Temporal Graph Networks for Deep Learning on Dynamic Graphs

Emanuele Rossi1 Ben Chamberlain1 Fabrizio Frasca1 Davide Eynard1 Federico Monti1 Michael Bronstein1,2

Abstract

Graph Neural Networks (GNNs) have become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches, being at the same time more computationally efficient.

1. Introduction

In the past few years, graph representation learning (7; 27; 4) has produced a sequence of successes, gaining increasing popularity in machine learning. The majority of methods for deep learning on graphs assume that the underlying graph is static. However, most real-life systems of interactions such as social networks or biological interactomes are dynamic. While it is often possible to apply static graph deep learning models (37) to dynamic graphs by ignoring the temporal evolution, this has been shown to be sub-optimal (65), and in some cases, it is the dynamic structure that contains crucial insights about the system.

Learning on dynamic graphs is relatively recent, and most works are limited to the setting of discrete-time dynamic graphs represented as a sequence of snapshots of the graph over time (37; 15; 68; 54; 48; 70). Such approaches are however unsuitable for interesting real world settings such as social networks, where dynamic graphs are continuous (i.e. edges can appear at any time) and evolving (i.e. new nodes join the graph continuously). Moreover, only few of these approaches support the inductive setting of generalizing to new nodes not seen during training (46; 3; 59; 36). In this paper, we propose the generic inductive framework of Temporal Graph Networks (TGNs) operating on continuous-time dynamic graphs represented as a sequence of events, and show that many previous methods are specific instances of TGNs. In addition, we introduce a novel training strategy allowing our model to learn from the sequentiality of the data while maintaining efficient parallel processing. We show that this leads to an order of magnitude speed up over previous methods, while allowing to achieve state-of-the-art performance on multiple tasks.

2. Background

Dynamic Graphs. There exist two main classes of dynamic graphs. Discrete-time dynamic graphs (DTDG) are sequences of static graph snapshots taken at intervals in time. Continuous-time dynamic graphs (CTDG) are more general and can be represented as timed lists of events, which may include edge addition or deletion, node addition or deletion and node or edge feature transformations. In this paper, we do not consider deletion events.

Our temporal (multi-)graph is modeled as a sequence of time-stamped events $G = \{x(t_1), x(t_2), \ldots\}$, representing addition or change of a node or interaction between a pair of nodes at times $0 \leq t_1 \leq t_2 \leq \ldots$. An event $x(t)$ can be of two types: 1) A node-wise event is represented by $v_i(t)$, where i denotes the index of the node and v is the vector attribute associated with the event. After its first appearance, a node is assumed to live forever and its index is used consistently for the following events. 2) An interaction event between nodes i and j is represented by a (directed) temporal edge $e_{ij}(t)$ (there might be more than one edge between a pair of nodes, so technically this is a multigraph). We denote by $V(T) = \{i : \exists v_i(t) \in G, t \in T\}$ and $E(T) = \{(i,j) : \exists e_{ij}(t) \in G, t \in T\}$ the temporal set of vertices and edges, respectively, and by $N_i(T) = \{j : (i,j) \in E(T)\}$ the neighborhood of node i in time interval T. $N_i^k(T)$ denotes the k-hop neighborhood.
A snapshot of the temporal graph G at time t is the (multi-)graph $G(t) = (V[0, t], E[0, t])$ with $n(t)$ nodes.

3. Temporal Graph Networks

Following the terminology in (32), a neural model for dynamic graphs can be regarded as an encoder-decoder pair, where an encoder is a function that maps from a dynamic graph to node embeddings, and a decoder takes as input one or more node embeddings and makes a prediction based on these, e.g. node classification or edge prediction. The key contribution of this paper is a novel Temporal Graph Network (TGN) encoder applied on a continuous-time dynamic graph at time t. Two flows of operations for processing a batch of timestamped interactions using TGN. Top: using the embedding module to compute the temporal node embeddings and subsequently the loss function. Bottom: memory update from batch interactions.

Figure 1. Two flows of operations for processing a batch of timestamped interactions using TGN. Top: using the embedding module to compute the temporal node embeddings and subsequently the loss function. Bottom: memory update from batch interactions.

