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Abstract
Link prediction aims to reveal missing edges in
a graph. We address this task with a deep graph
convolutional Gaussian process model. The Gaus-
sian process is transformed using simplified graph
convolutions to better leverage the topological
information of the graph domain. To scale the
Gaussian process model to larger graphs, we in-
troduce a variational inducing point method that
places pseudo-inputs on a graph-structured do-
main. The proposed model represents the first
Gaussian process for link prediction that can make
use of both node features and topological infor-
mation. We evaluate our model on three graph
data sets with up to thousands of nodes and report
consistent improvements over existing Gaussian
process models and state-of-the-art graph neural
network approaches.

1. Introduction and Related Work
A large variety of real-world scenarios can be modelled by
signals that live on the nodes of a graph, from biological
networks to communication and social networks (Sen et al.,
2008; Kersting et al., 2016). The connective structure of
these graphs is not necessarily complete, hence a common
task for statistical inference is to infer missing links between
nodes.

Recent work in this area (Kipf & Welling, 2016; Zhang &
Chen, 2018; Bojchevski & Günnemann, 2018) has focused
on methods with two key properties. First, these methods
can predict missing links based on both the graph structure
itself and a signal that lives on the nodes of the graph, often
referred to as the node features. Second, these methods
compute node embeddings not only from isolated features
of each node but also take into account features in the local
neighbourhood of each node, thus providing more context
information for predicting missing links.
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At the core of these methods are usually neural networks
equipped with parameterised graph convolution operations.
These methods work well when large amounts of labelled
data are available, but tend to overfit if labelled data is scarce.
In this paper, we present a non-parametric model for link
prediction based on deep Gaussian processes, which are
less prone to overfitting and, in particular, do not require a
validation set for hyperparameter tuning and early stopping.

To increase the inductive bias of the model, the Gaussian
process requires adaption to the graph domain. Earlier work
by Ng et al. (2018) and Walker & Glocker (2019) intro-
duces Gaussian processes for the graph domain, but focus
on node-level or graph-level predictions. Moreover, the
kernel proposed by Ng et al. (2018) is limited to one-hop
neighbourhoods. To the best of our knowledge, the only
existing work on link prediction with Gaussian processes is
by Yu & Chu (2008), however it does not consider informa-
tion from node neighbourhoods.

2. Background
2.1. Single-layer Gaussian Processes

A Gaussian process models functions as samples from an
infinite dimensional multivariate normal distribution. The
shape of these functions is determined by the mean and
covariance (or kernel) function of the process. When mod-
elling observed data D = (X,y) with input data matrix
X = [x1, . . . ,xN ]T , xi ∈ X and labels y ∈ RN via
Bayesian inference, we can use a Gaussian process as the
prior distribution over the latent function:

f(x) ∼ GP(m(x), kθ(x,x
′)), (1)

where m : X → R and kθ : X × X → R denote the
mean and covariance function respectively. The covariance
function kθ is commonly parameterised by a set of hyperpa-
rameters θ.

When combined with a Gaussian likelihood p(yn|xn) for
each observation n = 1, . . . , N , the posterior p(f |y,X) is
also Gaussian. Predictions for new data points can then be
made in a fully Bayesian fashion by marginalising out the
latent function f(x). Furthermore, the marginal likelihood
p(y) has a closed form solution and can thus be used to
optimise the kernel hyperparameters θ, usually via gradient-
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based optimisation. For our purposes, we set X = RD,
hence X ∈ RN×D.

2.2. Deep Gaussian Processes

The expressiveness of a single-layer Gaussian process is
constrained by its only kernel function. To overcome this
limitation, Damianou & Lawrence (2013) have proposed
a deep Gaussian process model, which defines a hierarchy
of L layers, where each layer consists of a pre-specified
number of Gaussian processes, reminiscent of the units in a
neural network layer. The outputs of processes in one layer
act as inputs to the processes of the next layer. The last layer
consists of as many Gaussian processes as there are outputs.
Pseudo-inputs and inducing points (Hensman et al., 2013)
are used in each layer to scale the model to large data sets.

