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Abstract

We introduce the SE(3)-Transformer, a variant
of the self-attention module for 3D point clouds,
which is equivariant under continuous 3D roto-
translations. Equivariance is important to ensure
stable and predictable performance in the pres-
ence of nuisance transformations of the data in-
put. A positive corollary of equivariance is in-
creased weight-tying within the model, leading to
fewer trainable parameters and thus decreased
sample complexity (i.e. we need less training
data). The SE(3)-Transformer leverages the ben-
efits of self-attention to operate on large point
clouds with varying number of points, while guar-
anteeing SE(3)-equivariance for robustness. We
achieve competitive performance on two real-
world datasets, ScanObjectNN and QM9.

1. Introduction

Self-attention mechanisms [23] have enjoyed a sharp rise in
popularity in the last few years. Their relative implementa-
tional simplicity coupled with high efficacy on a wide range
of tasks such as language modeling [23], image recognition
[14], or graph-based problems [24], make them an attractive
component to use. However, their generality of application
means that for specific tasks, knowledge of existing under-
lying structure is unused. In this paper, we propose the
SE(3)-Transformer shown in Fig. 1, a self-attention mecha-
nism specifically for 3D point cloud data, which adheres to
equivariance constraints, improving robustness to nuisance
transformations and general performance.

Point cloud data is ubiquitous across many fields, present-
ing itself in diverse forms such as 3D object scans [21],
molecular structures [17], or particle simulations [10]. Find-
ing neural structures which can adapt to varying number of
points while respecting the irregular sampling of point posi-
tions, is challenging. Furthermore, an important property is
that these structures should be invariant to global changes
in overall input pose; that is, 3D translations and rotations
of the input point cloud should not affect the output. In this
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paper, we find that the explicit imposition of equivariance
constraints on the self-attention mechanism addresses these
challenges. The SE(3)-Transformer uses the self-attention
mechanism as a data-dependent filter particularly suited for
sparse, non-voxelised point cloud data, while respecting and
leveraging the symmetries of the task at hand.

Self-attention itself is a pseudo-linear map between sets
of points. It consists two components: input-dependent
attention weights and an embedding of the input, called
a value embedding. In Fig. 1, we show an example of a
molecular graph with a value embedding vector attached to
every atom and where the attention weights are represented
as edges, with width corresponding to the attention weight
magnitude. In the SE(3)-Transformer, we explicitly design
the attention weights to be invariant to global pose. Fur-
thermore, we design the value embedding to be equivariant
to global pose. Equivariance generalises the translational
weight-tying of convolutions. It ensures that transformations
of a layer’s input manifest as equivalent transformations of
the output. SE(3)-equivariance in particular is the gener-
alisation of translational weight-tying in 2D known from
conventional convolutions to roto-translations in 3D. This
restricts the space of learnable functions to a subspace which
adheres to the symmetries of the task and thus reduces the
number of learnable parameters. Meanwhile, it provides us
with a richer form of invariance, since relative positional
information between features in the input is preserved.

Applicability to Covid19 Research As our results on
the QM9 dataset show, the SE(3)-Transformer is inher-
ently suited for classification and regression problems on
molecules lending itself to application in drug research. We
are currently investigating using the algorithm for early-
stage suitability classification of molecules for inhibiting
the reproductive cycle of the coronavirus. While research
of this sort always requires intensive testing in wet labs,
computer algorithms are being used to filter out promising
compounds from large databases of millions of molecules.

2. Background And Related Work

We are concerned with point cloud based machine learning
tasks, such as object classification. We are given a point
cloud as input, represented as a collection of n coordinate
vectors x; € R? with optional per-point features f; € RY.

2.1. The Attention Mechanism
The standard attention mechanism [23] can be thought of as
consisting of three terms: a set of query vectors q;, a set of
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FIGURE 1: A) Each layer of the SE(3)-Transformer maps from a point cloud to a point cloud while guaranteeing euqivariance. For
classification, this is followed by an invariant pooling layer and an MLP. B) In each layer, for each node, attention is performed. Here, the
red node attends to its neighbours. Attention weights (indicated by line thickness) are invariant w.r.t. rotation of the input.

key vectors K;, and a set of value vectors v;. We interpret
key k;, value v; and query q, as being ‘attached’ to the
points j and 7 respectively.
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In the case of self-attention the query, key, and value vectors
are embeddings of the input features: q=hq (f), k=hx (f),
v=hy (f) where {hg,hi,hy} are, in the most general
case, neural networks [22]. For us, query q; is associated
with a point ¢ in the input, which has a geometric location x;.
Thus, for n points, we have n possible queries. For query
q,, we say that node ¢ attends to all other nodes j # i.

