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Abstract

In this paper, we innovately use graph neural net-
works (GNNs) to learn a message-passing so-
lution for the inference task of massive multi-
ple multiple-input multiple-output (MIMO) de-
tection in wireless communication. We adopt a
graphical model based on the Markov random
field (MRF) where belief propagation (BP) yields
poor results when it assumes a uniform prior over
the transmitted symbols. Numerical simulations
show that, under the uniform prior assumption,
our GNN-based MIMO detection solution outper-
forms the minimum mean-squared error (MMSE)
baseline detector, in contrast to BP. Furthermore,
experiments demonstrate that the performance of
the algorithm slightly improves by incorporating
MMSE information into the prior.

1. Introduction
Massive MIMO (multiple-input and multiple-output) is a
method to improve the spectral efficiency and link reliabil-
ity of wireless communication systems (Goldsmith et al.,
2003), by having a large number of transmitter and receiver
antennas. In the fifth-generation (5G) mobile communica-
tion system, massive MIMO is a key technology to face
the increasing number of mobile users and satisfy user de-
mands. One of the challenging problems in massive MIMO
is to design efficient detection algorithms for recovering the
transmitted information from multiple users (Albreem et al.,
2019). The optimal solution for the MIMO detection prob-
lem is the maximum likelihood (ML) detector (Albreem
et al., 2019). However, ML detection is not used in prac-
tice because its complexity increases exponentially with
the number of transmitters. A number of sub-optimal solu-
tions have been proposed to balance the trade-off between
performance and complexity, e.g., sphere decoding (SD)
(Guo & Nilsson, 2006), zero-forcing (ZF) and minimum
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mean-squared error (MMSE) detectors (Xie et al., 1990),
etc. In the last decade, methods based on probabilistic graph-
ical models (PGM) have been actively studied (Goldberger
& Leshem, 2009; Goldberger & Leshem, 2010; Liu et al.,
2019), where the MIMO detection problem is firstly mod-
eled by a maximum a posteriori (MAP) inference task in a
pairwise Markov random field (MRF) and then addressed
approximately with belief propagation (BP) (Yedidia et al.,
2003). BP is an iterative message-passing algorithm for per-
forming exact inference on tree-structured graphical models.
Its low complexity and efficiency, even for general graphs,
make it very attractive for massive MIMO detection. How-
ever, due to dense connections in the MRF graph represen-
tation of the MIMO problem, BP’s performance is sensitive
to both prior information and the message update rules.

In this work, we innovatively use graph neural networks
(GNNs) to learn a message-passing solution that addresses
the inference task of MIMO detection. Specifically, our
approach is built upon the GNN framework developed in
(Yoon et al., 2018). Instead of propagating messages by
hand-crafted update functions as in BP, (Yoon et al., 2018)
uses neural networks to learn the message-passing rules and
give approximate updates.

Our network is called MIMO-GNN and it can solve MIMO
detection under time-varying channels and higher-order
qadrature amplitude modulation (QAM), such as 16-QAM.
In practice, the correlation in the channel is not known a
priori. Therefore, MIMO-GNN is trained on independent
and identically distributed (i.i.d.) and Gaussian distributed
channels and then tested on correlated channels drawn from
a different distribution (specifically, the Kronecker model
(Loyka, 2001)).

Notations– We denote the transpose, the (i, j) entry and the
j-th column of maxtrix A, by AT , aij and aj , respectively.
ai stands for the i-th entry of vector a. IN denotes the
identity matrix of shape N .

2. Background
2.1. MIMO Detection

Wireless communication in a MIMO system requires coor-
dination of multiple antennas at the receiver unit to detect
the signals sent from wireless devices. These devices op-
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Figure 1. Fully-connected pair-wise Markov Random Fields with
4 variables.

erate as mobile transmitters within a limited coverage area
commonly known as cell. Here, we consider the uplink
communication in a cellular system where the base station
has the role of a central coordinator. The MIMO system
described above can be modeled by the real-valued linear
system

y = Hx+ n. (1)

The goal of MIMO detection is to infer the transmitted signal
vector x ∈ ANt where A ⊂ R is a discrete finite alphabet
(|A| =

√
M according toM -QAM) andNt is the number of

transmitted symbols. The channel matrix H ∈ RNr × RNt

and measurement vector y ∈ RNr are known variables
where Nr is the number of received symbols. The noise
vector n ∈ RNr is zero-mean Gaussian n ∼ N (0, σ2INr ).
The real-valued system described above is derived from the
actual complex-valued system where the number of receiver
and transmitter antennas are Nr

2 and Nt
2 respectively. More

details regarding the conversion from the complex-valued to
the real-valued system is provided in (Goldberger & Leshem,
2009).

