
Temporal Graph Networks for Deep Learning on Dynamic Graphs

Emanuele Rossi 1 Ben Chamberlain 1 Fabrizio Frasca 1 Davide Eynard 1 Federico Monti 1

Michael Bronstein 1 2

Abstract
Graph Neural Networks (GNNs) have become
increasingly popular due to their ability to learn
complex systems of relations or interactions aris-
ing in a broad spectrum of problems ranging
from biology and particle physics to social net-
works and recommendation systems. Despite the
plethora of different models for deep learning on
graphs, few approaches have been proposed thus
far for dealing with graphs that present some sort
of dynamic nature (e.g. evolving features or con-
nectivity over time). In this paper, we present
Temporal Graph Networks (TGNs), a generic, ef-
ficient framework for deep learning on dynamic
graphs. Thanks to a novel combination of mem-
ory modules and graph-based operators, TGNs
are able to significantly outperform previous ap-
proaches, being at the same time more computa-
tionally efficient.

1. Introduction
In the past few years, graph representation learning (7; 27; 4)
has produced a sequence of successes, gaining increasing
popularity in machine learning. The majority of methods
for deep learning on graphs assume that the underlying
graph is static. However, most real-life systems of interac-
tions such as social networks or biological interactomes
are dynamic. While it is often possible to apply static
graph deep learning models (37) to dynamic graphs by
ignoring the temporal evolution, this has been shown to
be sub-optimal (65), and in some cases, it is the dynamic
structure that contains crucial insights about the system.
Learning on dynamic graphs is relatively recent, and most
works are limited to the setting of discrete-time dynamic
graphs represented as a sequence of snapshots of the graph
over time (37; 15; 68; 54; 48; 70). Such approaches are
however unsuitable for interesting real world settings such

1Twitter, London 2Imperial College London. Correspondence
to: Emanuele Rossi <erossi@twitter.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

as social networks, where dynamic graphs are continuous
(i.e. edges can appear at any time) and evolving (i.e. new
nodes join the graph continuously). Moreover, only few of
these approaches support the inductive setting of generaliz-
ing to new nodes not seen during training (46; 3; 59; 36). In
this paper, we propose the generic inductive framework of
Temporal Graph Networks (TGNs) operating on continuous-
time dynamic graphs represented as a sequence of events,
and show that many previous methods are specific instances
of TGNs. In addition, we introduce a novel training strategy
allowing our model to learn from the sequentiality of the
data while maintaining efficient parallel processing. We
show that this leads to an order of magnitude speed up over
previous methods, while allowing to achieve state-of-the-art
performance on multiple tasks.

2. Background
Dynamic Graphs. There exist two main classes of dy-
namic graphs. Discrete-time dynamic graphs (DTDG) are
sequences of static graph snapshots taken at intervals in time.
Continuos-time dynamic graphs (CTDG) are more general
and can be represented as timed lists of events, which may
include edge addition or deletion, node addition or deletion
and node or edge feature transformations. In this paper, we
do not consider deletion events.

Our temporal (multi-)graph is modeled as a sequence of
time-stamped events G = {x(t1), x(t2), . . .}, representing
addition or change of a node or interaction between a pair
of nodes at times 0 ≤ t1 ≤ t2 ≤ An event x(t)
can be of two types: 1) A node-wise event is represented
by vi(t), where i denotes the index of the node and v is
the vector attribute associated with the event. After its
first appearance, a node is assumed to live forever and its
index is used consistently for the following events. 2) An
interaction event between nodes i and j is represented
by a (directed) temporal edge eij(t) (there might be more
than one edge between a pair of nodes, so technically this
is a multigraph). We denote by V(T) = {i : ∃vi(t) ∈
G, t ∈ T} and E(T) = {(i, j) : ∃eij(t) ∈ G, t ∈ T}
the temporal set of vertices and edges, respectively, and by
Ni(T) = {j : (i, j) ∈ E(T)} the neighborhood of node i
in time interval T . Nk

i (T) denotes the k-hop neighborhood.

Temporal Graph Networks for Deep Learning on Dynamic Graphs

1 2

2 3

Batch

loss

Messages Aggregated
Messages

Updated
Memory

Node Embebbings Edge
Probabilities

Figure 1. Two flows of operations for processing a batch of time-
stamped interactions using TGN. Top: using the embedding mod-
ule to compute the temporal node embeddings and subsequently
the loss function. Bottom: memory update from batch interactions.

A snapshot of the temporal graph G at time t is the (multi-
)graph G(t) = (V[0, t],E[0, t]) with n(t) nodes.

3. Temporal Graph Networks
Following the terminology in (32), a neural model for dy-
namic graphs can be regarded as an encoder-decoder pair,
where an encoder is a function that maps from a dynamic
graph to node embeddings, and a decoder takes as input one
or more node embeddings and makes a prediction based on
these, e.g. node classification or edge prediction. The key
contribution of this paper is a novel Temporal Graph Net-
work (TGN) encoder applied on a continuous-time dynamic
graph represented as a sequence of time-stamped events
and producing, for each time t, the embedding of the graph
nodes Z

(
t) = (z1(t), . . . , zn(t)(t)

)
.