The joint density of outputs Y ∈ RN×O, the intermediate
latent function values Fl, and the inducing points Ul is

p(Y, {Fl,Ul}Ll=1) =

N∏
i=1

p(yi|fLi )

L∏
l=1

p(Fl|Ul,Fl−1,Zl−1)p(Ul,Zl−1) (2)

with pseudo-inputs {Zl}Ll=1 and F0 = X. Noise between
layers is absorbed into the kernel. Due to the non-linearity of
the functions modelled by intermediate Gaussian processes,
both the posterior and the marginal likelihood are intractable
and require a variational approximation.

Salimbeni & Deisenroth (2017) describe a flexible varia-
tional approximation of the posterior of a deep Gaussian
process, which will be used in this work. The variational
posterior is chosen to be

q({Fl,Ul}Ll=1) =

L∏
l=1

p(Fl|Ul;Fl−1,Zl−1)q(Ul) (3)

with the Gaussian variational distribution q(Ul) =
N (Ul|ml,Sl) evaluated at the pseudo-inputs of each layer.
The inducing points can be marginalised to give the normal
density q({Fl}Ll=1).

As for a single-layer Gaussian process, we can derive an
evidence lower bound (ELBO) to jointly optimise the varia-
tional parameters {Zl,ml,Sl}Ll=1 and the kernel hyperpa-
rameters θ:

L(θ, {Zl,ml,Sl}Ll=1) =

N∑
i=1

Eq(fLi )

[
log p(yi|fLi )

]
−

L∑
l=1

KL[q(Ul) ‖ Ul;Zl−1]. (4)

The first expectation cannot be evaluated analytically, again
because of the non-linear dependency between layers. How-
ever, the expectation can be approximated via Monte Carlo

sampling by drawing samples from q(fLi ), which can be
implemented efficiently by drawing samples from a stan-
dard normal distribution and applying the reparameterisa-
tion trick (Rezende et al., 2014; Kingma et al., 2015) with
the mean and variance of q({Fl}Ll=1) in each layer, start-
ing from the first and propagating the samples through the
hierarchy. Due to its form, the ELBO lends itself well to
maximisation using stochastic optimisation.

3. Model Description
We introduce the deep graph convolutional Gaussian pro-
cess for link prediction (Link-DGP) in multiple steps. First,
we describe a novel single-layer Gaussian process for pre-
dictions over nodes (Node-GP). In a second step, building
on Node-GP, we introduce a single-layer Gaussian process
for predictions over pairs of nodes (Link-GP), along with
an effective inducing point method. Finally, we use these
two building blocks as Gaussian process units in the layers
of the deep Gaussian process model.

3.1. Gaussian process over nodes

We aim to define a Gaussian process kernel that is capable
of seizing the inductive bias of the domain whose structure
is given by an undirected graph G = (V, E) with a set of
vertices V , |V| = N , and a set of edges E , |E| = E. The
graph structure is further described by the adjacency matrix
A without self-loops, i.e. its diagonal entries are 0. Input
data is given in form of a signal X ∈ RN×D living on said
domain.

In a non-probabilistic setting, adaption to the graph domain
is commonly achieved by convolving the node features using
graph convolutions, as proposed by Kipf & Welling (2017).
Wu et al. (2019) propose a simplified form of the graph
convolution g = S̃KXw with weights w ∈ RD×1 and
convolution matrix S̃ = D̃−

1
2 ÃD̃−

1
2 , which is raised to

the K th matrix power. Here, Ã = A + I is the adjacency
matrix with added self-loops and D̃ is the degree matrix of
Ã. The convolution matrix S̃ acts as a smoothing device on
the input features, thus biasing the hidden representations
to vary less within a neighbourhood. This increases the
inductive bias of the model under the assumption that labels
within a node neighbourhood are more likely to be similar.

