (re)sampling from the embedding for gen-
erative purposes, we add VAE loss terms to our autoencoder,
injecting noise to its latent layer and regularizing its data dis-
tribution to resemble normal distribution via KL divergence
as in Kingma and Welling (2013).

Our final step is to construct a scattering inversion network
(SIN) that is able to construct adjacency matrices from scat-
tering features. We observe that the main challenge in opti-
mizing such an inversion network is how to define a suitable
loss on the reconstructed adjacency matrices. We mitigate
this by leveraging the geometric scattering transform it-
self to compute the inversion loss. Namely, we treat the
concatenated construction of S(·) as a decoder and then
train the inversion network U(·) as an encoder applied to
S(G) such that the scattering features of the resulting graph
will approximate the input ones, penalized via the MSE:
‖S(G)− S(U(S(G))‖2.

Putting all the components together, the geometric scatter-
ing autoencoder (GSAE) trains four networks (E,D,H ,U )
with a combined loss: EG∈G‖D(E(S(G))) − S(G)‖2 +
α‖H(S(G))−m(G)‖2 +β‖S(G)−S(U(S(G))‖2, where
α and β are tuning hyperparameters controlling the impor-
tance of each component in the loss.

Figure 2. A. PHATE and PCA plots of seven different embeddings
of the random graph dataset. Color corresponds to the position in
the 10,000-step sequence of graphs, the ordering of which GSAE
reveals clearly. B. Graph dirichlet energy with respect to the step
indices of the trajectory sequence.
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Figure 3. SEQ3 embedding comparison of various embeddings.
SEQ3 is known to be bistable (Höbartner and Micura, 2003), with
two energy minima which only GSAE reveals.

Figure 4. GSAE embeddings of all four RNA sequence structures
plotted using PHATE.

5. Results
Toy Data We generate a toy dataset by starting with a
randomly generated Erdos-Renyi (ER) graph containing 10
nodes, with edge probability p = 0.5. Then for 9999 steps,
we randomly chose an edge to remove or add to the previ-
ous graph in sequence. This generates a sequence of 10000
graphs that should roughly form single trajectory based
on graph edit distance. These toy graphs are visualized in
Figure 2A. We visualize these embeddings in two differ-
ent ways, with PHATE (Moon et al., 2019) a non-linear
visualization reduction method that keeps local and global
structure, as well as PCA. We see that only the GSAE uncov-
ers the linear trajectory of the graph indicating that simple
embedding of edit distances, WL kernels and other graph au-
toencoders do not uncover the trajectory as well. Further, we
quantify the structure in these embeddings in Figure 2B by
computing the graph dirichlet energy of the signal formed
by the sequence index, i.e., the signal f = [0, 1, . . . , 10000]
with Laplacian matrix of each embedding fTLf . Lower
values indicate more smoothness. We see in Figure-2B that
aside from a direct embedding of the graph edit distance,
GSAE has the best smoothness.

RNA fold data In order to generate RNA structural graph
data, we start with a particular RNA sequence and use
the RNAsubopt program of the ViennaRNA (Lorenz et al.,
2011) package to generate 100k RNA structures. This pro-
gram performs dynamic programming to exhaustively sam-

Figure 5. Example trajectory from the PHATE embedding of the
GSAE latent space and the corresponding RNA graphs.

ple structures within an energy range and returns an approx-
imate energy for each structure. For the purpose of test-
ing embedding quality we chose four sequences that were
identified as having specific structures in literature, SEQ3
(Höbartner and Micura, 2003), SEQ4 (Höbartner and Mi-
cura, 2003), HIVTAR (Ganser et al., 2019), and TEBOWN
(Cordero and Das, 2015). SEQ3 and SEQ4 reside primarily
in one of two bistable structures. TEBOWN was designed
to be bistable but was described as a ”faulty riboswitch”
(Cordero and Das, 2015), displaying 3 or more dominant
states. HIVTAR (Ganser et al., 2019) refers to the ensemble
generated from the transactivation response element (TAR)
RNA of HIV. It has been used as a model system for study-
ing RNA structural dynamics and is one of the few RNAs
with single native secondary that dominates. We assess the
ability of different models to recover these structures and
visualize a smooth energy landscape. We train all neural
networks with the same penalties, reconstruction as well
as energy regression with hyperparameter α = 0.5 unless
otherwise noted.

