
Discrete Planning with End-to-end Trained Neuro-algorithmic Policies

Marin Vlastelica 1 Michal Rolínek 1 Georg Martius 1

Figure 1. Architecture of the neuro-algorithmic policy. Two subsequent frames are processed by a ResNet18, whose output was modified
to create a tensor (width × height × time) of vertex costs cvt . The time-dependent shortest path solver finds the shortest path to the goal.
Hamming distance between the proposed and expert trajectory is used as a loss for training.

Abstract
Although model-based and model-free approa-
ches to learning the control of systems have
achieved impressive results on standard bench-
marks, most have been shown to be lacking in
their generalization capabilities. These methods
usually require sampling an exhaustive amount of
data from different environment configurations.

We propose a hybrid policy architecture with a
deep network and a shortest path planner work-
ing in unison. The model can be trained end-to-
end via blackbox-differentiation. The deep net-
work learns to predict time-dependent way-costs
such that internal plans match expert trajectories.
These neuro-algorithmic policies generalize well
to unseen environment configurations.

1. Introduction
One of the central topics in machine learning research is
learning control policies for autonomous agents. Many
different problem settings exist within this area. On one end
of the spectrum are imitation learning approaches, where
prior expert data is available and the problem becomes a
supervised learning problem, i.e. imitating an expert. On

1Max Planck Institute for Intelligent Systems. Correspondence
to: Marin Vlastelica <marin.vlastelica@tue.mpg.de>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

the other end of the spectrum lie approaches that require
interaction with the environment in order to obtain data for
policy extraction, also known as the problem of exploration.
Most Reinforcement Learning (RL) algorithms fall into this
category of approaches. In this work, we concern ourselves
primarily with the setting where limited data is available,
and a policy needs to be extracted from it.

Independently of how a policy is extracted, a central ques-
tion of interest is how well will it generalize to variations
in the environment and the task. Recent studies have
shown that standard deep RL algorithms require exhaustive
amounts of exposure to environmental variability before
starting to generalize (Cobbe et al., 2019).

There exist several approaches addressing the problem of
generalization in control. One option is to employ model-
based approaches that learn a transition model from data and
use planning algorithms at runtime. However, learning a pre-
cise transition model is often harder than learning a policy.
The reason for this is that policies are tailored to the specific
problem at hand, whereas approaches involving learning
global models consider data irrelevant for the optimal policy.
This in turn makes them more general, but comes at a cost of
increasing the problem dimensionality. This is particularly
true for learning in problems with high-dimensional input
space, such as image-based inputs. In order to alleviate this
problem, learning specialized or partial models has shown to
be a viable alternative, e.g. in MuZero (Schrittwieser et al.,
2019).

We propose to use recent advances in making combinatorial
algorithms differentiable in a blackbox fashion (Vlastelica
et al., 2020) to train neuro-algorithmic policies with em-

Discrete Planning with End-to-end Trained Neuro-algorithmic Policies

bedded planners end-to-end. More specifically, we use a
time-dependent shortest path planner acting on a temporally
evolving graph generated by a deep network from the in-
puts. This enables us to learn the time-evolving costs of
the graph,and connects us in a narrow sense to model-based
approaches. Using neuro-algorithmic architectures facil-
itates generalization by shifting the combinatorial aspect
of the problem to efficient algorithms, while using neural
networks to extract a good representation for the problem
at hand. They have potential to endow artificial agents with
the main component of intelligence, the ability to reason.

Our contributions can be summarized as follows:

• A general differentiable policy architecture embedding
shortest path algorithms.

• Demonstration of learning generalizing policies in a
dynamic game environment from images.

• Showing that the policies enhanced with shortest path
algorithms exhibit superior generalization performance
in comparison to standard methods.

2. Related Work
Differentiable planning has been proposed in previous
works, e.g. in the continuous case with CEM (Amos &
Yarats, 2019; Bharadhwaj et al., 2020). Learning a repre-
sentation for planning was considered, among others, in
Hafner et al. (2019) but without differentiating though the
planner. Silver et al. (2017) differentiate through a few steps
of value prediction in a learned MDP to match the externally
observed rewards. In Srinivas et al. (2018) a differentiable
planner was obtained via relaxation and used to learn a
representation.

Alternatively to learning the representation, a planning
graph can be constructed from the agents’ experience with
a learned value function used for the edge costs, as done by
Eysenbach et al. (2019).

An orthogonal research direction is to optimize the planners
with prior experience, e.g. (Chen et al., 2020), that can be
combined with our approach.

3. Markov Decision Processes and Shortest
Paths

We follow the MDP framework (Puterman, 2014) in a goal-
conditioned setting (Schaul et al., 2015). This is used in
sequential decision making problems where a specific ter-
minal state has to be reached.