3.1. Core modules

Memory. The memory (state) of the model at time t con-
sists of a vector si(t) for each node i the model has seen
so far. The memory of a node is updated when the node
is involved in an event (e.g. interaction with an other node
or node-wise change), and its purpose is to represent the
history of a node in a compressed format. Thanks to this
specific module, TGNs have the capability to memorize
long term dependencies for each node in the graph.

Message Function. For each event involving node i, a
message is computed to update i’s memory. In the case
of an interaction event eij(t) between nodes i and j at
time t, two messages can be computed for the source and
target nodes that respectively start and receive the interac-
tion: mi(t) = msgs (si(t

−), sj(t
−), t, eij(t)), mj(t) =

msgd (sj(t
−), si(t

−), t, eij(t)).

Similarly, in case of a node-wise event vi(t), a single mes-
sage can be computed for the node involved in the event:
mi(t) = msgn (si(t

−), t,vi(t)). Here, si(t
−) is the mem-

ory of node i just before time t, and msgs,msgd and msgn

are learnable message functions, e.g. MLPs. In all our ex-
periments, we chose the message function as identity (id),
which is simply the concatenation of the inputs, for the sake
of simplicity.

Message Aggregator. Resorting to batch processing for
efficiency reasons may lead to multiple events involving
the same node i in the same batch. As each event gener-
ates a message in our formulation, we use a mechanism to
aggregate messages mi(t1), . . . ,mi(tb) for t1, . . . , tb ≤ t:
m̄i(t) = agg (mi(t1), . . . ,mi(tb)). Here, agg is an aggre-
gation function. While multiple choices can be considered
for implementing this module (e.g. RNNs or attention w.r.t.
the node memory), for the sake of simplicity we considered
two efficient non-learnable solutions in our experiments:
most recent message (keep only most recent message for a
given node) and mean message (average all messages for
a given node). We leave learnable aggregation as a future
research direction.

Memory Updater. As previously mentioned, the memory
of a node is updated upon each event involving the node
itself: si(t) = mem (m̄i(t), si(t

−)). For interaction events
involving two nodes i and j, the memories of both nodes are
updated after the event has happened. For node-wise events,
only the memory of the related node is updated. Here, mem
is a learnable memory update function, e.g. a recurrent
neural network such as LSTM (29) or GRU (9).

Embedding. The embedding module is used to generate
the temporal embedding zi(t) of node i at any time t. The
main goal of the embedding module is to avoid the so-called
memory staleness problem (32). Since the memory of a
node i is updated only when the node is involved in an event,
it might happen that, in the absence of events for a long time
(e.g. a social network user who stops using the platform
for some time before becoming active again), i’s memory
becomes stale. While multiple implementations of the em-
bedding module are possible, we use the form: zi(t) =
emb(i, t) =

∑
j∈Nk

i ([0,t])
h (si(t), sj(t), eij ,vi(t),vj(t));

where h is a learnable function. This includes many differ-
ent formulations as particular cases:

Identity (id): emb(i, t) = si(t), which uses the memory
directly as the node embedding.

Time projection (time): emb(i, t) = (1 + ∆tw) ◦ si(t),
where w are learnable parameters, ∆t is the time since the
last interaction, and ◦ denotes element-wise vector prod-
uct. This version of the embedding method was used in
JODIE (36).

Temporal Graph Attention (attn): A series of L graph at-
tention layers compute i’s embedding by aggregating in-
formation from its L-hop temporal neighborhood. The

Temporal Graph Networks for Deep Learning on Dynamic Graphs

input to the l-th layer is i’s representation h
(l−1)
i (t),

the current timestamp t, i’s neighborhood representa-
tion {h(l−1)

1 (t), . . . ,h
(l−1)
N (t)} together with timestamps

t1, . . . , tN and features ei1(t1), . . . , eiN (tN) for each of
the considered interactions which form an edge in i’s tem-
poral neighborhood:

h
(l)
i (t) = MLP(l)(h

(l−1)
i (t) ‖ h̃

(l)
i (t)), (1)

h̃
(l)
i (t) = Attention(l)(q(l)(t),K(l)(t),V(l)(t)),(2)

q(l)(t) = h
(l−1)
i (t) ‖φ(0), (3)

K(l)(t) = V(l)(t) = C(l)(t), (4)

C(l)(t) = [h
(l−1)
1 (t) ‖ ei1(t1) ‖φ(t− t1), . . . ,

h
(l−1)
N (t) ‖ eiN (tN) ‖φ(t− tN)]. (5)

Here, φ(·) represents a generic time encoding (65), ‖ is the
concatenation operator and zi(t) = emb(i, t) = h

(L)
i (t).