3.1. Core modules

Memory. The memory (state) of the model at time t consists of a vector $s_i(t)$ for each node i the model has seen so far. The memory of a node is updated when the node is involved in an event (e.g. interaction with another node or node-wise change), and its purpose is to represent the history of a node in a compressed format. Thanks to this specific module, TGNs have the capability to memorize long term dependencies for each node in the graph.

Message Function. For each event involving node i, a message is computed to update i's memory. In the case of an interaction event $e_{ij}(t)$ between nodes i and j at time t, two messages can be computed for the source and target nodes that respectively start and receive the interaction: $m_{ij}(t) = \text{msg}_s(s_i(t^-), s_j(t^-), t, e_{ij}(t))$, $m_{ji}(t) = \text{msg}_d(s_j(t^-), s_i(t^-), t, e_{ij}(t))$.

Similarly, in case of a node-wise event $v_i(t)$, a single message can be computed for the node involved in the event: $m_i(t) = \text{msg}_n(s_i(t^-), t, v_i(t))$. Here, $s_i(t^-)$ is the memory of node i just before time t, and msg_s, msg_d and msg_n are learnable message functions, e.g. MLPs. In all our experiments, we chose the message function as identity (id), which is simply the concatenation of the inputs, for the sake of simplicity.

Message Aggregator. Resorting to batch processing for efficiency reasons may lead to multiple events involving the same node i in the same batch. As each event generates a message in our formulation, we use a mechanism to aggregate messages $m_i(t_1), \ldots, m_i(t_b)$ for $t_1, \ldots, t_b \leq t$: $m_i(t) = \text{agg}(m_i(t_1), \ldots, m_i(t_b))$. Here, agg is an aggregation function. While multiple choices can be considered for implementing this module (e.g. RNNs or attention w.r.t. the node memory), for the sake of simplicity we considered two efficient non-learnable solutions in our experiments: most recent message (keep only most recent message for a given node) and mean message (average all messages for a given node). We leave learnable aggregation as a future research direction.

Memory Updater. As previously mentioned, the memory of a node is updated upon each event involving the node itself: $s_i(t) = \text{mem}(m_i(t), s_i(t^-))$. For interaction events involving two nodes i and j, the memories of both nodes are updated after the event has happened. For node-wise events, only the memory of the related node is updated. Here, mem is a learnable memory update function, e.g. a recurrent neural network such as LSTM (29) or GRU (9).

Embedding. The embedding module is used to generate the temporal embedding $z_i(t)$ of node i at any time t. The main goal of the embedding module is to avoid the so-called memory staleness problem (32). Since the memory of a node i is updated only when the node is involved in an event, it might happen that, in the absence of events for a long time (e.g. a social network user who stops using the platform for some time before becoming active again), it’s memory becomes stale. While multiple implementations of the embedding module are possible, we use the form: $z_i(t) = \text{emb}(i, t) = \sum_{j \in V^t_{i}[0, t]} h(s_i(t), s_j(t), e_{ij}, v_i(t), v_j(t))$; where h is a learnable function. This includes many different formulations as particular cases:

Identity (id): $\text{emb}(i, t) = s_i(t)$, which uses the memory directly as the node embedding.

Time projection (time): $\text{emb}(i, t) = (1 + \Delta t w) \circ s_i(t)$, where w are learnable parameters, Δt is the time since the last interaction, and \circ denotes element-wise vector product. This version of the embedding method was used in JODIE (36).

Temporal Graph Attention (attn): A series of L graph attention layers compute i’s embedding by aggregating information from its L-hop temporal neighborhood. The
input to the \(l \)-th layer is \(i \)'s representation \(h_1^{(l-1)}(t) \), the current timestamp \(t \), \(i \)'s neighborhood representation \(\{h_1^{(l-1)}(t), \ldots, h_N^{(l-1)}(t)\} \) together with timestamps \(t_1, \ldots, t_N \) and features \(e_{11}(t_1), \ldots, e_{1N}(t_N) \) for each of the considered interactions which form an edge in \(i \)'s temporal neighborhood:

\[
\begin{align*}
 h_1^{(l)}(t) &= \text{MLP}^{(l)}(h_1^{(l-1)}(t) \parallel h_i^{(l)}(t)), \quad (1) \\
 h_i^{(l)}(t) &= \text{Attention}^{(l)}(q_i^{(l)}(t), K_i^{(l)}(t), V_i^{(l)}(t)), (2) \\
 q_i^{(l)}(t) &= h_i^{(l-1)}(t) \parallel \phi(0), \quad (3) \\
 K_i^{(l)}(t) &= V_i^{(l)}(t) = C_i^{(l)}(t), \quad (4) \\
 C_i^{(l)}(t) &= [h_1^{(l-1)}(t) \parallel e_{i1}(t_1) \parallel \phi(t - t_1), \ldots, \\
 h_N^{(l-1)}(t) \parallel e_{iN}(t_N) \parallel \phi(t - t_N)]. \quad (5)
\end{align*}
\]

Here, \(\phi(\cdot) \) represents a generic time encoding (65), \(\parallel \) is the concatenation operator and \(z_i(t) = \text{emb}(i, t) = h_i^{(L)}(t) \). Each layer amounts to performing multi-head-attention (60) where the query \((q_i^{(l)}(t)) \) is a reference node (i.e. the target node or one of its \(L-1 \)-hop neighbors), and the keys \(K_i^{(l)}(t) \) and values \(V_i^{(l)}(t) \) are its neighbors. Finally, an MLP is used to combine the reference node representation with the aggregated information. Differently from the original formulation of this layer (firstly proposed in TGAT (65)) where no node-wise temporal features were used, in our case the input representation of each node \(h_i^{(0)}(t) = s_j(t) + v_j(t) \) and as such it allows the model to exploit both the current memory \(s_j(t) \) and the temporal node features \(v_j(t) \). \(\phi(\cdot) \) is again a time encoding and \(z_i(t) = \text{emb}(i, t) = h_i^{(L)}(t) \).

3.2. Training

Our TGN model can be trained for a variety of tasks such as future edge prediction (self-supervised setting) or node classification (semi-supervised setting). We present two possible training procedures for TGNs while using the link prediction task as a simple example: provided a list of ordered timed interactions, the goal of the model is to predict the future interactions from those observed in the past. Both training procedures are detailed in the Supplementary Material (SM) in Algorithms 1 and 2. Figure 2 SM depicts instead how TGN modules are combined.

Figure 1 SM shows that interactions serve two purposes: 1) they are the training objective, 2) they are used to update the memory. While the interactions in a batch cannot be used to update the memory before predicting the same interactions (as this would leak information), reversing the order of the operations, i.e. predicting the interactions and computing the loss before updating the memory, causes all memory-related modules (Message Function, Message Aggregator, and Memory Updater) not to receive a gradient (Algorithm 1 SM). Therefore, extra steps must be taken in order to train these modules.

Basic training strategy. The simplest strategy keeps the same order of operations as Algorithm 1 (predict interactions, then update memory), but breaks every batch\(^2\) of size \(b \) into \(k \) sub-batches of size \(b/k \). The sub-batches are processed sequentially with their losses accumulated and backpropagation is only performed after the last sub-batch. If a node appears in two sub-batches, its memory in the second sub-batch will depend on the computation done by the memory-related modules in the first. Therefore, these modules will receive a gradient.