2.2. Pair-wise MRF

A MRF models the structured dependency of a set of random
variables x = {x0, ..., xN−1} by an undirected graph G =
{V,E}, where V and E are the set of nodes and edges
respectively. Every node i ∈ V is associated to variable
xi and it holds that p(xi|x\xi) = p(xi|ne(i)), where \
denotes exclusion and ne(i) is the set of neighbors of node
i. In a pair-wise MRF a self potential φi(xi) is assigned to
node i ∈ V and a pair potential φij(xi, xj) is assigned to
the edge e ∈ E that connects node i ∈ V to node j ∈ V .
The probability distribution corresponding to a pair-wise
MRF has the following form:

p(x) =
1

Z

∏
i∈V

φi(xi)
∏

(i,j)∈E

φij(xi, xj), (2)

where Z is a normalization constant.
In order to obtain an approximation bl(xl) of the marginal
distribution for the variable xl, we can run the iterative
message-passing algorithm, BP (Yedidia et al., 2003).

2.3. MIMO as a Markov Random Field

Given the constrained linear system in (1), the correspond-
ing posterior probability p(x|y) is factorized according to
the Bayes’s rule in the following way:

p(x|y) ∝ p(y|x)p(x) = exp

{
− 1

2σ2
||Hx− y||2

}
p(x),

(3)
where p(x) is the prior distribution for x. The goal of
MIMO detection is to solve the following MAP problem:

x̂MAP = argmax
x∈ANt

p(x|y). (4)

The posterior probability in (3) can be factorized into a
pair-wise MRF as in (2) by assignment

φi(xi) = e
1
σ2

(yThixi− 1
2h

T
i hix

2
i )pi(xi), (5)

φij(xi, xj) = e−
1
σ2

hTi hjxixj , (6)

where σ2 is the noise variance and hi is the i-column of H.
By applying the BP algorithm, where the initial messages
are the uniform prior probabilities over symbols, we can
approximate the solution of the MAP problem in Equation
(4) by solving a simplified MAP problem for each variable.
Indeed, after convergence of BP, for each variable xl we
compute the belief bl(xl) as a function of the updated mes-
sages (Yedidia et al., 2003) and hard detect the transmitted
symbol x̂l with

x̂l = argmax
xl∈A

bl(xl), ∀ l. (7)

2.4. GNNs

GNNs from (Yoon et al., 2018) combine the advantages of
deep learning and MRFs in a unique framework to capture
the structure of the data into feature vectors that are updated
through message-passing between nodes. In a GNN, a vec-
tor ui ∈ RSu , where Su is a positive integer, encodes the
information of a variable node in a MRF (2). The values of
{ui} are iteratively updated by a recurrent neural network
(RNN) with input including the value of ui at the previous
iteration together with the information coming from the
neighbor nodes states uj : j ∈ ne(i) on the specified graph
G defined in Section 2.2.

The network is composed by three main modules: a prop-
agation, an aggregation and a readout module. The first
two modules operate at every iteration t while the readout
module is involved only after the last iteration T . The propa-
gation module outputs the updated message mt

i→j for each
direct edge eij ∈ E

mt
i→j =M(ut−1

i ,ut−1
j , εij), (8)
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Figure 2. Message, state and output updates in GNNs.

where εij is the information associated to the edge eij and
M is a multiple layer perceptron (MLP) with ReLU as ac-
tivation functions. Therefore, the information exchanged
between two nodes at iteration t is an encoding of the con-
catenation of the feature vectors of the two nodes and the
information along the direct edge between them. The aggre-
gation module operates at a node level by aggregating the
incoming messages mt

j→i at node i ∈ V , with j ∈ ne(i),
by following

ut
i = U(ut−1

i ,
∑

j∈ne(i)

mt
j→i), (9)

where U is a GRU (Cho et al., 2014).