Each layer amounts to performing multi-head-attention (60)
where the query (q(l)(t)) is a reference node (i.e. the target
node or one of its L−1-hop neighbors), and the keys K(l)(t)
and values V(l)(t) are its neighbors. Finally, an MLP is
used to combine the reference node representation with
the aggregated information. Differently from the original
formulation of this layer (firstly proposed in TGAT (65))
where no node-wise temporal features were used, in our case
the input representation of each node h

(0)
j (t) = sj(t)+vj(t)

and as such it allows the model to exploit both the current
memory sj(t) and the temporal node features vj(t). φ(·) is
again a time encoding and zi(t) = emb(i, t) = h

(L)
i (t).

3.2. Training

Our TGN model can be trained for a variety of tasks such
as future edge prediction (self-supervised setting) or node
classification (semi-supervised setting). We present two
possible training procedures for TGNs while using the link
prediction task as a simple example: provided a list of or-
dered timed interactions, the goal of the model is to predict
the future interactions from those observed in the past. Both
training procedures are detailed in the Supplementary Ma-
terial (SM) in Algorithms 1 and 2. Figure 2 SM depicts
instead how TGN modules are combined.

Figure 1 SM shows that interactions serve two purposes: 1)
they are the training objective, 2) they are used to update
the memory. While the interactions in a batch cannot be
used to update the memory before predicting the same in-
teractions (as this would leak information), reversing the
order of the operations, i.e. predicting the interactions and
computing the loss before updating the memory, causes
all memory-related modules (Message Function, Message
Aggregator, and Memory Updater) not to receive a gradi-
ent (Algorithm 1 SM). Therefore, extra steps must be taken
in order to train these modules.

Basic training strategy. The simplest strategy keeps the
same order of operations as Algorithm 1 (predict interac-
tions, then update memory), but breaks every batch2 of
size b into k sub-batches of size b/k. The sub-batches are
processed sequentially with their losses accumulated and
backpropagation is only performed after the last sub-batch.
If a node appears in two sub-batches, its memory in the
second sub-batch will depend on the computation done by
the memory-related modules in the first. Therefore, these
modules will receive a gradient.

Advanced training strategy. While the basic training
procedure is straightforward to implement, it presents two
drawbacks: 1) it slows down the training, as each batch
is not computed fully in parallel, 2) the only nodes that
contribute to the memory-related modules’ gradients are
those with at least one interaction in multiple sub-batches.
Therefore, these modules can still receive no gradient if
sub-batches do not share any nodes, or the gradient can
be heavily skewed towards a few nodes that appear mul-
tiple times, leading to biased update steps and ultimately
to a sub-optimal local minimum for the overall training
procedure. The solution to this problem is to reverse the
order of operations. Let t̃i be the time of node i’s last in-
teraction in its last sub-batch bi(t̃i). Instead of letting the
memory be representative of the entire set of interactions
involving i in the past, we store memory si(t̃

−
i), i.e. the

state of i prior to the last sub-batch bi(t̃i), together with
the raw information we need to update si(t̃

−
i) with the in-

teractions of bi(t̃i) (i.e. the set of raw update messages
{(si(t̃−i), sj(t̃

−
i), eij(t), t) ∀eij(t) ∈ bi(t̃i)} of i’s inter-

actions in bi(t̃i)). At the beginning of each sub-batch, the
model first updates the nodes’ memories by computing and
aggregating messages from the stored raw information (line
17 of Algorithm 2 SM), then uses the updated memory to
infer the embeddings and computes the loss function (Figure
2-bottom SM). As a result, the loss function depends on a
memory which has just been updated by its related mod-
ules. Moreover, all nodes involved in the computation of
the embeddings (i.e. all source and target nodes and related
neighbors) contribute to the gradients, ultimately producing
more stable optimization and better local minima (Figure 4
SM).

While the advanced training strategy is sufficient to train
TGNs, it can also be combined with the basic strategy by
breaking each batch into sub-batches. We investigate the
speed vs accuracy tradeoff of different combinations of the
two strategies in Section 4.

2By ‘batch’ we refer to what is sometime defined as mini-batch,
i.e. a subset of the original dataset.

Temporal Graph Networks for Deep Learning on Dynamic Graphs

Table 1. Average Precision (%) for future edge prediction task in transductive and inductive settings. ∗Static graph method. †Does not
support inductive setting.

Wikipedia Reddit Twitter

Transductive Inductive Transductive Inductive Transductive Inductive

GAE∗ 91.44±0.1 † 93.23±0.3 † — †

VAGE∗ 91.34±0.3 † 92.92±0.2 † — †

DeepWalk∗ 90.71±0.6 † 83.10±0.5 † — †

Node2Vec∗ 91.48±0.3 † 84.58±0.5 † — †

GAT∗ 94.73±0.2 91.27±0.4 97.33±0.2 95.37±0.3 67.57±0.4 62.32±0.5
GraphSAGE∗ 93.56±0.3 91.09±0.3 97.65±0.2 96.27±0.2 65.79±0.6 60.13±0.6
CTDNE 92.17±0.5 † 91.41±0.3 † — †