2.2. Equivariance

Given a set of transformations 1,:V—V for g€G, where G
is an abstract group, a function ¢:V— ) is called equivariant
if for every g there exists a S;:Y—) such that

Sglo(v)] = ¢(Ty[v]) forallge G,ve V. (2)

The indices g can be considered as parameters describing
the transformation. Given a pair (T, S,), we can solve for
the family of equivariant functions ¢ satisfying Eq. (2). If
(Ty,Sy) are linear and the map ¢ is also linear, then a very
rich and developed theory already exists for finding ¢ [5].
In the equivariance literature, deep networks are built from
interleaved linear maps ¢ and equivariant nonlinearities. For
3D roto-translations, a suitable structure for ¢ is a Tensor
Field Network [20], explained below.

Group Representations In general, the transformations
(Ty, Sq) are called group representations. Formally, a group
representation p : G — GL(N) is a map from a group G
to the set of N x N invertible matrices GL(N). Critically
p is a group homomorphism; that is, it satisfies the fol-
lowing property p(g192) = p(g1)p(g2) for all gy, gz € G.
Specifically for 3D rotations G = SO(3), it is: 1) its rep-
resentations are orthogonal matrices, 2) all representations
can be decomposed as

plg)=Q" Q, 3)

@De(g)
¢

where Q is an orthogonal, IV x N, change-of-basis matrix

[4]; each D, for £ = 0,1,2, ... is a (2(+1) x (2(+1) ma-
trix known as a Wigner-D matrix and the € is the direct
sum or concatenation of matrices along the diagonal. The
Wigner-D matrices are irreducible representations of SO(3).
They are the ‘smallest’ representations possible. Vectors
transforming according to Dy (i.e. we set Q=I, i=(), are
called type-£ vectors. Type-0 vectors are invariant under
rotations and type-1 vectors rotate according to 3D rotation
matrices. Type-{¢ vectors have length 2/+1. They can be
stacked, forming a vector f which transforms via Eq. (3).

Tensor Field Networks (TFN) [20] are neural networks,
which map point clouds to point clouds under the constraint
of SE(3)-equivariance. For point clouds, the input is a vec-
tor field f:R*—R? of the form f(x)= Z;V=1 f;0(x—x;),

where § is the Dirac delta function, {x,} are the 3D point
coordinates and {f; } are point features, representing such
quantities as atomic number or point identity. For equivari-
ance to be satisfied, the features of a TFN transform under
Eq. (3), where Q=I. Each f} is a concatenation of vectors
of different types, where a subvector of type-£ is written
fﬁ. A TFN layer computes the convolution of a continuous-

in-space, learnable weight kernel W :R3 R (26+1)x(2k+1)
from type-k features to type-¢ features. The type-¢ output
of the TFN layer at position X; is

=3 / WO (¢ — x)th (x) d

k>0
k— £ convolution
. @)
§ : § : Lk k
= W (Xj — Xi)fin,jV
—

k>0j=1
=2J node j — node ¢ message

We can also include a sum over input channels, but we
omit it here. Weiler et al. [26], Thomas et al. [20] and
Kondor [11] showed that the kernel W lies in the span of

an equivariant basis {Wf}k}’}jM ¢|- The kernel is a linear

combination of these basis kernels, where the J™ coefficient
is a learnable function ¢% : R>¢ — R of the radius ||x||:

k+2L
Wrx) = Y eF(IxDWE (), 5
J=|k—¢|
where W (x) = Z;;:_J Yym(x/||x])QY:,. Each basis

kernel WY : R3 — RE(HDX(2k+1) g formed by taking
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FIGURE 2: Updating node features in four steps. Steps 3 and 4 visualise a graph network perspective: features are passed from nodes to
edges to compute keys, queries and values, which depend both on features and relative positions in a rotation-equivariant manner.