After T iterations, the feature vectors ui are used to make
inference with the readout module. If the problem that we
want to solve is to compute the marginal probabilities of
discrete random variables, the readout module is a MLP
R of the feature vector ui followed by the softmax func-
tion γ : R|A| → R|A|. The softmax function maps the
non-normalized output z of the network R to a probability
distribution over predicted output symbols sk

p̂(xi = sk) = γ(z)k =
ezk∑|A|
j=1 e

zj
. (10)

The parameters of M,U and R are shared across the whole
graph and we learn them with supervised learning by mini-
mizing the loss function between the true probabilities p(xi)
and the predicted ones p̂(xi). A good candidate for the loss
function L is the cross-entropy:

L = −
∑
xi

p(xi) log p̂(xi), (11)

where p̂(xi) is the output of the T -layers GNN.

3. Algorithms Design
3.1. MIMO-GNN

The GNN framework presented in Section 2.4 can be used
to infer the a posteriori probability p(x|y) and recover the
transmitted symbols x in the MIMO detection problem in
(1). In this case, GNNs are built upon the MIMO MRF
presented in Section 2.3. Indeed, the input of GNNs is ex-
tracted from φi(xi) and φij(xi, xj). The information εij

along each edge eij is the feature vector εij = [−hT
i hj , σ

2].
The hidden vector u0

i of each node i is initialized with
u0
i = W[yThi, h

T
i hi, σ

2]T + b. Since we want to work
with an hidden state of a given size Su, to simplify the imple-
mentation we encode the initial vector [yThi, h

T
i hi, σ

2]
with a linear transformation given by a learnable matrix
W ∈ RSu × R3 and a learnable vector b ∈ RSu . The func-
tions M and R are two different neural networks with two
hidden layers and ReLU as activation functions. Both M
and R implement dropout between hidden layers (rate of 0.1
in M and rate of 0.2 in R). The outputs of the first and the
second hidden layer have sizes l and l

2 respectively. Instead,
the function U is composed of a GRU network followed by
a linear layer that ensures that the output size is equal to Su.
In the experiments the dimension of the GRU hidden state
is l.

Since in modern wireless communication systems soft sym-
bols are more suitable than predicted symbols without prob-
abilistic information, the predicted value x̂l for the trans-
mitted symbol is the expected value of xl with probability
distribution p̂(xl):

x̂l = Exl{xl} =
∑
s∈A

sp̂(s). (12)

Similarly to BP for the fully connected pair-wise MRF, the
complexity of MIMO-GNN is proportional to the number of
edges in every iteration. However, for each edge, we need
to perform a forward step in a feed-forward neural network,
which increases the overall complexity.

3.2. MIMO-GNN-MMSE

In the previous section, we solve MIMO detection by as-
suming a uniform prior p(x) over the unknown symbols
x. In this section, to improve the prior information, we
incorporate the MMSE posterior as the prior p(x) such that

pl(xl) =
1√
2πcll

exp (− (zl − xl)2

2cll
), (13)

where zl is the l-th element of the MMSE estimation vector
z = (HTH + σ2INt)

−1HTy and cll is the (l, l) element
of C = σ2(HTH+ σ2INt)

−1. The prior correlation coef-

ficient ρij between the variable xi and xj , ρij =
c2ij

ciicjj
, is

added to the feature vector εij .

In the implementation we reuse the same model in Sec-
tion 3.1 (with the same hyperparameters) and we only
modify the information εij along the edges and the ini-
tial value of the hidden states u0

i . The information along
each edge eij becomes εij = [ρij , −hT

i hj , σ2], and
the initial hidden vector u0

i of each node i is initialized
with u0

i = W[zi, cii, yThi, hT
i hi, σ

2]T + b, where
W ∈ RSu × R5 is a learnable matrix and b ∈ RSu is a
learnable vector.
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MIMO-GNN-MMSE exhibits a higher complexity than
MIMO-GNN due to the computation of z and C that re-
quire the inversion of a matrix of size Nt ×Nt.

