
Deep Lagrangian Propagation in Graph Neural Networks

Matteo Tiezzi 1 Giuseppe Marra 2 Stefano Melacci 1 Marco Maggini 1

Abstract

Graph Neural Networks (Scarselli et al., 2009)
exploit an iterative diffusion procedure to com-
pute the node states as the fixed point of the train-
able state transition function. In this paper, we
show how to cast this scheme as a constrained
optimization problem, thus avoiding the unfold-
ing procedure required for the computation of the
fixed point. This is done by searching for saddle
points of the Lagrangian function in the space of
the weights, state variables and Lagrange multipli-
ers. The proposed approach shows state-of-the-art
performance in multiple standard benchmarks in
graph domains.

1. Introduction
Graph Neural Networks (GNNs) (Scarselli et al., 2009) are
neural models capable of learning task-dependent represen-
tations of the nodes of a graph, exploiting both the features
attached to each node and the graph topology. In particular,
given an input graph G = (V,E), where V is the finite set
of nodes and E ⊆ V × V collects the arcs, GNNs perform
the encoding (or aggregation) phase yielding a state vector
for each node in V by (iteratively) combining the states of
neighboring nodes; then, in the output (or readout) phase,
the node states are exploited to compute the model output.

Hence, the GNN processing scheme is defined by the state
transition function fa and the output function fr, as follows:

x(t+1)
v = fa(x

(t)
ne[v], lne[v], lv, l(ne[v],v)|θfa) (1)

yv = fr(x
(T)
v |θfr); (2)

where x(t)
v ∈ Rs is the state of node v at iteration t, ne[v] are

the neighbors of v and lv, lne[v] ∈ Rm, l(ne[v],v) ∈ Rd en-
code additional information (sometimes referred as labels)

1Department of Information Engineering and Mathematical
Sciences, University of Siena, Italy 2KU Leuven, Leuven, Belgium.
Correspondence to: Matteo Tiezzi <mtiezzi@diism.unisi.it>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 108, 2020. Copyright 2020 by
the author(s).

on the node v, on its neighbors and on the arcs connecting
them. The vectors θfa and θfr collect the GNN parameters
(i.e. the weights of the neural networks implementing the
two functions) that are adapted by the learning procedure.
Different implementations have been proposed for fa (Xu
et al., 2018).

The application of the state transition function fa fosters a
diffusion mechanism on the graph, that is iterated for T steps
to yield the node state representations. In fact, by applying
t times the aggregation of 1-hop neighborhoods by fa, the
information at a given node can be propagated to the nodes
that are at most t-hops away. In the original GNN model
(Scarselli et al., 2009), Eq. (1) is repeated until convergence
of the state representation, i.e. until x(T)

v ' x(T−1)
v , v ∈ V .

This means that fa reached its fixed point, hence satisfying
the constraint1:

∀v ∈ V, xv = fa,v . (3)

Whilst being abandoned in recent literature (Kipf & Welling,
2017) because of its high computational burden, the fixed
point formulation of GNNs is more general than executing
a fixed, small, number of aggregation iterations.

In this paper, we propose a new learning mechanism for
the original GNNs, which recovers the fixed point compu-
tation of the transition function. In particular, node states
xv, v ∈ V are considered as new parameters of the problem.
The learning algorithm, framed in the Lagrangian setting,
seeks for node states and network parameters that maximize
simultaneously the satisfaction of the fixed point constraint
of Eq. (3) and the learning objective. By straightforwardly
exploiting existing works in constraint-based neural net-
works (Carreira-Perpinan & Wang, 2014; Marra et al., 2020),
the proposed model, hereafter referred to as Lagrangian
Propagation GNN (LP-GNN), realizes a multi-layer GNN
scheme by optimizing multiple stacked representations of
each node by means of a pipeline of fixed-point constraints.
The proposed method shows state-of-the-art performance in
several benchmarks.

The paper is structured as follows. In Section 2, we present
related approaches. Then, in Section 3 the LP-GNN for-
mulation is presented. Section 4 reports the experimental
evaluation of the proposed scheme. Finally, Section 5 draws

1Henceforth, fa,v is used to denote the state transition function
applied to a node v ∈ V as in Eq. (1).