a linear combination of Clebsch-Gordan matrices QZJ’jn of
shape (2¢ + 1) x (2k + 1), where the J, m™ linear combi-
nation coefficient is the m™ dimension of the J™ spherical
harmonic Y; : R? — R2/*1, Each basis kernel W% com-
pletely constrains the kernel in the angular direction, leaving
the only learnable degree of freedom in the radial direction.
Note that W% (0) # 0 only when k = ¢ and .J = 0, which
reduces the kernel to a scalar w multiplied by the identity,
W = w1, referred to as self-interaction [20]. As such
we can rewrite the TFN layer as

fﬁut,i = wufign,i + Z Zwek (Xj - Xi)fﬁq,jv (6)

>0 i
self-interaction k20 j7#i

Eq. (4) and Eq. (6) present the convolution in message-
passing form, where messages are aggregated from all nodes
and feature types. They are a form of nonlocal graph op-
eration, where the weights are functions on edges and {f;}
are node features. We show how our attention layer unifies
aspects of convolutions and graph neural networks.

3. Method

Here, we present the SE(3)-Transformer. The layer can be
broken down into a procedure of steps as shown in Fig. 2,
which we describe in the following section. These are the
construction of a graph from a point cloud, the construction
of equivariant edge functions on the graph, how to propa-
gate SE(3)-equivariant messages on the graph, and how to
aggregate them. We also introduce an alternative for the self-
interaction layer, which we call attentive self-interaction.

Neighbourhoods (see Step 1 of Fig. 2) Given a point cloud
{(xi,;)}, we first introduce a collection of neighbourhoods
N; C {1,..., N}, one centered on each point 7. These neigh-
bourhoods are computed either via the nearest-neighbours
methods or may already be defined. For instance, molecular
structures have neighbourhoods defined by their bonding
structure. Neighbourhoods reduce the computational com-
plexity of the attention mechanism from quadratic in the
number of points to linear. The introduction of neighbour-
hoods converts our point cloud into a graph.

The SE(3)-Transformer itself consists of three compo-
nents. These are 1) edge-wise attention weights «;;, con-
structed to be SE(3)-invariant on each edge 77, 2) edge-wise
SE(3)-equivariant value messages, propagating information

between nodes, as found in the TFN convolution of Eq. (4),
and 3) a linear/attentive self-interaction layer. Attention is
performed on a per-neighbourhood basis as follows:

145 Lk
foui= Wik +Z Z aij Wi (x—x)Ey 5 (7)
N—— kZOJGNi\i\(D/a[[_\—’_/

@ self-interact. @ value message

These components are visualised in Fig. 2. If we remove
the attention weights then we have a tensor field convolu-
tion, and if we instead remove the dependence of Wy, on
(x; —X;), we have a conventional attention mechanism. Pro-
vided that the attention weights o;; are invariant, Eq. (7) is
equivariant to SE(3)-transformations. This is because it is
just a linear combination of equivariant value messages. In-
variant attention weights can be achieved with a dot-product
attention structure shown in Eq. (8). This mechanism con-
sists of a normalised inner product between a query vector
q; at node 7 and a set of key vectors {k;; } jen;, along each
edge 77 in the neighbourhood N; where

Tk, q; = @ ngfﬁ,ia ®)

q;
Zj’e./\/i\i e >0 k>0

kij = @ ZW%(X] — Xi)fi];,j' (9)

£>0 k>0

-
el kij

Oéij =

@ is the direct sum, i.e. vector concatenation in this in-
stance. The linear embedding matrices Wgc and W% (x; —
x;) are of TEN type (c.f. Eq. (5)). The attention weights cv;;
are invariant for the following reason. If the input features
{fin,; } are SO(3)-equivariant, then the query q; and key
vectors {k;;} are also SE(3)-equivariant, since the linear
embedding matrices are of TFN type. The inner product of
SO(3)-equivariant vectors, transforming under the same rep-
resentation S, is invariant, since if q — S,q and k — Sk,
then qTS;Sgk = q 'k, because of the orthonormality of
representations of SO(3), mentioned in the background sec-
tion. We chose a softmax nonlinearity to normalise the
attention weights following, e.g., [23, 12].