Figure 3 contains PHATE and PCA visualizations of SEQ3
embeddings, and shows that only the GSAE model orga-
nizes the embeddings by both energy and structure despite
using the equally weighted reconstruction and regression
penalties. Only the GSAE which recapitulates the bistability
of SEQ3 and SEQ4 (Höbartner and Micura, 2003) clearly.
Energy smoothness quantified for all four RNA sequences
in Table 2 and structural smoothness is shown in Table 1.
While we do not have the ground truth for organizing struc-
tures, we show smoothness by graph edit distances to both
the bistable minima in SEQ3 and SEQ4, with the idea that
as structures move away from these minima, they will also
increase in energy. Figure 4 shows that GSAE can also shed
light on the stability landscape of the four RNA structures.
SEQ3 and SEQ4 are bistable, while TEBOWN appears to
be tristable. However, our embedding shows that HIVTAR
can exist in two different fold structures based on the two
structures in the embedding, contrary to what is reported
in (Ganser et al., 2019). We also emphasize that the GSAE
is a generative model, trained as a VAE, therefore, we can
sample trajectories of folds in the landscape as potential
paths from high to low energy folds. This is depicted on a
sample trajectory in Figure 5.

Table 2. Graph dirichlet energy of molecule free energy signal over
K-NN graph of embedding. Here ”+ H” refers to the addition of
the energy prediction network H

SEQ3 SEQ4 HIVTAR TEBOWN
GED 0.409 ± 0.014 0.417 ± 0.031 0.105 ± 0.002 0.729 ± 0.039
Scat. Coeff. 0.345 ± 0.009 0.390 ± 0.007 0.105 ± 0.002 0.649 ± 0.025
GAE 0.331 + 0.008 0.345 + 0.008 0.101±0.002 0.556 + 0.014
GAE + H 0.128 + 0.006 0.096 + 0.007 0.102 ± 0.005 0.367 ± 0.010
VGAE 0.485 ± 0.014 0.799 ± 0.018 0.124 ± 0.003 0.547±0.016
VGAE + H 0.345 ± 0.009 0.276 ± 0.007 0.119 ± 0.003 0.546 ± 0.014
WL-kernel 0.636 + 0.048 1.091 + 0.083 0.185 + 0.013 0.559 + 0.033
GSAE - AE 0.209 ± 0.003 0.170 ± 0.002 0.101 ± 0.001 0.435 ± 0.008
GSAE (no H) 0.396 ± 0.011 0.444 + 0.007 0.105 ± 0.002 0.506 ± 0.014
GSAE 0.105 ± 0.006 0.081 ± 0.003 0.109±0.002 0.352 ± 0.026
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Ronald R Coifman and Stéphane Lafon. Diffusion maps.
Applied and computational harmonic analysis, 21(1):5–
30, 2006.

William L Hamilton, Rex Ying, and Jure Leskovec. Repre-
sentation learning on graphs: Methods and applications.
arXiv preprint arXiv:1709.05584, 2017.

Daniel C Elton, Zois Boukouvalas, Mark D Fuge, and Pe-
ter W Chung. Deep learning for molecular design—a
review of the state of the art. Molecular Systems Design
& Engineering, 4(4):828–849, 2019.
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A. Ablation Study
We train three variations of the GSAE itself. First we ex-
amine the effect of the variational formulation by including
results for GSAE-AE (our model trained as a vanilla autoen-
coder). We also truncate the regressor network H of GSAE,
which we refer to as GSAE (no reg). Lastly, we compare and
show GSAE also improves upon simply embedding geomet-
ric scattering coefficients, which may contain information
for organizing the graphs, but are not selected, weighted or
combined as well as in the proposed GSAE.

B. Related Work on Graph Embeddings
Graph edit distances (GED) are a way of measuring the
distances between graphs based on the number of elemen-
tary operations needed to change from one graph to another.
These elementary operations involve vertex insertions and
deletions, edge insertions and deletions, etc. Distances can
directly be embedded using MDS or indirectly via a Gaus-
sian kernel using a kernel-PCA method such as diffusion
maps (Coifman and Lafon, 2006) or the more recently pro-
posed PHATE (Moon et al., 2019) which collects manifold
information for visualization in two dimensions. Another
approach to embedding a graph is the Weisfeiler-Lehman
(WL) kernel (Shervashidze et al., 2011) which maps a graph
to a sequence of graph that encapsulate graph topological
features.

Graph neural networks have been used primarily for classi-
fying nodes. However, methods such as graph variational
autoencoders (GVAEs) (Kipf and Welling, 2016a) can be
used for embedding nodes. However, in order to achieve
invariance, node embeddings have to be pooled. Typically,
similar to convolutional neural networks, graph neural net-
works are pooled using sum or max pooling (Hamilton et al.,
2017). Here, inspired by deep scattering transforms (Gao
et al., 2019), we instead use the statistical moments of node
activations for pooling.