Deep Lagrangian Propagation in Graph Neural Networks

the conclusions.

2. Related Works
A constrained fixed-point formulation for neural networks
is used in other approaches, such as SSE (Dai et al., 2018)
where the policy iteration algorithm is applied for the in-
terleaved evaluation of the fixed point equation and the
improvement of the transition and output functions.

The costly iterative procedure aimed at computing the fixed
point of the transition function has been simplified (Li et al.,
2016) and then removed in the recent literature, which is
now extremely heterogeneous. Spectral approaches exploit
particular embeddings of the graph and the spectral con-
volution (Bruna et al., 2014). Other works are based on
smooth reparametrization (Henaff et al., 2015) or approxi-
mation of the spectral filters (Defferrard et al., 2016). Graph
Convolutional Networks (GCNs) (Kipf & Welling, 2017)
are based on filters considering a 1-hop neighborhood of
each node. Spatial methods, like PATCHY-SAN (Niepert
et al., 2016; Duvenaud et al., 2015), DCNNs (Atwood &
Towsley, 2016), GraphSAGE (Hamilton et al., 2017), GATs
(Veličković et al., 2017), DGCNN (Zhang et al., 2018),
GIN (Xu et al., 2018), exploit directly the graph topology,
without the need of an intermediate representation. AWE
(Ivanov & Burnaev, 2018) exploits kernel-based methods
with a learning-based approach to learn graph embeddings.

In a more general context, neural network learning can be
cast as a Lagrangian optimization problem (LeCun et al.
(1988), Carreira-Perpinan & Wang (2014), Taylor et al.
(2016), Marra et al. (2020)), by a formulation that requires
the minimization of the classical data fitting loss and the
satisfaction of a set of architectural constraints that describe
the computation performed on the data. Then, the solution
is computed by finding the saddle points of the associated
Lagrangian in the space defined by the original network
parameters and the Lagrange multipliers.

3. Deep Lagrangian Propagation GNNs
Let us introduce a set of K states for each node v ∈ V ,
organized into K layers, {xv,k, k = 0, . . . ,K − 1}. At the
layers k > 0, the state computed at the previous layer k − 1
is considered as an additional input of the state transition
function fka (Bianchini et al., 2018). The states xkv of layer
k can be defined as the fixed point of

xv,k = fka (xne[v],k, xv,k−1, lne[v], lv, l(v,ne[v])|θfa) (4)

and they can be computed layer by layer from layer 0 to
layer K − 1, being xv,k−1 constant when computing xv,k.
For compactness, in the following Eq. 4 will be denoted as
xkv = fka,v .

By adding free variables corresponding to the node states

xkv , Eq. 4 defines a constraint on xkv as follows:

G(xv,k − fka,v) = 0, ∀ v ∈ V, ∀ k ∈ [0,K − 1] (5)

where G(x) is a function characterized by G(0) = 0, such
that the satisfaction of the constraints implies the solution
of Eq. (4). Possible choices are G(x) = x, G(x) = x2, or
G(x) = max(||x||1− ε, 0), where ε ≥ 0 is a parameter that,
when set to a small positive value, allows a given tolerance
in the satisfaction of the constraint.

Consider a node-focused task, such that for some (or all)
nodes v ∈ S ⊆ V of the input graph G, a target output yv is
provided as a supervision2. Let L(fr(xv|θfrr), yv) be the
loss function used to measure the target fitting approxima-
tion for node v ∈ S. Then, we can define the learning task
as the following constrained optimization problem:

min
Θfa ,θfr ,X

∑
v∈S

L(fr(xv,K−1 | θfr), yv)

s. t. G(xv,k − fka,v) = 0, ∀ v ∈ V, ∀ k ∈ [0,K − 1]

(6)

where Θfa =
î
θf0

a
, . . . , θfK−1

a

ó
collects the weights of the

neural networks implementing the transition function of
each layer, andX collects all the states xv,k. By introducing
a Lagrange multiplier λkv for each constraint, we define the
Lagrangian associated to the problem of Eq. (6), as