Advanced training strategy. While the basic training procedure is straightforward to implement, it presents two drawbacks: 1) it slows down the training, as each batch is not computed fully in parallel, 2) the only nodes that contribute to the memory-related modules’ gradients are those with at least one interaction in multiple sub-batches. Therefore, these modules can still receive no gradient if sub-batches do not share any nodes, or the gradient can be heavily skewed towards a few nodes that appear multiple times, leading to biased update steps and ultimately to a sub-optimal local minimum for the overall training procedure. The solution to this problem is to reverse the order of operations. Let \(t_i \) be the time of node \(i \)'s last interaction in its last sub-batch \(b_i(\tilde{t_i}) \). Instead of letting the memory be representative of the entire set of interactions involving \(i \) in the past, we store memory \(s_i(\tilde{t_i}) \), i.e. the state of \(i \) prior to the last sub-batch \(b_i(\tilde{t_i}) \), together with the raw information we need to update \(s_i(\tilde{t_i}) \) with the interactions of \(b_i(\tilde{t_i}) \) i.e. the set of raw update messages \(\{s_i(\tilde{t_i}), s_j(\tilde{t_j}), e_{ij}(t), t \ \forall e_{ij}(t) \in b_i(\tilde{t_i})\} \) of \(i \)'s interactions in \(b_i(\tilde{t_i}) \). At the beginning of each sub-batch, the model first updates the nodes’ memories by computing and aggregating messages from the stored raw information (line 17 of Algorithm 2 SM), then uses the updated memory to infer the embeddings and computes the loss function (Figure 2-bottom SM). As a result, the loss function depends on a memory which has just been updated by its related modules. Moreover, all nodes involved in the computation of the embeddings (i.e. all source and target nodes and related neighbors) contribute to the gradients, ultimately producing more stable optimization and better local minima (Figure 4 SM).

While the advanced training strategy is sufficient to train TGNs, it can also be combined with the basic strategy by breaking each batch into sub-batches. We investigate the speed vs accuracy tradeoff of different combinations of the two strategies in Section 4.

\(^2\)By ‘batch’ we refer to what is sometime defined as mini-batch, i.e. a subset of the original dataset.
Table 1. Average Precision (%) for future edge prediction task in transductive and inductive settings. *Static graph method. †Does not support inductive setting.

<table>
<thead>
<tr>
<th></th>
<th>Transductive</th>
<th>Inductive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wikipedia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAE*</td>
<td>91.44±0.1</td>
<td>†</td>
</tr>
<tr>
<td>VAGE*</td>
<td>91.34±0.3</td>
<td>†</td>
</tr>
<tr>
<td>DeepWalk*</td>
<td>90.71±0.6</td>
<td>†</td>
</tr>
<tr>
<td>Node2Vec*</td>
<td>91.48±0.3</td>
<td>†</td>
</tr>
<tr>
<td>GAT*</td>
<td>94.73±0.2</td>
<td>91.27±0.4</td>
</tr>
<tr>
<td>GraphSAGE*</td>
<td>93.56±0.3</td>
<td>91.09±0.3</td>
</tr>
<tr>
<td>CTDNE</td>
<td>92.17±0.5</td>
<td>†</td>
</tr>
<tr>
<td>JODIE</td>
<td>94.33±0.4</td>
<td>91.29±0.5</td>
</tr>
<tr>
<td>TGAT</td>
<td>95.34±0.1</td>
<td>93.99±0.3</td>
</tr>
<tr>
<td>TGN-attn</td>
<td>98.64±0.1</td>
<td>98.05±0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Transductive</th>
<th>Inductive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reddit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAE*</td>
<td>93.23±0.3</td>
<td>†</td>
</tr>
<tr>
<td>VAGE*</td>
<td>92.92±0.2</td>
<td>†</td>
</tr>
<tr>
<td>DeepWalk*</td>
<td>83.10±0.5</td>
<td>†</td>
</tr>
<tr>
<td>Node2Vec*</td>
<td>84.58±0.5</td>
<td>†</td>
</tr>
<tr>
<td>GAT*</td>
<td>95.37±0.3</td>
<td>96.27±0.2</td>
</tr>
<tr>
<td>GraphSAGE*</td>
<td>96.75±0.2</td>
<td>96.27±0.2</td>
</tr>
<tr>
<td>CTDNE</td>
<td>94.64±0.4</td>
<td>†</td>
</tr>
<tr>
<td>JODIE</td>
<td>94.64±0.4</td>
<td>94.64±0.4</td>
</tr>
<tr>
<td>TGAT</td>
<td>98.12±0.2</td>
<td>96.62±0.3</td>
</tr>
<tr>
<td>TGN-attn</td>
<td>98.80±0.1</td>
<td>97.71±0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Transductive</th>
<th>Inductive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twitter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAE*</td>
<td>67.57±0.4</td>
<td>62.32±0.5</td>
</tr>
<tr>
<td>VAGE*</td>
<td>65.79±0.6</td>
<td>60.13±0.6</td>
</tr>
<tr>
<td>DeepWalk*</td>
<td>65.69±0.6</td>
<td></td>
</tr>
<tr>
<td>Node2Vec*</td>
<td>60.13±0.6</td>
<td></td>
</tr>
<tr>
<td>GAT*</td>
<td>62.05±1.0</td>
<td>52.72±1.6</td>
</tr>
<tr>
<td>GraphSAGE*</td>
<td>67.84±0.6</td>
<td>62.21±0.6</td>
</tr>
<tr>
<td>CTDNE</td>
<td>62.21±0.6</td>
<td></td>
</tr>
<tr>
<td>JODIE</td>
<td>52.72±1.6</td>
<td></td>
</tr>
<tr>
<td>TGAT</td>
<td>62.21±0.6</td>
<td></td>
</tr>
<tr>
<td>TGN-attn</td>
<td>90.16±2.4</td>
<td>90.16±2.4</td>
</tr>
</tbody>
</table>