4. Numerical Experiments
We consider a MIMO configuration with 16 transmitter
antennas (Nt = 32) and 32 receiver antennas (Nr = 64).
The modulation scheme is 16-QAM.

To synthetically build the datasets (for training, validation
and testing) we use three sources of randomness in each sam-
ple: signal x, channel noise n and channel matrix H. We en-
sure that the transmitter power satisfies E{xTx} = Nt. The
transmitted signal x is generated randomly and uniformly
over the corresponding constellation set. The channel noise
standard deviation σ is derived from the definition of SNR:

SNR = 10 log10
E{||Hx||22}
E{||n||22}

= 10 log10
E{||Hx||22}
Nrσ2

.

MIMO-GNN and MIMO-GNN-MMSE are both trained on
a pre-built dataset of size 65536 and batch size 64. The size
of the (additional) validation dataset is 25% of the training
dataset size. The noise standard deviation σ is fixed within
each batch. Since the dataset labels must be a discrete
probability distribution p(s) over the constellation symbols
s ∈ ANt , we opt for one-hot encoded labels where p(s) = 1
when s = xl and 0 otherwise, where xl is the transmitted
symbol.

MIMO-GNN and MIMO-GNN-MMSE are both trained
with early stopping, Adam optimizer and a learning rate of
0.0001 to minimize the loss L defined in (11). Since the
correlation in the channel is not known a priori, the training
is performed over channel matrices randomly sampled from
the i.i.d. Gaussian channel model, where it holds that hij ∼
N (0, 1

Nr
) for each element of H. After cross-validation,

the hyperparameters are chosen to be l = 128, Sm = Su =
8, T = 10.

MMSE, BP, MIMO-GNN and MIMO-GNN-MMSE are
tested on the Kronecker channel model that controls the
correlation in the MIMO channel through a correlation co-
efficient ρ, according to the exponential correlation model
(Loyka, 2001) that structures the channel matrix H as fol-
lows: H = R

1/2
R KR

1/2
T . Here, kij ∼ N (0, 1

Nr
) and

RR,RT are the spatial correlation matrices at the receiver
and the transmitter side respectively.

The performances of the algorithms are tested according to
the symbol error rate (SER) metric. The results are averaged
over a (additional) dataset of 20000 random simulations. BP
runs for 8 iterations and implements a damping factor of
0.75 on belief and messages (Som et al., 2010) to increase
the performance. Moreover, the prior pl(xl) at iteration t+1
is improved with the belief bl(xl) computed at iteration t.

Figure 3. SER vs. SNR of different schemes for 16-QAM modu-
lation, MIMO system with Nt = 32 and Nr = 64 and channels
i.i.d. and Gaussian distributed.

Figure 4. SER vs. SNR of different schemes for 16-QAM modu-
lation, MIMO system with Nt = 32 and Nr = 64 and channels
randomly sampled from Kronecker model with ρ = 0.3.

Fig. 3 shows the results for i.i.d. and Gaussian distributed
channels (Kronecker model with ρ = 0). The performance
gain of MIMO-GNN over MMSE is approximately 2.5dB
at SER= 10−2. Meanwhile, the improvement of MIMO-
GNN-MMSE over MIMO-GNN is negligible. While, Fig.
4 shows the results for correlated channels with ρ = 0.3.
MIMO-GNN maintains around 2dB gain over MMSE when
SER is 10−2. MIMO-GNN-MMSE outperforms MIMO-
GNN in all the SNR range of the experiments. Integrating
the MMSE prior in the model helps to increase of 0.5dB the
performance gain when SER is 10−3.

5. Conclusions
We have developed MIMO-GNN, a GNN-based algorithm
to solve massive MIMO detection at higher-order modula-
tion. In contrast with BP, our experiments show that the
uniform prior is sufficiently informative for MIMO-GNN
to significantly outperform MMSE. This performance gain,
even on correlated channels, makes MIMO-GNN a promis-
ing solution for MIMO detection. Moreover, since the com-
putation in each iteration is done independently for every
edge of the graph, the complexity of our solution can be
considerably reduced by a parallelization of the algorithm.
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