L(θfa , θfr , X,Λ) =
∑
v∈S

[
L(fr(xv | θfr), yv)+

+

K−1∑
k=0

λkvG (xv − fa,v)
]

(7)

where Λ is the set of the Lagrangian multipliers λkv . Finally,
the unconstrained optimization problem is defined as the
search for saddle points in the adjoint space (Θfa , θfr , X,Λ)
as

min
Θfa ,θfr ,X

max
Λ
L(Θfa , θfr , X,Λ) (8)

that can be solved by gradient descent with respect to the
variables Θfa , θfr , X and gradient ascent with respect to
the Lagrange multipliers Λ (Platt & Barr, 1988). The gradi-
ent can be computed locally to each node, given the local
variables and those of the neighboring nodes (see Appendix
A).

Even if the proposed formulation adds the free state vari-
ables xv and the Lagrange multipliers λkv , ∀ v ∈ V, ∀ k ∈

2We consider only the case when a single graph is provided for
learning. The extension for more graphs is straightforward, since
they can be considered as a single graph composed by the given
graphs as disconnected components.

Deep Lagrangian Propagation in Graph Neural Networks

[0,K − 1], there is no significant increase in the memory
requirements. The persistent state variable matrix requires
O(K|V |), where |V | denotes the number of nodes. Sim-
ilarly to other common graph neural models, we exploit
synchronous updates among all nodes and a stacked dif-
fusion process for the node state embedding computation,
with a computational complexity for each parameter update
of O(K(|V |+ |E|)), where |E| is the number of edges. In
the proposed algorithm, the diffusion process is turned itself
into an optimization process that must be carried out both
when learning and when making predictions. This is deeply
different both from original GNNs (Scarselli et al., 2009),
where it is realized by the unrolling of the transition func-
tion, and from Graph Convolutional Networks (GCN) (Kipf
& Welling, 2017), where it is embedded into the layer-wise
projection. Differently from (Carreira-Perpinan & Wang,
2014), the constraint scheme is exploited only to enforce
the fixed-point computation, while backpropagation is still
exploited to efficiently update the weights of the neural net-
works fa and fr. Finally, in the proposed approach, there
is a strict distinction between the deep feature extraction
of the architecture and the diffusion mechanism. Diffusion
is realised by looking for a fixed point of the state transi-
tion function, while deep feature extraction is realised by
stacking multiple layers of node states, enabling a separate
diffusion process at each layer. These two aspects are in-
stead mixed in GCNs, where deep architectures are needed
both to spread information among nodes and to extract more
meaningful features for the task at hand.

4. Experiments
We implemented the algorithm described in the previous
sections using TensorFlow. For the experimental setting see
Appendix B.

4.1. Artificial Tasks

We consider two classical graph processing tasks, subgraph
matching, i.e. identifying nodes belonging to a specific
subgraph, and clique localization, i.e. detecting nodes
belonging to a clique. We compared different functions
G(x) to enforce the constraints: ε-insensitive functions, i.e
G(x) = 0, ∀x : −ε ≤ x ≤ ε; unilateral functions, i.e.
G(x) ∈ R+; and bilateral functions, i.e. G(x) ∈ R (a G
function is either unilateral or bilateral). In particular, we
considered: max(x, ε)−max(−x, ε) (lin), max(|x| − ε, 0)
(abs), and x2 (squared). Results are presented in Table 1.
Unilateral functions usually yield better performances than
equivalent bilateral constraints. This might be due to the
fact that keeping constraints positive (as in unilateral con-
straints) provides a more stable learning process. More-
over, smoother constraints (i.e squared) or ε–insensitive
constraints tend to perform slightly better than the hard ver-

sions. This can be due to the fact that as the constraints are
close to 0 they tend to give a small or null contribution, for
squared and abs-ε respectively, acting as regularizers.