There has been much work in recent years using graph-based
methods for a related class of biomolecules, commonly re-
ferred to in the literature as small molecules. For a review
of these methods we refer the reader to (Elton et al., 2019).
In this related domain, a similar approach to organizing
biomolecules in latent space using an auxiliary loss has
been previously studied by (Gómez-Bombarelli et al., 2018).
However their approach relies on RNNs to encode and de-
code a domain-specific string representation for this class
of biomolecules.

In regards to RNA secondary structures, few experiment-
free, graph-based approaches to interpreting a RNA sec-
ondary structure folding ensemble (a collection of folds
arising from a single sequence) have been studied. The pop-
ular RNAShapes software seeks to abstract the structural

diversity of a folding ensemble in a coarser set of possible
graphs (Steffen et al., 2006). MIBPS is a method which
utilizes mutual information between folds of an ensemble
to predict multi-modality (Lin et al., 2018). Furthermore,
several works rely on chemical probing data in order to in-
fer multi-modality in folding ensembles (Cordero and Das,
2015) (Siegfried et al., 2014),(Spasic et al., 2018), (Woods
et al., 2017). Closer to the deep learning literature is a recent
work by (Yan et al., 2020) where they train a GNN-based
model to study RNA secondary structures in the context of
RNA binding proteins (RBPs).

C. Model Implementation Details
C.1. GSAE

In this work we begin with graphs G on which we place
diracs to use as node signals. We then generate a set of node
features using the scattering transform formulation depicted
in Figure 1C and described in Section 4. To achieve a graph
representation, we summarize node features using statistical
moments from (Gao et al., 2019) rather than the traditional
sum or max operation We refer to this graph representation
S.

The GSAE model takes as input the summarized scattering
coefficients, S. In the GSAE model, shown in Figure 1A,
we use 2 fully-connected layers with RELU activations
followed by the reparameterization operation described in
(Kipf and Welling, 2016a). Batchnorm layers from (Ioffe
and Szegedy, 2015) are interspersed between the initial
encoding layers. The decoder of GSAE is comprised of
2 fully-connected layers with a RELU activation function
on the non-output layer. For the regressor network, we an
identical module as the decoder, only differing the size of
the output layer. The loss which is optimized during training
becomes,

L = Lrecon + αLpred + βLDKL

or,

L =
1

N
||Φ̂,Φ||22 + α

1

N
||ŷ − y||22 + β DKL (q(z|Φ)‖p(z))

Training runs consisted of 15000 iterations using a batch
size of 100. We used PyTorch’s Adam optimizer with a
learning rate of 0.0001. For experimental results presented
in Table 1 and Table 2, we use a bottleneck dimension of
25.

C.2. Scatting Inverse Network Model

From the GSAE, we are able to produce a latent space
where both information about graph structure and graph
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metaproperties are preserved. However the GSAE construc-
tion differs from other graph autoencoders as it reconstructs
summarized scattering coefficients rather than graphs. This
presents an obstacle when generating graphs from points in
the latent space. We remedy this by training an additional
model referred to as the Scattering Inverse Network (SIN)
model.

Similar to GSAE, SIN uses an autoencoder architecture
which reconstructs scattering coefficients. However SIN
differs from GSAE as it produces the graph adjacency ma-
trix in it’s middle latent representation. This endows SIN
with the capacity to effectively invert scattering coefficients
and consequently, allow for generation of graphs from the
GSAE’s latent space.

For SIN, depicted in Figure 1B, we use 2 blocks of fully-
connected layer, RELU , batchnorm followed by a final
fully-connected layer. This final fully-connected layer ex-
pands the representation so that the inner-product decoder of
GAE (Kipf and Welling, 2016a) may be applied to produce
an adjacency matrix representation of the graphs. Unique to
SIN is that we then convert the adjacency matrix to scatter-
ing coefficients Ŝ using the original scattering cascade used
to construct the input to GSAE.

We train SIN by first pre-training the scattering inverse
module which takes S to Â using a binary-cross entropy loss.
Once this loss has converged, we then refine the generator
by training on the overall reconstruction of S. We show
these final MSE losses for the RNA datasets in Table 3.