4. Experiments

Our experimental setup follows (65) using the same splits. Our strong baselines are state-of-the-art approaches for continuous time dynamic graphs (CTDNE (47), Jodie (36), and TGAT (65)) as well as state-of-the-art models for static graphs (GAE (34), VAGE (34), DeepWalk (51), Node2Vec (23), GAT (61) and GraphSAGE (27)). All reported results are averaged over 10 runs to obtain mean and standard deviation. For additional details, see Supplementary Materials.

Experimental settings. We test on the following datasets: bipartite dynamic interaction graphs from Wikipedia and Reddit (36) with nodes representing users and items (subreddits and pages, respectively) and edges interactions among these, and non-bipartite Twitter graph (6) with nodes representing users and edges retweets. In all the datasets, edges are represented as timestamped features representing textual content. Wikipedia and Reddit additionally have time-stamped labels representing whether a user was banned. We evaluate on the task of Future edge prediction, which consists in predicting the probability of an edge occurring between two nodes at a given time. In the transductive setting, we predict future edges between nodes observed during training, whereas in the inductive setting, we predict future edges between nodes never observed before. Our encoder is combined with a simple MLP decoder mapping from the concatenation of two node embeddings to the probability of the edge.

Benchmarking. Table 1 presents the results on future edge prediction. Our TGN model outperforms the baselines by a large margin in both the transductive and inductive settings on all datasets. The gap is particularly large on the Twitter, where we outperform the second-best method (TGAT) by over 25%.

Accuracy vs Speed. In Figure 3 SM, we show a detailed ablation study comparing different instances of TGN (Table 2 SM). TGN-attn emerges as the best tradeoff between accuracy and speed. Due to the efficient parallel processing and the need for only one graph attention layer (see Figure 3 SM, for the ablation study on the number of layers), our model is up to ×3 faster than Jodie and about ×19 faster than TGAT to complete a single epoch, while requiring a similar number of epochs to converge.

Training strategies. In Figure 4 SM, we show a detailed ablation study of different training strategies. TGN-id model makes only use of the memory (no embedding module) and is therefore a perfect testbed for training strategies related to the memory-related modules. The advanced strategy of updating the memory at the start of the epoch clearly outperforms updating at the end. Interestingly, when using a graph attention embedding module (TGN-attn), the benefit of the advanced strategy shrinks. This is probably due to the fact that the embedding module is able to adapt to the random memory-related modules, effectively denoising the spurious behavior of the nodes’ memory.

5. Conclusion

We introduce TGN, a generic framework for learning on continuous-time dynamic graphs. We obtain state-of-the-art results on several datasets while being faster than previous methods. Detailed ablation studies show the importance of the memory and its related modules to store long-term information, as well as the importance of the graph-based embedding module to generate up-to-date node embeddings. We envision interesting applications of TGN in the fields of social sciences, recommender systems, and biological interaction networks, opening up a future research direction of exploring more advanced settings of our model and understanding the most appropriate domain-specific choices.
References