Building on this idea, we obtain the corresponding proba-
bilistic formulation by placing a multivariate Gaussian prior
on the weights w. Furthermore, we can transform the input
signal using a feature map φθ : R→ H that maps inputs to
a potentially infinite-dimensional Hilbert spaceH and is pa-
rameterised by a set of hyperparameters θ. By subsequently
marginalising the weights w, we obtain an equivalent formu-
lation g = S̃Kf , where f ∈ RN×1 is normally distributed
with covariance matrix [K]ij = 〈φθ(xi), φθ(xj)〉H and we
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Figure 1. Overview of the proposed graph convolutional Gaussian processes over nodes (b) and edges (c). We start with a regular Gaussian
process f (a) operating solely on the node features that is oblivious to the graph structure. Each node feature is treated as an observation
on the Euclidean domain RD . This Gaussian process is transformed using simplified graph convolutions to yield a graph convolutional
Gaussian process g over the nodes V of the graph (b). Finally, a series of such graph convolutional Gaussian processes yields a graph
convolutional Gaussian process r over edges (c). Function values in (b) and (c) are expressed through the size of the nodes and the
thickness of the links respectively. Confidence intervals are sketched in light blue. A hierarchy of Gaussian processes from (b) and (c) can
be combined to form a deep Gaussian process for link prediction.

assume f has zero mean. The simplified graph convolution
acts as a linear transformation on f , hence the distribution
of the resulting signal g is also Gaussian:

g ∼ N
(
0, (S̃K)K(S̃K)T

)
. (5)

Thus, g corresponds to a Gaussian process on the domain
whose structure is given by the graph G. The covariance
matrix K is computed by the node feature kernel kθ : RD×
RD → R. When fixing K = 1 and using an asymmetric
normalisation for the convolution matrix S̃ = D̃−1Ã, we
recover the Gaussian process model for semi-supervised
node classification described by Ng et al. (2018) as a special
case.

Counteracting oversmoothing While a certain degree of
smoothing is desirable to increase the inductive bias of the
model, too much smoothing inhibits the ability of the model
to describe more complex relationships between nodes in
a neighbourhood, thus degrading its overall performance.
This phenomenon is commonly referred to as oversmoothing
and has been the subject of several recent studies (Li et al.,
2018; Wu et al., 2019; Xu et al., 2018).

We propose to counter oversmoothing by taking advantage
of the ability of the Gaussian process to optimise hyperpa-
rameters to select between the number of graph convolu-
tions to be applied. We achieve this by smoothly interpo-
lating in each convolution step between the convolution
matrix S̃ and the identity matrix. The kth convolution
matrix hence becomes S̃k = λkS̃ + (1 − λk)I, where
λ = [λ1, . . . , λK ] ∈ [0; 1]K are hyperparameters, subse-
quently referred to as the convolution weights. The final

Gaussian process prior thus becomes

g ∼ N
(
0, (S̃1 · · · S̃K)K(S̃T1 · · · S̃TK)

)
. (6)

A visualisation of the graph convolutional Gaussian process
over nodes is shown in Figure 1 (b).

3.2. Gaussian process over pairs of nodes

A Gaussian process model over edges of an undirected graph
must operate on the domain of pairs of nodes such that it is
invariant to the order of the nodes within the pair. Yu & Chu
(2008) propose to model edges using a Gaussian process

r(xi,xj) ∼ GP(0, c((xi,xj), (x
′
i,x
′
j))) (7)

with kernel c((xi,xj), (x′i,x
′
j)) = k(xi,x

′
i)k(xj ,x

′
j) +

k(xi,x
′
j)k(xj ,x

′
i), which is the result of a series of Gaus-

sian processes over nodes with kernel function k(·, ·).

As we would like the link prediction Gaussian process to
incorporate neighbourhood information in its predictions,
we use the graph convolutional kernel from Equation 6 as the
node kernel function k(·, ·). This results in the single-layer
graph convolutional Gaussian process r for link prediction:

f(x) ∼ GP(0,K) (8)

g(x) ∼ GP(0, K̂ ≡ (S̃1 · · · S̃K)K(S̃T1 · · · S̃TK)) (9)

r(xi,xj) ∼ GP(0,C),

with C(i,j)(i′,j′) = K̂ii′K̂jj′ + K̂ij′K̂ji′ . (10)