Table 3. Inverse model test set reconstruction error generating ad-
jacency matrices from scattering coefficients over N=10 runs

MSE ± std ×10−3

SEQ3 0.070 ± 0.010
SEQ4 0.059 ± 0.004
HIVTAR 7.425 ± 2.459
TEBOWN 7.175 ± 3.552

C.3. GAE and GVAE

For our comparisons to traditional graph autoencoder for-
mulations, we compare against the GAE and GVAE from
(Kipf and Welling, 2016a). Though more complex graph
autoencoders have been developed for domain-specific ap-
plications (e.g. small molecules from chemistry), we focus
on a more general sense of graph embeddings which do not
rely on existing node features but rather only utilize graph
structure and an associated meta-property.

To make set-up as similar to GSAE as possible, we again
begin with featureless graphs G on which we place diracs
as the initial node signal. The GAE and GVAE both use
this initial signal to create meaningful node features using

graph convolutional (GCN) layers from (Kipf and Welling,
2016b). In this work we use 2 GCN layers with RELU acti-
vation functions for both GAE and GVAE.We then attain a
graph-wise representation using the same pooling as GSAE,
which uses the first 4 statistical moments across the node
dimension. The resulting vector is then passed through two
fully-connected layers to produce the final latent representa-
tion which is used for evaluations. We train these models
using a binary-cross entropy loss for 15000 iterations with
batch size set to 100. As with GSAE, we use PyTorch’s
Adam optimizer with a learning rate of 0.0001.

D. Embedding space interpolation
The inverse model described in Section C.2 can be used
in a generative setting to produce sequences of graphs that
resemble RNA folding trajectories. To achieve this we first
train a GSAE model with small latent space dimension
over RNA graphs from one of the datasets. Then for two
randomly chosen RNA graphs in the dataset we sample
from the line segment connecting their corresponding latent
space embeddings. These interpolated points in the latent
space are mapped into the space of scattering coefficients
by the decoding network of the GSAE. Finally these points
in scattering coefficient space are fed into the inverse model
SIN. The weights of the resulting adjacency matrices are
rounded to produce unweighted graphs.

To see this method in action we trained the GSAE model
with latent space dimension 5 on 70,000 graphs from the
SEQ3 dataset. In selecting the end points for our generative
trajectories, we sampled the starting graph from the subset
of high-energy configurations and the final graph from the
low-energy configurations. See Figure 6 for trajectories
generated using this method. In Figure 7 for every trajectory
we compute the graph edit distance between the final graph
and each individual graph in the trajectory. The results
suggest that in most cases, these generative trajectories are
smooth in terms of graph edit distance.

E. Energy Prediction
We show the energy prediction accuracy of the models at
various settings of the parameter α in Table 4 which decides
the penalty balance between the autoencoding reconstruc-
tion penalty and the energy prediction penalty. We see that
the GSAE is able to simultaneously organize the embed-
ding structurally and predict a metaproperty of the graphs
successfully.

F. Smoothness Metric
In this work, we quantify the smoothness of a signal in em-
bedding space using graph dirichlet energy. This metric can
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Table 4. Performance of auxiliary network H. Energy prediction MSE (mean ± std. over 10 runs) on each of the four RNA datasets

SEQ3 SEQ 4 HIVTAR TEBOWN

GAE 224.832 ± 291.277 360.797 ± 416.404 217.451 ± 190.157 168.191 ± 205.224
GAE + H (α = 0.1) 1.223 ± 0.069 1.364 ± 0.119 3.159 ± 0.090 0.624 ± 0.031
GAE + H (α = 0.5) 1.247 ± 0.0084 1.377 ± 0.101 3.174 ± 0.078 0.608 ± 0.025
VGAE 99.442 ± 7.386 156.922 ± 10.508 207.148 ± 12.742 10.028 ± 2.431
VGAE + H (α = 0.1) 5.536 ± 0.089 6.996 ± 0.234 3.168 ± 0.045 0.741 ± 0.021
VGAE + H (α = 0.5) 4.338 ± 0.0789 5.625 ± 0.434 3.188 ± 0.037 0.750 ± 0.015

GSAE - AE 2.875 ± 0.04 3.877 ± 0.053 3.176 ± 0.044 0.678 ± 0.01
GSAE (no H) 98.561 ± 3.35 156.567 ± 4.292 209.654 ± 8.425 8.930 ± 2.948
GSAE (α = 0.1) 1.786 ± 0.639 2.908 ± 0.788 3.739 ± 0.477 0.722 ± 0.008
GSAE (α = 0.5) 1.795 ± 0.533 2.040 ± 0.587 3.509 ± 0.201 0.661 ± 0.246

Figure 6. Sample trajectories produced by applying the scattering
inverse network to linear interpolations between training points in
GSAE latent space.

be interpreted as the squared differences between neighbor-
ing nodes which should be small if the signal is smooth and
slow varying across latent space. Conversely, large differ-

ences in the quantity of interest between neighboring nodes
would produce as large value of this metric. Here we use a
normalized form of the graph dirchlet energy, described in
(Daković et al., 2019) as a smoothness index, which takes
the form,

λx =
xTLx

xTx

The graph dirchlet energy requires that we first form a graph
on our embeddings in order to compute the graph Laplacian
L. We do this using a symmetric k-nearest neighbor (kNN)
graph where a data points xi and xj are connected by an
unweighted edge in the graph if either xi or xj fall within
each other’s kNN. Nearest neighbers are determined using
Euclidean distance between points in latent space.