Definition 1 A goal-conditioned Markov Decision Process
(gcMDP),M is defined by the tuple (S, A, p, g, r), where
S is the state space, A the action space, p(s′|a, s) the prob-
ability of making the transition s → s′ when taking the

action a, g is the goal, r(s, a, s′, g) the reward obtained
when transitioning from state s to s′ while taking action a
and aiming for goal g.

Concretely, we concern ourselves with fully observable
discrete MDPs, in which the Markov assumption for the
state holds and where the state and action-space are discrete.
The goal of reinforcement learning is to maximize the return
G =

∑T
t=0 rt of such a process. In gcMDPs the reward is

such that the maximal return can be achieved by reaching
the goal state g.

Given access to the transition probabilities and rewards,
an optimal policy can be extracted by Dynamic Program-
ming (Bertsekas et al., 1995). In a graph representation of an
gcMDP, the set of vertices V corresponds to the set of states
S, traversing an edge corresponds to making a transition
between states. Given the goal state and that the transition
probabilities have Dirac densities, i.e. the process is deter-
ministic, the optimal policy can be extracted by standard
shortest path algorithms, such as Dijkstra’s shortest path
algorithm.

In this work, we imitate expert trajectories by training
a policy with an embedded shortest path solver end-to-
end. Although the actual gcMDP solved by the expert may
be stochastic, we learn a deterministic latent approximate
gcMDP, M̂. Assuming that we have access to the topol-
ogy of the gcMDP, by applying blackbox-differentiation
theory (Vlastelica et al., 2020) we are able to learn the
underlying costs (instead of rewards) of M̂ such that the
optimal policy on M̂ is also optimal inM. We consider
cases where the reward function only depends on the cur-
rent state and the goal: r(s, a, s′, g) = r(s, g). In this case,
vertex costs cvt are sufficient for finding the optimal solution
to the gcMDP.

4. Shortest Path Algorithm and its
Differentiation

We will employ an efficient implementation of Dijkstra’s al-
gorithm for computing the shortest path. For differentiation,
we rely on the framework for blackbox differentiation of
combinatorial solvers (Vlastelica et al., 2020). This frame-
work was already successfully used for ranking (Rolínek
et al., 2020) and keypoint matching (Rolínek et al., 2020)
problems.

4.1. Time-dependent Shortest Path

The purely combinatorial setup can be formalized as follows.
LetG = (V,E) be a graph. For every vi ∈ V , let c1i , . . . , c

T
i

be non-negative real numbers; the costs of reaching the
vertex vi at time-points 1, 2, . . . , T , where T is the planning
horizon. The TIME-DEPENDENT-SHORTEST-PATH problem

Discrete Planning with End-to-end Trained Neuro-algorithmic Policies

Algorithm 1 Forward and backward Pass for the shortest-
path algorithm

function FORWARDPASS(C, s, e)
Y := TDSP(C, s, e) // Run Dijkstra’s algorithm
save Y , C, s, e // Needed for backward pass
return Y

function BACKWARDPASS(∇L(Y), λ)
load Y , C, s, e
Cλ := C + λ∇L(Y) // Calculate modified costs
Yλ := TDSP(Cλ, s, e) // Run Dijkstra’s algo.
return 1

λ

(
Yλ − Y

)
(TDSP) has as input the graph G, a pair of vertices s, e ∈ V
(start and end) and the matrix C ∈ R|V |×T of the costs cti.
This version of the shortest path problem can be solved by
executing the Dijkstra shortest path algorithm1 (Dijkstra,
1959) on an augmented graph. In particular, we set

V ∗ = {(v, t) : v ∈ V, t ∈ [1, T]}
E∗ = {((v1, t), (v2, t+ 1)) : (v1, v2) ∈ E, t ∈ [1, T − 1]},

where the cost of vertex (vi, t) ∈ V ∗ is simply cti. Note
that v1 = v2 means to remain in the same vertex. In this
graph, the task is to reach vertex (e, T) from (s, 1) with the
minimum traversal cost.

4.2. Applicability of Blackbox Differentiation

The framework presented in (Vlastelica et al., 2020) turns
blackbox combinatorial solvers into neural network build-
ing blocks. The provided gradient is based on a piecewise
linear interpolation of the true piecewise constant (possibly
linearized) loss function. The exact gradient of this linear in-
terpolation is computed efficiently via evaluating the solver
on only one more instance (see Algorithm 1).