As before, K is computed using the node feature kernel
kθ : RD×1 × RD×1 → R on the input node features. The
full Link-GP model is visualised in Figure 1.
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Method USAir C.ele Router
AUC AP AUC AP AUC AP

VGAE 89.24 91.46 83.76 81.94 76.79 83.88
graph2gauss 88.79 89.36 85.59 83.10 75.12 81.31

Link-GP (ours) 95.39 89.64 90.47 75.37 89.22 84.01
Link-DGP-2 (ours) 98.03 91.32 93.78 81.85 90.61 91.38
Link-DGP-3 (ours) 97.96 93.46 94.82 83.82 90.73 91.92
Link-DGP-4 (ours) 98.16 92.24 93.90 85.34 94.16 92.46

Table 1. Experimental results for the proposed graph-convolutional Gaussian process for link prediction in its single-layer version
(Link-GP) and in its multi-layer version (Link-DGP), with varying number of layers. We compare the results to the variational graph
auto-encoder (Kipf & Welling, 2016) and the graph2gauss model (Bojchevski & Günnemann, 2018), in terms of area under the ROC
curve (AUC) and average precision (AP).

Variational inducing point approximation When using
our model either as a standalone Gaussian process or as part
of a deep Gaussian process, we wish to leverage inducing
points to address an intractable posterior and scale the model
to large data sets.

However, naively placing a set of of M pseudo-inputs onto
the signal domain RD×1 fails because of the functional form
of the kernel c, which expects separate inputs for the two
nodes of an edge. Hence, we require inducing edges that
are represented by pairs of inducing points. We solve this
problem by constructing a randomly generated, connected
inducing graph Ḡ = (V̄, Ē) with |V̄| = N̄ and |Ē | = Ē
and placing pseudo-input zi ∈ RD×1 on each of the N̄
nodes in the inducing graph. Each pseudo-input represents
a node feature on the inducing graph. These pseudo-node
features are optimised such that the inducing edges are most
informative for posterior inference of missing links in the
input graph.

The pseudo-inputs zi ∈ RD×1 on the nodes of the inducing
graph are placed onto the domain of f . As the real input
points, unlike the pseudo-inputs, are subject to a graph con-
volution, we have to employ straightforward inter-domain
inference (Lázaro-Gredilla & Figueiras-Vidal, 2009; van der
Wilk et al., 2017) for predicting missing links.

3.3. Deep Graph Convolutional Gaussian Process for
Link Prediction

The model described by Equation 10 can readily be used for
link prediction tasks. However, higher model expressiveness
can be achieved by deep Gaussian process models, thus
more accurately capturing the mapping from node features
to linkage information. The two Gaussian process models
introduced so far, graph convolutional Gaussian process over
nodes (Node-GP) from Equation 6 and graph convolutional
Gaussian process over links (Link-GP) from Equation 10,
will be used as units within the deep Gaussian process layers.
For a deep Gaussian process with a total of L layers, we
propose to use Node-GP units in the first L − 1 layers

followed by a final layer consisting of a single Link-GP
unit. The first L − 1 layers are responsible for extracting
node representations and the final layer derives from these a
distribution over a pair of nodes.

4. Results and Conclusion
We apply our method to a set of benchmark data sets for link
prediction covering a wide range of domains. The data sets
are USAir (Batagelj & Mrvar, 2006), C.ele (Watts & Stro-
gatz, 1998), and Router (Spring et al., 2004). An overview of
the data set statistics along with details on the training setup
are provided in the appendix. Notably, Gaussian processes
tend not to suffer from overfitting, hence it is not necessary
to set aside a validation data set. We compare the results of
our single-layer and deep graph convolutional Gaussian pro-
cesses to those of the variational graph auto-encoder (Kipf
& Welling, 2016) and the graph2gauss model (Bojchevski
& Günnemann, 2018) in Table 1.