JODIE 94.33±0.4 91.29±0.5 96.44±0.4 94.64±0.4 62.05±1.0 52.72±1.6
TGAT 95.34±0.1 93.99±0.3 98.12±0.2 96.62±0.3 67.84±0.6 62.21±0.6
TGN-attn 98.64±0.1 98.05±0.1 98.80±0.1 97.71±0.1 93.66±1.3 90.16±2.4

4. Experiments
Our experimental setup follows (65) using the same splits.
Our strong baselines are state-of-the-art approaches for con-
tinuous time dynamic graphs (CTDNE (47), Jodie (36),
and TGAT (65)) as well as state-of-the-art models for
static graphs (GAE (34), VGAE (34), DeepWalk (51),
Node2Vec (23), GAT (61) and GraphSAGE (27)). All re-
ported results are averaged over 10 runs to obtain mean and
standard deviation. For additional details, see Supplemen-
tary Materials.

Experimental settings. We test on the following datasets:
bipartite dynamic interaction graphs from Wikipedia and
Reddit (36) with nodes representing users and items (sub-
reddits and pages, respectively) and edges interactions
among these, and non-bipartite Twitter graph (6) with nodes
representing users and edges retweets. In all the datasets,
edges are represented as timestamped features represent-
ing textual content. Wikipedia and Reddit additionally have
time-stamped labels representing whether a user was banned.
We evaluate on the task of Future edge prediction, which
consists in predicting the probability of an edge occurring
between two nodes at a given time. In the transductive set-
ting, we predict future edges between nodes observed during
training, whereas in the inductive setting, we predict future
edges between nodes never observed before. Our encoder
is combined with a simple MLP decoder mapping from the
concatenation of two node embeddings to the probability of
the edge.

Benchmarking Table 1 presents the results on future edge
prediction. Our TGN model outperforms the baselines by a
large margin in both the transductive and inductive settings
on all datasets. The gap is particularly large on the Twitter,
where we outperfom the second-best method (TGAT) by
over 25%.

Accuracy vs Speed In Figure 3 SM, we show a detailed
ablation study comparing different instances of TGN (Table
2 SM). TGN-attn emerges as the best tradeoff between ac-
curacy and speed. Due to the efficient parallel processing
and the need for only one graph attention layer (see Figure
3 SM, for the ablation study on the number of layers), our
model is up to ×3 faster than Jodie and about ×19 faster
than TGAT to complete a single epoch, while requiring a
similar number of epochs to converge.

Training strategies In Figure 4 SM, we show a detailed
ablation study of different training strategies. TGN-id model
makes only use of the memory (no embedding module) and
is therefore a perfect testbed for training strategies related
to the memory-related modules. The advanced strategy
of updating the memory at the start of the epoch clearly
outperforms updating at the end. Interestingly, when using a
graph attention embedding module (TGN-attn), the benefit
of the advanced strategy shrinks. This is probably due to
the fact that the embedding module is able to adapt to the
random memory-related modules, effectively denoising the
spurious behavior of the nodes’ memory.

5. Conclusion
We introduce TGN, a generic framework for learning on
continuous-time dynamic graphs. We obtain state-of-the-art
results on several datasets while being faster than previous
methods. Detailed ablation studies shows the importance
of the memory and its related modules to store long-term
information, as well as the importance of the graph-based
embedding module to generate up-to-date node embeddings.
We envision interesting applications of TGN in the fields
of social sciences, recommender systems, and biological
interaction networks, opening up a future research direction
of exploring more advanced settings of our model and un-
derstanding the most appropriate domain-specific choices.

Temporal Graph Networks for Deep Learning on Dynamic Graphs

References
[1] N. M. Ahmed and L. Chen. An efficient algorithm for

link prediction in temporal uncertain social networks.
Information Sciences, 331:120–136, 2016.

[2] N. M. Ahmed, L. Chen, Y. Wang, B. Li, Y. Li, and
W. Liu. Sampling-based algorithm for link prediction
in temporal networks. Information Sciences, 374:1–14,
2016.

[3] N. Bastas, T. Semertzidis, A. Axenopoulos, and
P. Daras. evolve2vec: Learning network represen-
tations using temporal unfolding. In International
Conference on Multimedia Modeling, pages 447–458.
Springer, 2019.

[4] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-
Gonzalez, V. Zambaldi, M. Malinowski, A. Tacchetti,
D. Raposo, A. Santoro, and R. Faulkner. Relational
inductive biases, deep learning, and graph networks.
arXiv:1806.01261, 2018.

[5] P. W. Battaglia, R. Pascanu, M. Lai, D. J. Rezende,
et al. Interaction networks for learning about objects,
relations and physics. In NIPS, pages 4502–4510,
2016.

[6] L. Belli, S. I. Ktena, A. Tejani, A. Lung-Yut-Fon,
F. Portman, X. Zhu, Y. Xie, A. Gupta, M. M. Bron-
stein, A. Delić, et al. Privacy-preserving recom-
mender systems challenge on twitter’s home timeline.
arXiv:2004.13715, 2020.