Angular Modulation The attention weights add extra de-
grees of freedom to the TFN kernel in the angular direction.
This is seen when Eq. (7) is viewed as a convolution with a
data-dependent kernel o Wf,k (x). In the literature, SO(3)
equivariant kernels are decomposed as a sum of products of
learnable radial functions ¢%*(||x||) and non-learnable an-
gular kernels W5 (x/||x|)) (c.f. Eq. (5)). The fixed angular
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TABLE 1: Classification on the *object only’ category of the ScanObjectNN dataset. Std of SE(3)-Transformer over 5 runs is 0.7%.

DeepSet[30] 3DmFV[3] Set Transformer[12] PointNet[15] SpiderCNN[29]

Tensor Field +2[20]  PointNet++[16] ~SE(3)-Transf.+z PointCNN[13] DGCNN[25] PointGLR[18]

No. Points 1024 1024 1024 1024 1024
Accuracy 71.4% 73.8% 74.1% 79.2% 79.5%

128 1024 128 1024 1024 1024
81.0% 84.3% 85.0% 85.5% 86.2% 87.2%

dependence of W*(x/||x||) is an artifact of the equivariance
condition in noncommutative algebras and while necessary
to guarantee equivariance, it is seen as overconstraining
the expressiveness of the kernels. The attention weights
a5 introduce a means to modulate the angular profile of
W4 (x/||x||), while maintaining equivariance.

Channels, Self-interaction Layers, and Non-Linearities
Analogous to conventional neural networks, the SE(3)-
Transformer can straightforwardly be extended to multi-
ple channels per representation degree ¢, so far omitted for
brevity. This sets the stage for self-interaction layers. The
attention layer (c.f. Fig. 2 and circles 1 and 2 of Eq. (7))
aggregates information over nodes and input representation
degrees k. In contrast, the self-interaction layer (c.f. circle
3 of Eq. (7)) exchanges information solely between features
of the same degree and within one node—much akin to
1x1 convolutions in CNNs. In our experiments, we use two
different types of self-interaction layer: (1) linear and (2)
attentive, both of the form

Zw (10)

Linear: Following Schiitt et al. [19], output channels are a
learned linear combination of input channels using one set
of weights wl . = w', per representation degree, shared
across all points. As proposed in Thomas et al. [20], this is
followed by a norm-based non-linearity.

Attentive: We propose an extension of linear self-
interaction, attentive self-interaction, combining self-
interaction and nonlinearity. We replace the learned scalar
weights w . with attention weights output from an MLP,
shown in Eq (l 1) (6 means concatenation.). These weights
are SE(3)-invariant due to the invariance of inner products
of features, transforming under the same representation.

outzc

zcc_MLP @mzcmzc (11)

c,c’

Node and Edge Features Point cloud data often has infor-
mation attached to points (node-features) and connections
between points (edge-features), which we would both like
to pass as inputs into the first layer of the network. Node
information can directly be incorporated via the tensors f; in
Section 2.2 and eq. (7). For incorporating edge information,
note that f; is part of multiple neighbourhoods. One can
replace f; with f;; in Eq. (7). Now, f;; can carry different
information depending on which neighbourhood N; we are
currently performing attention over. In other words, f;; can
carry information both about node j but also about edge
ij. Alternatively, if the edge information is scalar, it can be

incorporated into the weight matrices Wy and Wg as an
input to the radial network (see step 2 in Fig. 2).

4. Experiments

Real-World Object Classification ScanObjectNN is a re-
cently introduced dataset for real-world object classification.
The benchmark provides point clouds of 2902 objects across
15 different categories. We only use the coordinates of the
points as input and object categories as training labels. We
train an SE(3)-Transformer with 4 equivariant layers with
linear self-interaction followed by max-pooling and an MLP.
Interestingly, the task is not fully rotation invariant, in a
statistical sense, as the objects are aligned w.r.t. the gravity
axis. This results in a performance loss when deploying
an SO(3) invariant model. We create an SO(2) invariant
version, SE(3)-Transformer +z, by additionally feeding the
z-component as an type-0 field and the x, y position as an ad-
ditional type-1 field (see Appendix). In Table 1, we compare
our model to the current state-of-the-art in object classifica-
tion. Despite the dataset not playing to the strengths of our
model (full SE(3)-invariance) and a much lower number of
input points, the performance is competitive with models
specifically designed for object classification.

