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Abstract
The graph structure of biomedical data differs
from those in typical knowledge graph bench-
mark tasks. A particular property of biomedical
data is the presence of long-range dependencies,
which can be captured by patterns described as
logical rules. We propose a novel method that
combines these rules with a neural multi-hop rea-
soning approach that uses reinforcement learning.
We conduct an empirical study based on the real-
world task of drug repurposing by formulating
this task as a link prediction problem. We apply
our method to the biomedical knowledge graph
Hetionet and show that our approach outperforms
several baseline methods.

1. Introduction
Advancements in low-cost high-throughput sequencing and
data acquisition technologies have given rise to a massive
proliferation of data describing biological systems. Biomed-
ical knowledge graphs (KGs) are becoming increasingly
popular as backbones for artificial intelligence tasks such
as personalized medicine, predictive diagnosis, and drug
discovery (Dörpinghaus & Jacobs, 2019).

From a machine learning perspective, reasoning on biomed-
ical KGs presents new challenges for existing approaches
because of the unique structural characteristics of the graphs.
One challenge arises due to the highly coupled nature of
entities in biological systems that leads to many high-degree
and densely interlinked entities. A second challenge is the
requirement of information beyond second-order neighbor-
hoods for reasoning about the relationship between two
entities (Himmelstein et al., 2017) so that approaches where
long-range interactions are incorporated only via node em-
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Figure 1. Visualization of the heterogeneous biomedical
network Hetionet3.

beddings (e. g., RESCAL (Nickel et al., 2011), TransE (Bor-
des et al., 2013)) tend to underperform. Unfortunately, ap-
proaches that explicitly take the entire multi-hop neigh-
borhoods into account (e. g., graph convolutional models,
R-GCN (Schlichtkrull et al., 2018)), often have diminishing
performance beyond two-hop neighborhoods (i. e., more
than two convolutional layers). Furthermore, high-degree
entities can cause the aggregation operations to smooth out
the signals. Alternatively, symbolic reasoning approaches
(e. g., RuleN (Meilicke et al., 2018), AnyBURL (Meilicke
et al., 2019)) learn logical rules and employ them during
inference. However, due to the massive scale and diverse
topologies of many real-world KGs, combinatorial com-
plexity often prevents the usage of symbolic approaches.
Also, logical inference has difficulties handling noise in
the data. Recently, path-based reasoning methods have be-
come popular, and they present a seemingly ideal balance
for combining information over multi-hop neighborhoods.

We propose a novel neuro-symbolic KG reasoning approach
that combines path-based approaches with representation
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Figure 2. Subgraph of Hetionet that illustrates the drug re-
purposing use case: The two paths that connect the chemical
compound sorafenib and the disease kidney cancer can be
used to predict a direct edge between the two entities.

learning and logical rules. These rules can be either mined
from data or obtained from domain experts. Inspired by
existing methods (Das et al., 2018; Lin et al., 2018; Hilde-
brandt et al., 2020a;b), we use reinforcement learning to
train an agent to conduct policy-guided random walks on
a KG. We propose a modification by introducing a reward
function that allows the agent to leverage background knowl-
edge formalized as metapaths. In summary, our paper makes
the following contributions:

• We propose a novel neuro-symbolic approach that com-
bines neural multi-hop reasoning based on reinforce-
ment learning with logical rules.

• We conduct an empirical study of several state-of-the-
art algorithms applied to a large biomedical KG.

• We show that our proposed approach outperforms state-
of-the-art alternatives on a highly relevant biomedical
prediction task (drug repurposing).

As an application of our method, we focus on the drug
repurposing problem, which is characterized by finding new
treatment targets for existing drugs. By repurposing existing
drugs, available knowledge about drug-disease-interactions
can be leveraged to reduce time and cost for developing new
drugs significantly. A recent example is the repositioning of
the medication remdesivir for the novel coronavirus disease
COVID-19. We aim at generating candidates for the drug
repurposing task with machine learning reasoning methods
and formulate the task as a link prediction problem, where
both compounds and diseases correspond to entities in a
KG.