Model ε Subgraph Clique

LP-abs
0.00 96.25 0.96 88.80 4.82
0.01 96.30 0.87 88.75 5.03
0.10 95.80 0.85 85.88 4.13

LP-lin
0.00 95.94 0.91 84.61 2.49
0.01 95.94 0.91 85.21 0.54
0.10 95.80 0.85 85.14 2.17

LP-squared - 96.17 1.01 93.07 2.18

GNN - 95.86 0.64 91.86 1.12

Table 1. Accuracy on the artificial datasets, for the proposed model
Lagrangian Propagation (LP)-GNN and the original GNN model
(Scarselli et al., 2009) for different settings.

4.2. Karate club dataset

A very interesting analysis (Kipf & Welling, 2017) consists
in how latent representations of nodes (states) evolve dur-
ing the learning process. When there is no dependence on
node labels (l0v), the states are continuous representations of
topological features of the nodes in the graph. In order to
perform this evaluation, we exploit the Zachary Karate Club
dataset (Zachary, 1977). Each node (labeled by one out
of four classes via modularity-based clustering) represents
one of the 34 members of the club, and each of the 154
edges represents a tie between two members. We trained
a layered Lagrangian Propagation GNN (LP-GNN) with
three state layers (K = 3), having a two–dimensional state
in the last layer. A shallow softmax regressor is used as
output function, to force a linear separation among classes.
Moreover, node-attached features of the given data were
totally removed in order to force the algorithm to exploit
only structural properties in the solution of the classification
task. Figure 1 shows how the node states evolve over time.

4.3. Graph Classification

We considered 4 benchmarks in bioinformatics (MUTAG,
PTC, NCI1, PROTEINS) and 2 in social network analy-
sis (IMDB-BINARY, IMDB-MULTI) (Yanardag & Vish-
wanathan, 2015). In MUTAG, PTC, NCI1, and PROTEINS,
the graph nodes have categorical input features (e.g. the
atom symbol). In the social network datasets, there are no
node features and we followed the approach in Xu et al.
(2018), where the nodes were labeled by one-hot encodings
of their degrees. Dataset statistics are summarized in Table
2.

We compared the proposed LP-GNN model with other state-
of-the-art neural models for graph classification. LP-GNN
is proposed both in a shallow version (K = 1, LP-GNN-
SINGLE) and in a deep version (K > 1, LP-GNN-MULTI).

Deep Lagrangian Propagation in Graph Neural Networks

Figure 1. Evolution of the node state embeddings: beginning, after 200 epochs and at convergence. Point colors correspond to the ground
truth class, while background colors denote the regions of the predicted class.

Datasets IMDB-B IMDB-M MUTAG PROT. PTC NCI1
graphs 1000 1500 188 1113 344 4110
classes 2 3 2 2 2 2
Avg # nodes 19.8 13.0 17.9 39.1 25.5 29.8

DCNN 49.1 33.5 67.0 61.3 56.6 62.6
PATCHYSAN 71.0± 2.2 45.2± 2.8 92.6± 4.2 75.9± 2.8 60.0± 4.8 78.6± 1.9
DGCNN 70.0 47.8 85.8 75.5 58.6 74.4
AWE 74.5± 5.9 51.5± 3.6 87.9± 9.8 – – –
GRAPHSAGE 72.3± 5.3 50.9± 2.2 85.1± 7.6 75.9± 3.2 63.9± 7.7 77.7± 1.5
GIN 75.1± 5.1 52.3± 2.8 89.4± 5.6 76.2± 2.8 64.6± 7.0 82.7± 1.7
GNN 60.9± 5.7 41.1± 3.8 88.8± 11.5 76.4± 4.4 61.2± 8.5 51.5± 2.6
LP-GNN-SINGLE 71.2± 4.7 46.6± 3.7 90.5± 7.0 77.1± 4.3 64.4± 5.9 68.4± 2.1
LP-GNN-MULTI 76.2± 3.2 51.1± 2.1 92.2± 5.6 77.5± 5.2 67.9± 7.2 74.9± 2.4

Table 2. Average and standard deviation of the classification accuracy on the graph classification benchmarks, evaluated on the test set, for
different GNN models. The models used in the comparison (first column) are reported in Section 2.