Temporal Graph Networks for Deep Learning on Dynamic Graphs

6. Supplementary Material

6.1. Training procedures

Algorithm 1 Training TGN - No gradient flows

\[s \leftarrow 0; \quad // \text{Initialize memory to zeros} \]

\[\text{foreach batch } (i, j, e, t) \in \text{training data do} \]

\[n \leftarrow \text{sample negatives}; \]
\[z_i, z_j, z_n \leftarrow \text{emb}(i, t), \text{emb}(j, t), \text{emb}(n, t); \quad // \text{Compute node embeddings} \]

\[p_{\text{pos}}, p_{\text{neg}} \leftarrow \text{dec}(z_i, z_j), \text{dec}(z_i, z_n); \quad // \text{Compute interactions probs} \]

\[l = \text{BCE}(p_{\text{pos}}, p_{\text{neg}}); \quad // \text{Compute BCE loss} \]

\[m_i, m_j \leftarrow \text{msg}(s_i, s_j, t, e), \text{msg}(s_j, s_i, t, e); \quad // \text{Compute messages} \]

\[\bar{m} \leftarrow \text{agg}(m_i[m_j]); \quad // \text{Aggregate messages} \]

\[s_i, s_j \leftarrow \text{mem}(\bar{m}_i, s_i), \text{mem}(\bar{m}_j, s_j); \quad // \text{Update memory} \]

end

Algorithm 2 Training TGN - Advanced Strategy

\[s \leftarrow 0; \quad // \text{Initialize memory to zeros} \]

\[m_{\text{raw}} \leftarrow \{\}; \quad // \text{Initialize raw messages} \]

\[\text{foreach batch } (i, j, e, t) \in \text{training data do} \]

\[n \leftarrow \text{sample negatives}; \]
\[m \leftarrow \text{msg}(m_{\text{raw}}); \quad // \text{Compute messages from raw features}\]

\[\bar{m} \leftarrow \text{agg}(m); \quad // \text{Aggregate messages for the same nodes} \]

\[\tilde{s} \leftarrow \text{mem}(\bar{m}, s); \quad // \text{Get updated memory} \]

\[z_i, z_j, z_n \leftarrow \text{emb}_{\text{d}}(i, t), \text{emb}_{\text{d}}(j, t), \text{emb}_{\text{d}}(n, t); \quad // \text{Compute node embeddings}\]

\[p_{\text{pos}}, p_{\text{neg}} \leftarrow \text{dec}(z_i, z_j), \text{dec}(z_i, z_n); \quad // \text{Compute interactions probs} \]

\[l = \text{BCE}(p_{\text{pos}}, p_{\text{neg}}); \quad // \text{Compute BCE loss} \]

\[m_{\text{raw}_i}, m_{\text{raw}_j} \leftarrow (\tilde{s}_i, \tilde{s}_j, t, e), (\tilde{s}_j, \tilde{s}_i, t, e); \quad // \text{Compute raw messages} \]

\[s_i, s_j \leftarrow \tilde{s}_i, \tilde{s}_j; \quad // \text{Store updated memory for sources and destinations} \]

end

6.2. Related works

Early models for learning on dynamic graphs focused on Discrete Time Dynamic Graphs (DTDGs). Such approaches either aggregate graph snapshots and then apply static methods (37; 28; 56; 31; 1; 2), assemble snapshots into tensors and factorize (15; 69; 39), or encode each snapshot to produce a series of embeddings. In the latter case, the embeddings are either aggregated by taking a weighted sum (66; 73), fit to time series models (30; 24; 11; 44), used as components in RNNs (55; 45; 41; 68; 8; 54; 48), or learned by imposing a smoothness constraint over time (33; 25; 66; 74; 72; 57; 22; 17; 50). Another line of work encodes DTDGs by first performing random walks on an initial snapshot and then modifying the walk behaviour for subsequent snapshots (40; 14; 63; 13; 70). Only recently have Continuous Time Dynamic Graphs (CTDGs) been addressed. Several approaches use random walk models (47; 46; 3) that incorporate continuous time through constraints on transition probabilities. Sequence-based approaches for CTDGs (36; 58; 59; 38) use RNNs to update representations of the source and destination node each time a new edge appears. Other recent works have focused on dynamic knowledge graphs (21; 64; 12; 19). Most recent CTDG learning models can be interpreted as specific cases of our framework (see Table 2 SM). For exam-
Temporal Graph Networks for Deep Learning on Dynamic Graphs