QM9 The QM9 regression dataset [17] is a publicly avail-
able chemical property prediction task. There are 134k
molecules with up to 29 atoms per molecule. Atoms are
represented as a 5 dimensional one-hot node embeddings in
a molecular graph connected by 4 different chemical bond
types (more details in Appendix). ‘Positions’ of each atom
are provided. We show results on the test set of Anderson
et al. [1] for 6 regression tasks in Table 2. Lower is better.
The table is split into non-equivariant (top) and equivariant
models (bottom). Our nearest models are Cormorant and
TFN (own). We see that while not state-of-the-art, we offer
competitive performance, especially against Cormorant and
TFN, which transform under irreducible representations of
SE(3) (like us), unlike LieConv(T3), using a left-regular
representation of SE(3), which may explain its success.

TABLE 2: QM9 Mean Absolute Error. Top: Non-equivariant
models. Bottom: Equivariant models

TaSK a  Ac epomo  ELumO Iz c,
UNITS bohr® meV meV meV D cal/mol K
WaveScatt [8] 160 118 85 76 340 .049
NMP [7] .092 69 43 38 .030 .040
SchNet [19] 235 63 41 34 .033 .033
Cormorant [1] .085 61 34 38 .038 .026
LieConv(T3) [6] .084 49 30 25 .032 .038
TEN [20] 223 58 40 38 .064 101
Us .148 53 36 33 .053 .057
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A. Object Classification Experiments

A particularity of object classification from point clouds is
the large number of points the algorithm needs to handle.
We use up to 200 points out of the available 2024 points
per sample and create neighbourhoods using up to 40 near-
est neighbours. It is worth pointing out that especially in
this setting, adding self-attention (i.e. when comparing the
SE(3) Transformer to Tensor Field Networks) significantly
increased the stability. As a result, when we swapped out the
attention mechanism for a convolution to retrieve the Tensor
Field network baseline, we had to decrease the model size
to obtain stable training. However, we would like to stress
that the Tensor Field network we trained was significantly
bigger than in the original paper [20], mostly enabled by
a faster computation of the spherical harmonics with our
optimised pytorch implementation. We will make this code
available to the public.

For the quantitative comparison to the start-of-the-art in
Table 1, we used 128 input points and neighbourhood size
10 for both the Tensor Field network baseline and the Table 1.
We used farthest point sampling with a random starting point
to retrieve the 128 points from the overall point cloud. We
used degrees up to 3 and 5 channels per degree, which we
had to reduce to 3 channels for the Tensor Field network to
obtain stable training. We used a norm based non-linearity
for the Tensor Field network (as in [20]) and no extra non-
linearity (beyond the softmax in the self-attention algorithm)
for the SE(3) Transformer.

The final layer of the equivariant encoder maps to 64
channels of degree 0 representations. This yields a 64-
dimensional SE(3) invariant representation per point. Next,
we pool over the point dimension followed by an MLP with
one hidden layer of dimension 64, a ReLU and a 15 dimen-
sional output with a cross entropy loss. We trained for 60000
steps with batch size 10. We used the Adam optimizer [9]
with a start learning of 0.01 and a reduction of the learning
rate by 70% every 15000 steps.

The input to the Tensorfield network and the Se(3) Trans-
former are relative x-y-z positions of each point w.r.t. their
neighbours. To guarantee equivariance, these inputs are pro-
vided as fields of degree 1. For the ‘+z‘ versions, however,
we deliberately break the SE(3) equivariance by providing
additional and relative z-position as two additional scalar
fields (i.e. degree 0), as well as relative x-y positions as a
degree 1 field (where the z-component is set to 0).

DeepSet Baseline We originally replicated the implemen-
tation proposed in [30] for their object classification exper-
iment on ModelNet40 [28]. However, most likely due to
the relatively small number of objects in the ScanObjectNN
dataset, we found that reducing model size helped the per-
formance significantly. The reported model had 128 units
per hidden layer (instead of 256) and no dropout but the
same number of layers and type of non-linearity as in [30].

Set Transformer Baseline We used the same architecture
as [12] in their object classification experiment on Model-
Net40 [28] with an ISAB (induced set attention block)-based
encoder followed by PMA (pooling by multihead attention)
and an MLP.