All the GNN-like models have a number of layers/iterations
equal to 5 (as in the original papers). For graph-focused
tasks the readout function exploits an aggregated represen-
tation obtained, in the specific implementation, by summing
or averaging the top-most layer node states, xK−1

v . Results
are shown in Table 2. The deep version of the proposed
model (LP-GNN-MULTI) compares similarly or favourably
to all the other methods. Despite the fact that LP-GNN-
SINGLE is the unique neural model not relying on a deep
stack of layers, it already offers performances that, on aver-
age, are preferable or on-par to the ones obtained by more
complex models that exploit a larger amount of parameters.
Hence, it seems that some tasks suffice a shallow represen-
tation of the nodes, but still need a diffusion process to take
place. LP-GNN can naturally model this diffusion, without
the need of deep architectures. On the other side, GCN-like
models need to stack multiple layers to achieve this result.

To investigate further this aspect, we compared LP-GNNs
with the state-of-the-art GIN (Xu et al., 2018) model on
the IMDB-B dataset (since it contains no node features),
when increasing the number of state layers. The goal is to
show that shallow LP-GNNs (one layer) can still yield good
performances, since the diffusion process is independent of
the depth of the network. Conversely, we expect the GIN
model, as other GCNs, to need deep architectures with a
larger number of parameters for the diffusion process to take
place. Results are shown in Table 3. For a number of layers

Model Number of State Layers
1 2 3 5

GIN (Xu et al., 2018) 52 72.6 72.7 75.1
LP-GNN 71.2 73.7 73.9 76.2

Table 3. Average test accuracy on the IMDB-B dataset for LP-
GNN and GIN model with state layers K ∈ [1, 5].

greater than 1, the two models perform similarly, reaching
good performances just for K ≥ 2. However, with only
1 layer, the GIN model exploits information available in
1-hop neighbors, reaching a 52% accuracy (which is close
to random in a binary classification task). On the contrary,
LP-GNN yields 71.2% of accuracy. This suggests that GCN
architectures need a second layer (and thus a larger number
of parameters) to perform the diffusion at 2-hop neighbors,
rather than for exploiting a higher representational power.

5. Conclusions
We proposed an approach for training GNN models cast
as a constrained optimization problem, avoiding the ex-
plicit computation of the fixed point needed to encode the
graph. The resulting algorithm, Lagrangian Propagation
GNN, yields state-of-the-art performances in multiple tasks,
showing the tradeoff between the information diffusion pro-
cess and the depth of the model.

Deep Lagrangian Propagation in Graph Neural Networks

References
Atwood, J. and Towsley, D. Diffusion-convolutional neural

networks. In Advances in Neural Information Process-
ing Systems 29: Annual Conference on Neural Infor-
mation Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pp. 1993–2001, 2016.

Bianchini, M., Dimitri, G. M., Maggini, M., and Scarselli,
F. Deep Neural Networks for Structured Data, pp.
29–51. Springer International Publishing, Cham,
2018. ISBN 978-3-319-89629-8. doi: 10.1007/
978-3-319-89629-8 2. URL https://doi.org/10.
1007/978-3-319-89629-8_2.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spec-
tral networks and locally connected networks on graphs.
In 2nd International Conference on Learning Repre-
sentations, ICLR 2014, Banff, AB, Canada, April 14-
16, 2014, Conference Track Proceedings, 2014. URL
http://arxiv.org/abs/1312.6203.

Carreira-Perpinan, M. and Wang, W. Distributed optimiza-
tion of deeply nested systems. In Artificial Intelligence
and Statistics, pp. 10–19, 2014.

Dai, H., Kozareva, Z., Dai, B., Smola, A., and Song, L.
Learning steady-states of iterative algorithms over graphs.
In International Conference on Machine Learning, pp.
1114–1122, 2018.

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-
volutional neural networks on graphs with fast localized
spectral filtering. In Advances in Neural Information
Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10,
2016, Barcelona, Spain, pp. 3837–3845, 2016.