Table 2. Previous models for deep learning on continuous-time dynamic graphs are specific case of our TGN framework. Shown are multiple variants of TGN used in our ablation studies. method $((l,n))$ refers to graph convolution using l layers and n neighbors. † uses t-batches, * uses uniform sampling of neighbors, while the default is sampling the most recent neighbors.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>JODIE</td>
<td>node</td>
<td>RNN</td>
<td>time</td>
<td>— †</td>
</tr>
<tr>
<td>TGAT</td>
<td>—</td>
<td>GRU</td>
<td>attn (2l, 10n) *</td>
<td>—</td>
</tr>
<tr>
<td>TGN-attn</td>
<td>node</td>
<td>GRU</td>
<td>attn (1l, 10n)</td>
<td>last</td>
</tr>
<tr>
<td>TGN-2l</td>
<td>node</td>
<td>GRU</td>
<td>attn (2l, 10n)</td>
<td>last</td>
</tr>
<tr>
<td>TGN-no-mem</td>
<td>—</td>
<td>—</td>
<td>attn (1l, 10n)</td>
<td>—</td>
</tr>
<tr>
<td>TGN-time</td>
<td>node</td>
<td>GRU</td>
<td>time</td>
<td>last</td>
</tr>
<tr>
<td>TGN-id</td>
<td>node</td>
<td>GRU</td>
<td>id</td>
<td>last</td>
</tr>
<tr>
<td>TGN-sum</td>
<td>node</td>
<td>GRU</td>
<td>sum (1l, 10n)</td>
<td>last</td>
</tr>
<tr>
<td>TGN-mean</td>
<td>node</td>
<td>GRU</td>
<td>attn (1l, 10n)</td>
<td>mean</td>
</tr>
</tbody>
</table>

Jodie (36) uses the time projection embedding module $emb(i, t) = (1 + \Delta t w) s_i(t)$. TGAT (65) is a specific case of TGN when the memory and its related modules are missing, and graph attention is used as the Embedding module. Finally, we note that TGN generalizes the Graph Networks (GN) model (4) for static graphs (with the exception of the global block that we mentioned before), and thus the majority of existing message passing-type architectures. For additional background, we refer the reader to surveys on general graph representation learning (7; 27; 4) and the recent survey on dynamic graph learning (32).

6.3. Additional results

Figure 3. Tradeoff between accuracy (test average precision in %) and speed (time per epoch in sec) of different models. TGN-attn is the best tradeoff between performance and speed beating baselines Jodie and TGAT.

Figure 4. Tradeoff between accuracy (test average precision in %) and speed (time per epoch in sec) of different training strategies. TGN-emb-upd-b denotes model with embedding emb (attn or id), update upd (s:start or e:end), and where each batch is split into b sub-batches.

Table 3. ROC AUC % for the dynamic node classification. * Static graph method.

<table>
<thead>
<tr>
<th></th>
<th>Wikipedia</th>
<th>Reddit</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAE*</td>
<td>74.85±0.6</td>
<td>58.39±0.5</td>
</tr>
<tr>
<td>VAGE*</td>
<td>73.67±0.8</td>
<td>57.98±0.6</td>
</tr>
<tr>
<td>GAT*</td>
<td>82.34±0.8</td>
<td>64.52±0.5</td>
</tr>
<tr>
<td>GraphSAGE*</td>
<td>82.42±0.7</td>
<td>61.24±0.6</td>
</tr>
<tr>
<td>CTDNE</td>
<td>75.89±0.5</td>
<td>59.43±0.6</td>
</tr>
<tr>
<td>JODIE</td>
<td>87.17±0.4</td>
<td>59.50±2.1</td>
</tr>
<tr>
<td>TGAT</td>
<td>83.69±0.7</td>
<td>65.56±0.7</td>
</tr>
<tr>
<td>TGN-attn</td>
<td>88.56±0.3</td>
<td>68.63±0.7</td>
</tr>
</tbody>
</table>