B. QM9 Experiments

The QMY regression dataset [17] is a publicly available
chemical property prediction task consisting of 134k small
drug-like organic molecules with up to 29 atoms per
molecule. There are 5 atomic species (Hydrogen, Car-
bon, Oxygen, Nitrogen, and Flourine) in a molecular graph
connected by chemical bonds of 4 types (single, double,
triple, and aromatic bonds). ‘Positions’ of each atom, mea-
sured in angtroms, are provided. We used the exact same
train/validation/test splits as Anderson et al. [1] of sizes
100k/18Kk/13k.

The architecture we used is shown in Table 3. It consists
of 7 multihead attention layers interspersed with norm non-
linearities, followed by a TFN layer, max pooling, and two
linear layers separated by a ReLU. For each attention layer,
we embed the input to half the number of feature channels
before applying multiheaded attention [23]. Multiheaded
attention is a variation of attention, where we partition the
queries, keys, and values into H attention heads. So if our
embeddings have dimensionality (4, 16) (denoting 4 feature
types with 16 channels each) and we use H = 8§ attention
heads, then we partition the embeddings to shape (4, 2). We
then combine each of the 8 sets of shape (4, 2) queries, keys,
and values individually and then concatenate the results into
a single vector of the original shape (4, 16). The keys and
queries are edge embeddings, and thus the embedding ma-
trices are of TFN type (c.f. Eq. (5)). For TEN type layers,
the radial functions are learnable maps. For these we used
neural networks with architecture shown in Table 4.

For the norm nonlinearities [27], we use

Norm ReLU(f‘) = ReLU(LN (||f€H>) : ||£;| (12)
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where LN is layer norm [2] applied across all features within
a feature type. For the TEN baseline, we used the exact
same architecture but we replaced each of the multiheaded
attention blocks with a TFN layer with the same output
shape.

The input to the network is a sparse molecular graph, with
edges represented by the molecular bonds. The node em-
beedings are a 6 dimensional vector composed of a 5 dimen-
sional one-hot embedding of the 5 atomic species and a 1
dimension integer node embedding for number of protons
per atom. The edges embeddings are a 5 dimensional vector
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FIGURE 3: Attention block for the QM9 dataset. Each component
is listed with a tuple of numbers representing the output feature
types and multiplicities, so (4, 32) means feature types 0, 1,2, 3
(with dimensionalities 1, 3, 5, 7), with 32 channels per type.
consisting of a 4 dimensional one-hot embedding of bond
type and a positive scalar for the Euclidean distance between
the two atoms at the ends of the bond. For each regression
target, we normalised the values by mean and dividing by
the standard deviation of the training set.

We trained for 50 epochs using Adam [9] at initial learning
rate 1e—3 and a single-cycle cosine rate-decay to learning
rate 1e—4. The batch size was 32, but for the TFN baseline
we used batch size 16, to fit the model in memory. We show
results on the 6 regression tasks not requiring thermochemi-
cal energy subtraction in Table 2. As is common practice,
we optimised architectures and hyperparameters on egomo
and retrained each network on the other tasks. Training took
about 2.5 days on an NVIDIA GeForce GTX 1080 Ti GPU
with 4 CPU cores and 15 GB of RAM.

TABLE 3: QM9 Network architecture: doy is the number of feature
types of degrees 0, 1, ..., dou — 1 at the output of the corresponding
layer and C is the number of multiplicities/channels per feature
type. For the norm nonlinearity we use ReLUs, preceded by
equivariant layer norm [26] with learnable affine transform.

NO. REPEATS LAYER TYPE dotw C
1x Input 1 6
Ix Attention: 8 heads 4 16

Norm Nonlinearity 4 16
6x Attention: 8 heads 4 16

Norm Nonlinearity 4 16
1x TEN layer 1 128
1x Max pool 1 128
1x Linear 1 128
1x ReLU 1 128
1x Linear 1 1

TABLE 4: QM9 Radial Function Architecture. C'is the number
of output channels at each layer. Layer norm [2] is computed per
pair of input and output feature types, which have Ci, and Cou
channels each.

LAYER TYPE C(

Input 6

Linear 32

Layer Norm 32

ReLU 32

Linear 32

Layer Norm 32

ReLU 32

Linear dout * Cin * Cout