We find that the single-layer graph convolutional Gaussian
process (Link-GP) outperforms the baseline models on all
three data sets in terms of AUC but falls short in terms of
AP on the USAir and C.ele data set. The deep graph convo-
lutional Gaussian process outperforms all baselines both in
terms of AUC and AP, often by a large margin. We also find
that the deep Gaussian process (Link-DGP) achieves better
results compared to its single-layer variant on all data sets
and both in terms of AUC and AP. Performance differences
between deep Gaussian processes with varying number of
layers are small, with the best results achieved with three to
four layers.

The results show that the deep Gaussian processes clearly
outperform the parametric baselines. We also note perfor-
mance benefits of using a hierarchy of Gaussian processes
over a single-layer Gaussian process. Deeper Gaussian pro-
cesses with more than two layers tend to perform better,
however the differences are less pronounced. We investi-
gate the effect of deeper hierarchies, among other model
properties, in more detail in an upcoming full-length paper.
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Data # nodes # edges average node degree

USAir 332 2,126 12.81
C.ele 297 2,148 14.46
Router 5,022 6,258 2.49

Table 2. Statistics of the data sets used in our experiments.

A. Training Setup
The data set statistics are shown in Table 2. The training
setup for the models compared in Section 4 are as follows:

Baselines For the variational graph auto-encoder and the
graph2gauss model, we use the implementation provided
by the authors with the hyperparameters described in the
paper. Both can be used without a validation set, which is
the option we choose for our evaluation.

Single-layer Gaussian processes In all our experiments,
we set the maximum number of convolutions to K = 2. A
random, connected inducing graph with |V̄ | = |V |

8 nodes
and |Ē| = 2|V̄ | edges is drawn from an Erdős-Rényi
model (Erdös & Rényi, 1959). The pseudo-inputs are ini-
tialised with K-means on the training data set. We use a
constant mean function and a polynomial kernel of degree
three for the base kernel of the graph convolutional Gaussian
process. The convolution weights λ1 and λ2 are initialised
to 0.5 and 0.3 respectively. As the data sets come without
node features, we use node2vec embeddings of size 128,
following (Zhang & Chen, 2018). To improve scalability,
we sample nodes from the neighbourhoods of the nodes
incident to the target edge, which will then form the domain
of the convolution operation (Hamilton et al., 2017). We
sample up to 20 distinct 1-hop neighbours and up to 10 dis-
tinct 2-hop neighbours. For parameter optimisation, we use
the Adam optimiser (Kingma & Ba, 2015) with a learning
rate of 0.005. We train our models for up to 1000 epochs
with a batch size of 256 edges and stop training early if
there is no improvement in ELBO over 100 epochs. All
experiments were performed on a NVIDIA Titan X GPU
with Pascal architecture and 12GB of memory.

Deep Gaussian processes For hyperparameters that the
single-layer Link-GP and the deep Link-DGP have in com-
mon, we use the same hyperparameter values, with the ex-
ception of the base kernel of the graph convolutional Gaus-
sian processes, where we use a radial basis function kernel
(RBF) with automatic relevance determination (ARD)

k(x,x′) = ν exp

(
−1

2

D∑
d=1

(xd − x′d)2

l2d

)
. (11)

Its variance ν and lengthscales ld are initialised to 1.0. Each
hidden layer of the Link-DGP consists of 32 Gaussian pro-

cess units. A single sample is used to approximate the likeli-
hood term of the ELBO (cf. Equation 4) during training and
50 during testing. Further model details follow the approach
by (Salimbeni & Deisenroth, 2017). The mean functions of
hidden layers are initialised to linear maps m(X) = XW.
If the input dimensions of the layer is less or equal to the
output dimension, the (potentially zero-padded) identity ma-
trix is used for W. If the input dimensions is greater than
the output dimension, W is the PCA mapping with as many
eigenvectors as the output dimensionality of the layer. In-
ducing means ml are initialised to 0 and inducing variances
Sl to the identity matrix, scaled by 10−5 for hidden layers.

Deep Gaussian processes often require training with a cold
posterior for the first few epochs, referring to training with
a scaled down KL-term in Equation 4. We initially optimise
the ELBO without the KL-term until the training likelihood
has decreased by 10% compared to its value after the first
epoch and then increase the KL-scaling term from 0.0 to
1.0 over 100 epochs using x5 for interpolation.