Duvenaud, D. K., Maclaurin, D., Aguilera-Iparraguirre, J.,
Gómez-Bombarelli, R., Hirzel, T., Aspuru-Guzik, A.,
and Adams, R. P. Convolutional networks on graphs for
learning molecular fingerprints. In Advances in Neural In-
formation Processing Systems 28: Annual Conference on
Neural Information Processing Systems 2015, December
7-12, 2015, Montreal, Quebec, Canada, pp. 2224–2232,
2015.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive
representation learning on large graphs. In NIPS, 2017.

Henaff, M., Bruna, J., and LeCun, Y. Deep convo-
lutional networks on graph-structured data. CoRR,
abs/1506.05163, 2015. URL http://arxiv.org/
abs/1506.05163.

Ivanov, S. and Burnaev, E. Anonymous walk embeddings.
arXiv preprint arXiv:1805.11921, 2018.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In 5th International
Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track
Proceedings, 2017.

LeCun, Y., Touresky, D., Hinton, G., and Sejnowski, T. A
theoretical framework for back-propagation. In Proceed-
ings of the 1988 connectionist models summer school,
volume 1, pp. 21–28. CMU, Pittsburgh, Pa: Morgan Kauf-
mann, 1988.

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. S.
Gated graph sequence neural networks. In 4th Interna-
tional Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings, 2016. URL http://arxiv.org/
abs/1511.05493.

Marra, G., Tiezzi, M., Melacci, S., Betti, A., Maggini, M.,
and Gori, M. Local propagation in constraint-based neu-
ral network. arXiv preprint arXiv:2002.07720, 2020.

Niepert, M., Ahmed, M., and Kutzkov, K. Learning convo-
lutional neural networks for graphs. In Proceedings of
the 33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24, 2016,
pp. 2014–2023, 2016. URL http://jmlr.org/
proceedings/papers/v48/niepert16.html.

Platt, J. C. and Barr, A. H. Constrained differential opti-
mization. In Neural Information Processing Systems, pp.
612–621, 1988.

Rossi, A., Tiezzi, M., Dimitri, G. M., Bianchini, M., Mag-
gini, M., and Scarselli, F. Inductive–transductive learn-
ing with graph neural networks. In IAPR Workshop on
Artificial Neural Networks in Pattern Recognition, pp.
201–212. Springer, 2018.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
Trans. Neural Networks, 20(1):61–80, 2009. doi: 10.
1109/TNN.2008.2005605. URL https://doi.org/
10.1109/TNN.2008.2005605.

Taylor, G., Burmeister, R., Xu, Z., Singh, B., Patel, A., and
Goldstein, T. Training neural networks without gradients:
A scalable admm approach. In International conference
on machine learning, pp. 2722–2731, 2016.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. arXiv
preprint arXiv:1710.10903, 2017.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? CoRR, abs/1810.00826, 2018.
URL http://arxiv.org/abs/1810.00826.

https://doi.org/10.1007/978-3-319-89629-8_2
https://doi.org/10.1007/978-3-319-89629-8_2
http://arxiv.org/abs/1312.6203
http://arxiv.org/abs/1506.05163
http://arxiv.org/abs/1506.05163
http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1511.05493
http://jmlr.org/proceedings/papers/v48/niepert16.html
http://jmlr.org/proceedings/papers/v48/niepert16.html
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
http://arxiv.org/abs/1810.00826

Deep Lagrangian Propagation in Graph Neural Networks

Yanardag, P. and Vishwanathan, S. Deep graph kernels.
In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pp. 1365–1374. ACM, 2015.

Zachary, W. W. An information flow model for conflict
and fission in small groups. Journal of anthropological
research, 33(4):452–473, 1977.

Zhang, M., Cui, Z., Neumann, M., and Chen, Y. An end-to-
end deep learning architecture for graph classification.
In Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and the
8th AAAI Symposium on Educational Advances in Arti-
ficial Intelligence (EAAI-18), New Orleans, Louisiana,
USA, February 2-7, 2018, pp. 4438–4445, 2018. URL
https://www.aaai.org/ocs/index.php/
AAAI/AAAI18/paper/view/17146.