In order to apply this differentiation scheme, the solver at
hand needs to have a formulation in which it minimizes
an inner-product objective (under arbitrary constraints). To
that end, for a given graphG = (V,E) with time-dependent
costs C ∈ R|V |×T we define Y ∈ {0, 1}|V |×T an indicator
matrix of visited vertices. In particular, Y ti = 1 if and
only if vertex vi is visited at time point t. The set of such
indicator matrices that correspond to valid paths in the graph
(V ∗, E∗) will be denoted as Adm(G). The time-dependent
shortest path optimization problem can be then rewritten as

TDSP(C, s, e) = argmin
Y ∈Adm(G)

∑
(i,t)

Y ti C
t
i . (1)

This is an inner-product objective and thus the theory from
(Vlastelica et al., 2020) applies. In effect, the deep network

1Even though the classical formulation of Dijkstra’s algorithm
is edge-based, all of its properties hold true also in this vertex
based formulation.

Figure 2. Differentiation of a piecewise constant loss resulting
from incorporating a combinatorial solver. A two-dimensional
section of the loss landscape is shown (left) along with two differ-
entiable interpolations of increasing strengths (middle and right).

producing the cost matrix C can be trained via supervision
signal from ground truth shortest paths.

5. Cost Margin
Our work is related to the problem of metric learning in
the sense that we learn the distance metric between the cur-
rent position of the agent (state) and the target position in
the underlying MDP, allowing us to solve it with a shortest
path algorithm. It has been shown that inducing a margin
on the metric can be beneficial for generalization. Simi-
larly to (Rolínek et al., 2020) in the context of rank-based
metric learning, we induce a margin α on the costs of the
latent gcMDP, increasing the cost of ground truth path and
decreasing the rest in the training stage of the algorithm:

cti =

{
cti +

α
2 if (vi, t) ∈ Y ∗

cti − α
2 if (vi, t) /∈ Y ∗

∀ (vi, t) ∈ V ∗. (2)

6. Crash Jewel Hunt Experiment

Goal
Fox

moving

boxes

N

EW

S

Figure 3. The Crash Jewel Hunt environment. Left: sample frame;
right: schematics. The goal for the fox is to obtain the jewel in
the right most column, while avoiding the moving wooden boxes
(arrows). When the agent collides with a wooden box it instantly
fails to solve the task.

In order to show that our method benefits generalization,
we compare it to supervised imitation learning approach.
Concretely, for the experimental validation, we look at the
following points:

Discrete Planning with End-to-end Trained Neuro-algorithmic Policies

• Operating in a low data regime.

• Clear separation from train and test configurations of
the environment.

• Sufficient combinatorial complexity to require non-
trivial generalization.

To this end, we have constructed the Crash Jewel Hunt
environment which can be seen in Fig. 3. The environment
corresponds to a grid-world of dimensions h × w where
the goal is to move the agent (Fox) from an arbitrary start
position in the left-most column to the goal position (jewel)
arbitrarily positioned in the right-most column. Between the
agent and the goal are obstacles, wooden boxes that move
downwards with arbitrary but fixed velocities or are static,
see Fig. 3(right). At each time step, the agent can choose
to move horizontally or vertically in the grid by one cell or
take no action.

To make the task challenging, we sample distinct environ-
ment configurations for the training set and the test set,
respectively. That is: we vary the velocities, sizes and ini-
tial positions of the boxes as well as the initial and goal
positions.

6.1. Neuro-algorithmic Policy Architecture

The architecture of the policy consists of two main compo-
nents: a modified ResNet18 architecture and the shortest
path solver, see Fig. 1. At each time step the policy receives
two images concatenated channel-wise based on which it
predicts the cost matrix C for the planning horizon T . The
cost matrix C is given to the solver along with the start ver-
tex s and end vertex e to predict the time-dependent shortest
path Y . Here we assume that we have access to the current
position of the agent and the current goal position encoded
in the latent graph. For training supervision we use the
Hamming distance between the predicted plan Y and the
expert plan Y ∗.

As it is done in model-predictive control, at execution time
we predict the plan Y for horizon T at each time step and
execute the first action from the plan.

6.2. Results

To validate our claim that embedding planners into neu-
ral network architectures leads to better generalization, we
compare to a standard ResNet18 architecture trained with
a cross-entropy classification loss on the same dataset as
our method. We train both approaches till saturation on a
training set of a 1000 trajectories, resulting in close to 100%
success rate when evaluating on train configurations in the
environment. After training, we evaluate on a 1000 unseen
environment configurations. The result is that our method
with an embedded planner has almost perfect generalization
performance. In contrast, the baseline generalizes poorly, in

(a) Train-Performance (b) Test-Performance

5x5 5x10
Grid

0.0

0.5

1.0

Su
cc

es
s R

at
e

5x5 5x10
Grid

Ours Imitation Baseline

Figure 4. Performance on Crash Jewel Hunt. Our method and the
baseline (for small level sizes) achieve almost perfect training per-
formance (a). Unlike the baseline, our method is able to generalize
well to unseen configurations.