[7] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and
P. Vandergheynst. Geometric deep learning: going
beyond euclidean data. IEEE Signal Process. Mag.,
34(4):18–42, 2017.

[8] J. Chen, X. Xu, Y. Wu, and H. Zheng. Gc-lstm: Graph
convolution embedded lstm for dynamic link predic-
tion. arXiv:1812.04206, 2018.

[9] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bah-
danau, F. Bougares, H. Schwenk, and Y. Bengio.
Learning phrase representations using RNN encoder–
decoder for statistical machine translation. In EMNLP,
pages 1724–1734, 2014.

[10] N. Choma, F. Monti, L. Gerhardt, T. Palczewski,
Z. Ronaghi, P. Prabhat, W. Bhimji, M. M. Bronstein,
S. Klein, and J. Bruna. Graph neural networks for
icecube signal classification. In ICMLA, 2018.

[11] P. R. da Silva Soares and R. B. C. Prudêncio. Time
series based link prediction. In IJCNN, pages 1–7.
IEEE, 2012.

[12] S. S. Dasgupta, S. N. Ray, and P. Talukdar. HyTE:
Hyperplane-based temporally aware knowledge graph
embedding. In EMNLP, pages 2001–2011, 2018.

[13] S. De Winter, T. Decuypere, S. Mitrović, B. Baesens,
and J. De Weerdt. Combining temporal aspects of
dynamic networks with node2vec for a more efficient
dynamic link prediction. In ASONAM, pages 1234–
1241, 2018.

[14] L. Du, Y. Wang, G. Song, Z. Lu, and J. Wang. Dy-
namic network embedding: An extended approach for
skip-gram based network embedding. In IJCAI, pages
2086–2092, 2018.

[15] D. M. Dunlavy, T. G. Kolda, and E. Acar. Temporal
link prediction using matrix and tensor factorizations.
TKDD, 5(2):1–27, 2011.

[16] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre,
R. Bombarelli, T. Hirzel, A. Aspuru-Guzik, and R. P.
Adams. Convolutional networks on graphs for learning
molecular fingerprints. In NIPS. 2015.

[17] A. M. Fard, E. Bagheri, and K. Wang. Relationship
prediction in dynamic heterogeneous information net-
works. In European Conference on Information Re-
trieval, pages 19–34. Springer, 2019.

[18] P. Gainza et al. Deciphering interaction fingerprints
from protein molecular surfaces using geometric deep
learning. Nature Methods, 17:184–192, 2019.

[19] A. Garcı́a-Durán, S. Dumančić, and M. Niepert. Learn-
ing sequence encoders for temporal knowledge graph
completion. In EMNLP, pages 4816–4821, 2018.

[20] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals,
and G. E. Dahl. Neural message passing for quantum
chemistry. In ICML, 2017.

[21] R. Goel, S. M. Kazemi, M. Brubaker, and P. Poupart.
Diachronic embedding for temporal knowledge graph
completion. arXiv:1907.03143, 2019.

[22] P. Goyal, N. Kamra, X. He, and Y. Liu. Dyn-
gem: Deep embedding method for dynamic graphs.
arXiv:1805.11273, abs/1805.11273, 2018.

[23] A. Grover and J. Leskovec. Node2vec: Scalable fea-
ture learning for networks. In KDD ’16, KDD ’16,
page 855–864, New York, NY, USA, 2016. Associa-
tion for Computing Machinery.

[24] İ. Güneş, Ş. Gündüz-Öğüdücü, and Z. Çataltepe. Link
prediction using time series of neighborhood-based
node similarity scores. Data Mining and Knowledge
Discovery, 30(1):147–180, 2016.

Temporal Graph Networks for Deep Learning on Dynamic Graphs

[25] M. Gupta, C. C. Aggarwal, J. Han, and Y. Sun. Evo-
lutionary clustering and analysis of bibliographic net-
works. In ASONAM, pages 63–70. IEEE, 2011.

[26] W. L. Hamilton, R. Ying, and J. Leskovec. Inductive
representation learning on large graphs. In NIPS, 2017.

[27] W. L. Hamilton, R. Ying, and J. Leskovec. Represen-
tation learning on graphs: Methods and applications.
arXiv:1709.05584, 2017.

[28] R. Hisano. Semi-supervised graph embedding ap-
proach to dynamic link prediction. Springer Proceed-
ings in Complexity, page 109–121, 2018.

[29] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural Comput., 9(8):1735–1780, Nov.
1997.

[30] Z. Huang and D. K. Lin. The time-series link pre-
diction problem with applications in communica-
tion surveillance. INFORMS Journal on Computing,
21(2):286–303, 2009.

[31] N. M. A. Ibrahim and L. Chen. Link prediction in
dynamic social networks by integrating different types
of information. Applied Intelligence, 42(4):738–750,
2015.

[32] S. M. Kazemi, R. Goel, K. Jain, I. Kobyzev, A. Sethi,
P. Forsyth, and P. Poupart. Representation learning
for dynamic graphs: A survey. Journal of Machine
Learning Research, 21(70):1–73, 2020.