G. Datasets
G.1. Toy Dataset

For evaluation of our model on a noise-less toy dataset, we
create a graph trajectory starting from an initial Erdős-Rényi
or binomial graph with p=0.5. A step in this trajectory is
either an edge addition or deletion. Starting from the initial
graph, we take 9999 steps and save each step’s graph. After
the final step, we have produced a sequence of graphs which
we refer to as a trajectory.

G.2. RNA Datasets

The four datasets used in this work were generated using
ViennaRNA’s RNAsubopt program. This program takes as
input an RNA sequence and produces a set of folds. Here
we used the ”-e” option which produces an exhaustive set
of folds within a specified kcal/mol energy range above the
minimum free energy (MFE) structure. We then split each
dataset into a train and test split with a ratio of 70:30.

• SEQ3: SEQ3 is an artificial RNA sequence of 32 nu-
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Figure 7. GED to end points. Each row corresponds to trajectories
presented in Figure 6. A decrease in GED between the i-th and j-th
step demonstrates that the step j’s graph is a more similar closer to
the graph at the end point in terms of GED

cleotides designed to be bistable (Höbartner and Mi-
cura, 2003). We use an energy window of 25kcal/mol
which produces a total of 472859 sequences. We then
reduce this set to 100k structures by sampling without
replacement.

• SEQ4: SEQ4 is also an artificial RNA sequence of
32 nucleotides and is bistable (Höbartner and Micura,
2003). We use a 30kcal/mol window which produces
926756 structures. We then reduce this set to 100k
structures by sampling without replacement.

• HIVTAR: HIVTAR is 61 nucleotides long and from

the literature (Ganser et al., 2019), is expected to be
monostable. We use a 22kcal/mol window which pro-
duces 1529527 structures. We then reduce this set to
100k structures by sampling without replacement.

• TEBOWN: TEBOWN has a sequence length of 72
nucleotides and is expected to be multistable (Cordero
and Das, 2015). We use a 9kcal/mol window which
produces 151176 structures. We then reduce this set to
100k structures by sampling without replacement.

H. GSAE Embedding Quality
H.1. Nearest Neighbor Experiments

Figure 8. 3 samples from SEQ3 and their 9 nearest neighbors in
GSAE latent space. Values are each structure’s energy (kcal/mol)

Figure 9. 3 samples from SEQ4 and their 9 nearest neighbors in
GSAE latent space. Values are each structure’s energy (kcal/mol)

Figure 10. 3 samples from HIVTAR and their 9 nearest neigh-
bors in GSAE latent space. Values are each structure’s energy
(kcal/mol)
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Figure 11. 3 samples from TEBOWN and their 9 nearest neigh-
bors in GSAE latent space. Values are each structure’s energy
(kcal/mol)

Figure 12. Density plots from PHATE and PCA coordinates of
RNA embeddings. 25-dimensional embeddings are generated
using GSAE and are plotted using PHATE and PCA . The density
plot is shown to the right of it’s corresponding PHATE and PCA
plot. Top row: SEQ3, SEQ4. Bottom Row: HIVTAR, TEBOWN.

H.2. Density Plots

Here in Figure 12 we show the density plots for the PHATE
and PCA plots of GSAE embeddings for each of the four
RNA datasets. As described in the paper, we recapitulate the
bistable nature of SEQ3 and SEQ4 and visualize this further
in the Figure 12 (top row). In the HIVTAR dataset, we view
two clusters of structures rather than the expected single
cluster. We hypothesize that this separation may be a result
of a minor structural distinction due to the low variability
between structures in the HIVTAR dataset. Lastly, we also
show that the TEBOWN dataset displays > 2 minima in its
density plots (bottom right), which is expected in (Cordero
and Das, 2015). Notably, as the energy increases and grows
further away from that of the minimum free energy structure,
the number of structures possible increases. As a result, in-
stable and structurally diverse folds make up a large portion
of RNA folding ensembles.