30 100 300 1000
Different Levels

0.0
0.2
0.4
0.6
0.8
1.0

Te
st

 S
uc

ce
ss

 R
at

e

Ours
Imitation Baseline

Figure 5. Generalization depending on # levels seen during training
size. Shown is the success rate on the test set configurations of a
5x10 grid as dataset size increases. Our method outperforms the
imitation baseline by an order of magnitude.

particular for larger environment sizes, see Fig. 4.

Furthermore, we observe that our method shows non-trivial
generalization with an even smaller number of expert trajec-
tories. Figure 5 displays the test-performance in dependence
of the number of expert trajectories. Already with 30 tra-
jectories a third of the 1000 test-levels can be solved, the
baseline manages less than 50 out of the 1000.

7. Conclusion
We have shown that hybrid neuro-algorithmic policies con-
sisting of a deep feature extraction and a shortest path solver
– made differentiable via blackbox differentiation – enables
learning policies that generalize to unseen environment set-
tings.

8. Acknowledgment
We thank the International Max Planck Research School
for Intelligent Systems (IMPRS-IS) for supporting Marin
Vlastelica. We acknowledge the support from the Ger-
man Federal Ministry of Education and Research (BMBF)

Discrete Planning with End-to-end Trained Neuro-algorithmic Policies

through the Tübingen AI Center (FKZ: 01IS18039B).

References
Amos, B. and Yarats, D. The differentiable cross-entropy

method, 2019.

Bertsekas, D. P., Bertsekas, D. P., Bertsekas, D. P., and
Bertsekas, D. P. Dynamic programming and optimal
control, volume 1. Athena scientific Belmont, MA, 1995.

Bharadhwaj, H., Xie, K., and Shkurti, F. Model-predictive
control via cross-entropy and gradient-based optimization.
arXiv preprint arXiv:2004.08763, 2020.

Chen, B., Dai, B., Lin, Q., Ye, G., Liu, H., and Song,
L. Learning to plan in high dimensions via neural
exploration-exploitation trees. In International Confer-
ence on Learning Representations, 2020.

Cobbe, K., Hesse, C., Hilton, J., and Schulman, J. Lever-
aging procedural generation to benchmark reinforcement
learning. arXiv preprint:1912.01588, 2019.

Dijkstra, E. W. A note on two problems in connexion with
graphs. Numer. Math., 1(1):269–271, December 1959.
doi: 10.1007/BF01386390.

Eysenbach, B., Salakhutdinov, R. R., and Levine, S. Search
on the replay buffer: Bridging planning and reinforce-
ment learning. In Advances in Neural Information Pro-
cessing Systems 32, pp. 15246–15257. Curran Associates,
Inc., 2019.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D.,
Lee, H., and Davidson, J. Learning latent dynamics for
planning from pixels. In International Conference on
Machine Learning, volume 97 of ICML’19, pp. 2555–
2565, Long Beach, California, USA, 2019.

Puterman, M. L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons,
2014.

Rolínek, M., Musil, V., Paulus, A., Vlastelica, M., Michaelis,
C., and Martius, G. Optimizing ranking-based metrics
with blackbox differentiation. In Conference on Com-
puter Vision and Pattern Recognition, CVPR’20, 2020.

Rolínek, M., Swoboda, P., Zietlow, D., Paulus, A., Musil,
V., and Martius, G. Deep graph matching via blackbox
differentiation of combinatorial solvers. arXiv preprint
arXiv:2003.11657, 2020.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. Uni-
versal value function approximators. In International
Conference on Machine Learning, volume 37 of ICML,
pp. 1312–1320, 2015.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., et al. Mastering atari, go, chess and
shogi by planning with a learned model. arXiv preprint
arXiv:1911.08265, 2019.

Silver, D., van Hasselt, H., Hessel, M., Schaul, T., Guez, A.,
Harley, T., Dulac-Arnold, G., Reichert, D., Rabinowitz,
N., Barreto, A., and Degris, T. The predictron: End-to-
end learning and planning. In International Conference
on Machine Learning, volume 70 of ICML’17, pp. 3191–
3199. PMLR, 2017.

Srinivas, A., Jabri, A., Abbeel, P., Levine, S., and Finn,
C. Universal planning networks: Learning generalizable
representations for visuomotor control. In International
Conference on Machine Learning, volume 80 of ICML’18,
pp. 4732–4741, Stockholmsmässan, Stockholm Sweden,
2018.

Vlastelica, M., Paulus, A., Musil, V., Martius, G., and
Rolínek, M. Differentiation of blackbox combinatorial
solvers. In International Conference on Learning Repre-
sentations, ICLR’20, 2020.