[33] M.-S. Kim and J. Han. A particle-and-density based
evolutionary clustering method for dynamic networks.
VLDB, 2(1):622–633, 2009.

[34] T. N. Kipf and M. Welling. Variational graph auto-
encoders. NIPS Workshop on Bayesian Deep Learning,
2016.

[35] T. N. Kipf and M. Welling. Semi-Supervised Classifi-
cation with Graph Convolutional Networks. In ICLR,
2017.

[36] S. Kumar, X. Zhang, and J. Leskovec. Predicting
dynamic embedding trajectory in temporal interaction
networks. In KDD ’19, page 1269–1278, 2019.

[37] D. Liben-Nowell and J. Kleinberg. The link-prediction
problem for social networks. J. Am. Soc. Inf. Sci.
Technol., 58(7):1019–1031, May 2007.

[38] Y. Ma, Z. Guo, Z. Ren, E. Zhao, J. Tang, and D. Yin.
Streaming graph neural networks. arXiv:1810.10627,
2018.

[39] Y. Ma, V. Tresp, and E. A. Daxberger. Embedding
models for episodic knowledge graphs. Journal of
Web Semantics, 59:100490, 2019.

[40] S. Mahdavi, S. Khoshraftar, and A. An. dynnode2vec:
Scalable dynamic network embedding. In 2018 IEEE
International Conference on Big Data, pages 3762–
3765. IEEE, 2018.

[41] F. Manessi, A. Rozza, and M. Manzo. Dynamic
graph convolutional networks. Pattern Recognition,
97:107000, 2020.

[42] F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda,
and M. M. Bronstein. Geometric deep learning on
graphs and manifolds using mixture model cnns. In
CVPR, 2016.

[43] F. Monti, F. Frasca, D. Eynard, D. Mannion, and M. M.
Bronstein. Fake news detection on social media using
geometric deep learning. arXiv:1902.06673, 2019.

[44] B. Moradabadi and M. R. Meybodi. A novel time
series link prediction method: Learning automata ap-
proach. Physica A: Statistical Mechanics and its Ap-
plications, 482:422–432, 2017.

[45] A. Narayan and P. H. Roe. Learning graph dynam-
ics using deep neural networks. IFAC-PapersOnLine,
51(2):433–438, 2018.

[46] G. H. Nguyen, J. Boaz Lee, R. A. Rossi, N. K. Ahmed,
E. Koh, and S. Kim. Dynamic network embeddings:
From random walks to temporal random walks. In
2018 IEEE International Conference on Big Data,
pages 1085–1092, 2018.

[47] G. H. Nguyen, J. B. Lee, R. A. Rossi, N. K. Ahmed,
E. Koh, and S. Kim. Continuous-time dynamic net-
work embeddings. In WWW ’18, page 969–976, 2018.

[48] A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzu-
mura, H. Kanezashi, T. Kaler, and C. E. Leisersen.
Evolvegcn: Evolving graph convolutional networks
for dynamic graphs. arXiv:1902.10191, 2019.

[49] S. Parisot, S. I. Ktena, E. Ferrante, M. Lee, R. Guer-
rero, B. Glocker, and D. Rueckert. Disease predic-
tion using graph convolutional networks: Application
to autism spectrum disorder and alzheimer’s disease.
Med Image Anal, 48:117–130, 2018.

[50] Y. Pei, J. Zhang, G. Fletcher, and M. Pechenizkiy.
Node classification in dynamic social networks.
AALTD, page 54, 2016.

[51] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk:
Online learning of social representations. In KDD ’14,
page 701–710, 2014.

Temporal Graph Networks for Deep Learning on Dynamic Graphs

[52] S. Qi, W. Wang, B. Jia, J. Shen, and S.-C. Zhu. Learn-
ing human-object interactions by graph parsing neural
networks. In ECCV, pages 401–417, 2018.

[53] E. Rossi, F. Monti, M. M. Bronstein, and P. Liò. ncrna
classification with graph convolutional networks. In
KDD Workshop on Deep Learning on Graphs, 2019.

[54] A. Sankar, Y. Wu, L. Gou, W. Zhang, and H. Yang.
Dysat: Deep neural representation learning on dy-
namic graphs via self-attention networks. In WSDM,
pages 519–527, 2020.

[55] Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bres-
son. Structured sequence modeling with graph con-
volutional recurrent networks. Lecture Notes in Com-
puter Science, page 362–373, 2018.

[56] U. Sharan and J. Neville. Temporal-relational clas-
sifiers for prediction in evolving domains. In ICDM,
pages 540–549. IEEE, 2008.

[57] U. Singer, I. Guy, and K. Radinsky. Node embedding
over temporal graphs. In IJCAI, pages 4605–4612, 7
2019.

[58] R. Trivedi, H. Dai, Y. Wang, and L. Song. Know-
evolve: Deep temporal reasoning for dynamic knowl-
edge graphs. In ICML, page 3462–3471, 2017.