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17146
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17146

Deep Lagrangian Propagation in Graph Neural Networks

A. Lagrangian derivatives
For simplicity, we consider the case of a single layer LP-
GNN, i.e. K = 1, and Θfa = [θf0

a
]. The derivatives of the

Lagrangian with respect to the considered parameters are:

∂L
∂xv

= L′f ′r,v + λvG′v(1− f ′a,v)−
∑

w:v∈ne[w]

λwG′wf ′a,w

(9)
∂L
∂θfa

= −
∑
v∈S

λvG′vf ′a,v (10)

∂L
∂θfr

=
∑
v∈S

L′f ′r,v (11)

∂L
∂λv

= Gv (12)

where f ′a,v is the derivative of fa,v computed with respect
to the same argument as in the partial derivative on the left
side, fr,v = fr(xv|θfr), f ′r,v is its first derivative, Gv =
G (xv − fa,v) and G′v is its first derivative, and, finally, L′

is the first derivative of L. Note that when parameters are
vectors, the reported gradients should be considered element-
wise.

B. Experimental settings
B.1. Artificial Tasks

We tuned the hyperparameters on the validation data, by
selecting the node state dimension from the set {5, 10, 35};
the dropout drop-rate from the set {0, 0.7}; the state transi-
tion function from {f (SUM)

a,v , f (AVG)
a,v } where:

f (SUM)
a,v =

∑
u∈ne[v]

h(xu, lu, lv, l(u,v) | θh)

f (AVG)
a,v = 1

|ne[v]|

∑
u∈ne[v]

h(xu, lu, lv, l(u,v) | θh),

with the function h() computed by a feedforward neural
network with s outputs, whose input is the concatenation
of its arguments (i.e. the input is a vector of s + 2m + d
entries); their number of hidden units in {5, 20, 50}. We
used the Adam optimizer (TensorFlow). The learning rate
for the parameters Θfa and θfr is selected from the set
{10−5, 10−4, 10−3}, and the learning rate for the variables
xv and λv from the set {10−4, 10−3, 10−2}.

Subgraph Matching. Given a graph G and a graph S
such that |S| ≤ |G|, the subgraph matching problem con-
sists in finding the nodes of a subgraph Ŝ ⊂ G which is
isomorphic to S. The task is that of learning a function τ ,

such that τS(G,n) = 1, n ∈ V , when the node n belongs to
the given subgraph S, otherwise τS(G,n) = 0. Our dataset
is composed of 100 different graphs, each one having 7
nodes. The number of nodes of the target subgraph S is
instead 3.

Clique localization. A clique is a complete graph, i.e. a
graph in which each node is connected with all the others.
In a network, overlapping cliques (i.e. cliques that share
some nodes) are admitted. Clique localization is a particular
instance of the subgraph matching problem, with S being
complete. In the experiments, we consider a dataset com-
posed by graphs having 7 nodes each, where the dimension
of the maximal clique is 3 nodes.

B.2. Graph Classification

The models used in the comparison are: Diffusion-
Convolutional Neural Networks (DCNN) (Atwood &
Towsley, 2016), PATCHY-SAN (Niepert et al., 2016), Deep
Graph CNN (DGCNN) (Zhang et al., 2018), AWE (Ivanov
& Burnaev, 2018), GraphSAGE (Hamilton et al., 2017) ,
GIN-GNN (Xu et al., 2018), original GNN (Scarselli et al.,
2009; Rossi et al., 2018). Apart from original GNN, we
report the accuracy as reported in the referred papers.

The readout function exploits an aggregated representation
obtained, in the specific implementation, by summing the
top-most layer node states, xK−1

v :

yG = fr

(∑
v∈V

xK−1
v | θfr

)
.

We tuned the hyperparameters by searching: (1) the number
of hidden units for both the fa and fr functions from the set
{5, 20, 50, 70, 150}; (2) the state transition function from
{f (SUM)
a,v , f (AVG)

a,v }; (3) the dropout ratio from {0, 0.7}; (4)
the size of the node state xv from {10, 35, 50, 70, 150};
(5) learning rates for both the θfa , θfr , xv and λv from
{0.1, 0.01, 0.001}.