[59] R. Trivedi, M. Farajtabar, P. Biswal, and H. Zha.
Dyrep: Learning representations over dynamic graphs.
In ICLR, 2019.

[60] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polosukhin.
Attention is all you need. In NIPS, pages 5998–6008.
2017.

[61] P. Velickovic, G. Cucurull, A. Casanova, A. Romero,
P. Liò, and Y. Bengio. Graph attention networks. In
ICLR, 2018.

[62] K. Veselkov et al. Hyperfoods: Machine intelligent
mapping of cancer-beating molecules in foods. Scien-
tific Reports, 9(1):1–12, 2019.

[63] Y. Xin, Z.-Q. Xie, and J. Yang. An adaptive random
walk sampling method on dynamic community de-
tection. Expert Systems with Applications, 58:10–19,
2016.

[64] C. Xu, M. Nayyeri, F. Alkhoury, J. Lehmann, and H. S.
Yazdi. Temporal knowledge graph completion based
on time series gaussian embedding. arXiv:1911.07893,
2019.

[65] D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and
K. Achan. Inductive representation learning on tempo-
ral graphs. In ICLR, 2020.

[66] L. Yao, L. Wang, L. Pan, and K. Yao. Link prediction
based on common-neighbors for dynamic social net-
work. Procedia Computer Science, 83:82–89, 2016.

[67] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L.
Hamilton, and J. Leskovec. Graph convolutional neu-
ral networks for web-scale recommender systems. In
KDD ’18, 2018.

[68] B. Yu, M. Li, J. Zhang, and Z. Zhu. 3d graph con-
volutional networks with temporal graphs: A spa-
tial information free framework for traffic forecasting.
arXiv:1903.00919, 2019.

[69] W. Yu, W. Cheng, C. C. Aggarwal, H. Chen, and
W. Wang. Link prediction with spatial and tempo-
ral consistency in dynamic networks. In IJCAI, pages
3343–3349, 2017.

[70] W. Yu, W. Cheng, C. C. Aggarwal, K. Zhang, H. Chen,
and W. Wang. Netwalk: A flexible deep embedding
approach for anomaly detection in dynamic networks.
In KDD ’18, pages 2672–2681, 2018.

[71] M. Zhang and Y. Chen. Link prediction based on graph
neural networks. In NIPS, 2018.

[72] L. Zhou, Y. Yang, X. Ren, F. Wu, and Y. Zhuang. Dy-
namic network embedding by modeling triadic closure
process. In AAAI, 2018.

[73] J. Zhu, Q. Xie, and E. J. Chin. A hybrid time-series
link prediction framework for large social network. In
DEXA, pages 345–359. Springer, 2012.

[74] Y. Zhu, H. Li, Y. Liao, B. Wang, Z. Guan, H. Liu, and
D. Cai. What to do next: Modeling user behaviors
by time-lstm. In IJCAI, volume 17, pages 3602–3608,
2017.

[75] M. Zitnik, M. Agrawal, and J. Leskovec. Modeling
polypharmacy side effects with graph convolutional
networks. Bioinformatics, 34(13):i457–i466, 2018.

Temporal Graph Networks for Deep Learning on Dynamic Graphs

6. Supplementary Material
6.1. Training procedures

Algorithm 1 Training TGN - No gradient flows
s← 0 ; // Initialize memory to zeros

1 foreach batch (i, j, e, t) ∈ training data do
2 n← sample negatives;

zi, zj, zn ← emb(i, t), emb(j, t), emb(n, t) ;
// Compute node embeddings

3 ppos, pneg ← dec(zi, zj), dec(zi, zn) ;
// Compute interactions probs

4 l = BCE(ppos, pneg) ; // Compute BCE loss
5 mi,mj ← msg(si, sj, t, e), msg(sj, si, t, e) ;

// Compute messages3

6 m̄← agg(mi||mj) ; // Aggregate messages
7 si, sj ← mem(m̄i, si), mem(m̄j, sj) ; // Update

memory
8 end

Algorithm 2 Training TGN - Advanced Strategy
s← 0 ; // Initialize memory to zeros

9 m raw← {} ; // Initialize raw messages
10 foreach batch (i, j, e, t) ∈ training data do
11 n← sample negatives ;

m← msg(m raw) ; // Compute messages
from raw features3

12 m̄← agg(m) ; // Aggregate messages for
the same nodes

13 ŝ← mem(m̄, s) ; // Get updated memory
14 zi, zj, zn ← embŝ(i, t), embŝ(j, t), embŝ(n, t) ;

// Compute node embeddings4

15 ppos, pneg ← dec(zi, zj), dec(zi, zn) ; // Compute
interactions probs

16 l = BCE(ppos, pneg) ; // Compute BCE loss
17 m rawi,m rawj ← (̂si, ŝj, t, e), (̂sj, ŝi, t, e) ;

// Compute raw messages
18 si, sj ← ŝi, ŝj ; // Store updated memory

for sources and destinations
19 end

3For the sake of clarity, we use the same message function for
both sources and destination.

4We denote with embŝ an embedding layer that operates on
the updated version of the memory ŝ.

!(#)!(#%)

&(#)

'() *)) '+'

+',

-(#)

.(#) /.(#)

0(#)

!_#$%((̃)

*((̃+)

,(()

-./ 0//

-1-

||

1-3

!_#$%(()

*((+)

4(()

!((̃)
5!((̃)

6(()

Figure 2. Two implementations of TGN with different memory
updates. Top: Basic training strategy. Bottom: Advanced training
strategy. m raw(t) is the raw message generated by event e(t), t̃
is the instant of time of the last event involving each node, and t−

the one immediately preceding t.

6.2. Related works

Early models for learning on dynamic graphs focused on
Discrete Time Dynamic Graphs (DTDG)s. Such approaches
either aggregate graph snapshots and then apply static meth-
ods (37; 28; 56; 31; 1; 2), assemble snapshots into ten-
sors and factorize (15; 69; 39), or encode each snapshot
to produce a series of embeddings. In the latter case, the
embeddings are either aggregated by taking a weighted
sum (66; 73), fit to time series models (30; 24; 11; 44),
used as components in RNNs (55; 45; 41; 68; 8; 54; 48),
or learned by imposing a smoothness constraint over
time (33; 25; 66; 74; 72; 57; 22; 17; 50). Another line of
work encodes DTDGs by first performing random walks on
an initial snapshot and then modifying the walk behaviour
for subsequent snapshots (40; 14; 63; 13; 70). Only re-
cently have Continuous Time Dynamic Graphs (CTDGs)
been addressed. Several approaches use random walk mod-
els (47; 46; 3) that incorporate continuous time through
constraints on transition probabilities. Sequence-based ap-
proaches for CTDGs (36; 58; 59; 38) use RNNs to update
representations of the source and destination node each
time a new edge appears. Other recent works have focused
on dynamic knowledge graphs (21; 64; 12; 19). Most
recent CTDG learning models can be interpreted as spe-
cific cases of our framework (see Table 2 SM). For exam-

Temporal Graph Networks for Deep Learning on Dynamic Graphs

Table 2. Previous models for deep learning on continuous-time dynamic graphs are specific case of our TGN framework. Shown are
multiple variants of TGN used in our ablation studies. method (l,n) refers to graph convolution using l layers and n neighbors. †uses
t-batches. ∗ uses uniform sampling of neighbors, while the default is sampling the most recent neighbors.

Mem. Mem. Update Embedding Mess. Agg. Mess. Func.

JODIE node RNN time —† id
TGAT — — attn (2l, 20n)∗ — —
TGN-attn node GRU attn (1l, 10n) last id
TGN-2l node GRU attn (2l, 10n) last id
TGN-no-mem — — attn (1l, 10n) — id
TGN-time node GRU time last id
TGN-id node GRU id last id
TGN-sum node GRU sum (1l, 10n) last id
TGN-mean node GRU attn (1l, 10n) mean id

ple, Jodie (36) uses the time projection embedding module
emb(i, t) = (1 + ∆tw) ◦ si(t). TGAT (65) is a specific
case of TGN when the memory and its related modules
are missing, and graph attention is used as the Embedding
module. Finally, we note that TGN generalizes the Graph
Networks (GN) model (4) for static graphs (with the ex-
ception of the global block that we mentioned before), and
thus the majority of existing message passing-type archi-
tectures.For additional background, we refer the reader to
surveys on general graph representation learning (7; 27; 4)
and the recent survey on dynamic graph learning (32).

6.3. Additional results

TGN-attn

TGAT-1l

TGAT

Jodie

TGN-sum

TGN-id
TGN-time

TGN-2l TGN-mean

TGN-n-mem

Figure 3. Tradeoff between accuracy (test average precision in %)
and speed (time per epoch in sec) of different models. TGN-att is
the best tradeoff between performance and speed beating baselines
Jodie and TGAT.

TGN-id-e5

TGN-id-e1

TGN-id-s1
TGN-id-s5

TGN-attn-s5TGN-attn-e1 TGN-attn-e5
TGN-attn-s1

Figure 4. Tradeoff between accuracy (test average precision in %)
and speed (time per epoch in sec) of different training strategies.
TGN-emb-upd-b denotes model with embedding emb (attn or id),
update upd (s:start or e:end), and where each batch is split into b
sub-batches.

Table 3. ROC AUC % for the dynamic node classification. ∗Static
graph method.

Wikipedia Reddit

GAE∗ 74.85±0.6 58.39±0.5
VAGE∗ 73.67±0.8 57.98±0.6
GAT∗ 82.34±0.8 64.52±0.5
GraphSAGE∗ 82.42±0.7 61.24±0.6
CTDNE 75.89±0.5 59.43±0.6
JODIE 87.17±0.4 59.50±2.1
TGAT 83.69±0.7 65.56±0.7
TGN-attn 88.56±0.3 68.63±0.7