2. Notation
Let E denote the set of entities in a KG and R the set of
binary relations. Elements in E correspond to biomedical

entities including, e. g., chemical compounds, diseases, and
genes. Each entity belongs to a unique type in T , defined by
the mapping τ : E → T . For example, τ(AURKC) = Gene
indicates that the entity AURKC has type Gene. We define a
KG KG ⊂ E ×R× E as a collection of triples of the form
(h, r, t), which consists of head, relation, and tail. Head
and tail entities correspond to nodes in the graph, while
the relation indicates the type of edge between them. For
any relation r ∈ R, we denote the corresponding inverse
relation with r−1 (i. e., (h, r, t) is equivalent to (t, r−1, h)).
Triples in KG are interpreted as true known facts. For ex-
ample, the triple (Sorafenib, treats,Liver Cancer) ∈ KG in
Figure 2 corresponds to the fact that the kinase inhibitor
drug sorafenib is approved for the treatment of liver cancer.

We further distinguish between two types of paths: instance
paths and metapaths. An instance path of length T ∈ N on
KG is given by a sequence

(e1
r1−→ e2

r2−→ · · · rT−−→ eT+1),

where (ei, ri, ei+1) ∈ KG. Moreover, we call

(τ(e1)
r1−→ τ(e2)

r2−→ · · · rT−−→ τ(eT+1))

a metapath. For example,

(Sorafenib treats−−−→ Liver Cancer resembles−−−−−→ Kidney Cancer)

constitutes an instance path of length 2, where

(Compound treats−−−→ Disease resembles−−−−−→ Disease)

is the corresponding metapath.

Logical rules (e.g., the commonly used Horn clauses) are
usually written in the form head ← body. The head can
be written out as a triple, and the body can be expressed as
a metapath. Define CtD := (Compound, treats,Disease).
Then, a rule with respect to edges of type treats is of the
generic form

CtD←
(

Compound r1−→ Type2
r2−→ . . .

rT−−→ Disease
)
.

In particular, the body of a rule corresponds to a metapath
starting at a compound and terminating at a disease. The
goal is to find instance paths where the corresponding meta-
paths match the body of a rule to predict a new relation
between the source and the target of the instance path. The
confidence of a rule indicates how often a rule is correct and
is defined as the rule support divided by the body support in
the data.

3. Our Method
We pose the task of drug repurposing as a link prediction
problem based on graph traversal. Starting at a query entity



Integrating Logical Rules Into Neural Multi-Hop Reasoning for Drug Repurposing

(e.g., a compound to be repurposed), an agent performs a
walk on the graph by sequentially transitioning to a neigh-
boring node. The decision of which transition to make is
determined by a stochastic policy. Each subsequent transi-
tion is added to the current path, extending the reasoning
chain, until a finite number of transitions is reached. The
general approach is inspired by the reinforcement learning
method MINERVA (Das et al., 2018), with our primary con-
tribution coming from the incorporation of logical rules into
the training process.

The state of the environment consists of the entity et where
the agent is located at time t, the source entity ec, and the tar-
get entity ed, where ec and ed correspond to the compound
that we aim to repurpose and the target disease, respec-
tively. Thus, a state St for time t ∈ N is represented by
St := (et, ec, ed). The agent is given no information about
the target disease so that the observed part of the state space
is given by (et, ec) ∈ E2. Let e ∈ Rd denote the embedding
of entity e and r ∈ Rd the embedding of relation r. The
set of available actions contains all outgoing edges from the
node et with the corresponding target nodes and the option
to stay at the current node with no transition. We denote
with At ∈ ASt the action that the agent performed at time t.
The environment evolves deterministically by updating the
state according to the previous action.

The agent encodes previous actions via a multi-layered
LSTM (Hochreiter & Schmidhuber, 1997)

ht = LSTM ([at−1, ec]) , (1)

where at−1 := [rt−1, et] ∈ R2d corresponds to the vector
space embedding of the previous action (or the zero vector
at time t = 0). The action distribution is given by

dt = softmax (At (W 2ReLU (W 1ht))) , (2)

where W1 and W2 are weight matrices and the rows of
At ∈ R|ASt |×2d contain the latent representations of all
admissible actions from St. An action At ∈ ASt

is sampled
according to At ∼ Categorical (dt) . Overall, T transitions
are sampled, resulting in a path denoted by

P := (ec
r1−→ e2

r2−→ . . .
rT−−→ eT+1),

where T is the maximum path length. Equations (1) and
(2) induce a stochastic policy, represented by πθ where θ
denotes the set of all trainable parameters, including all
entity and relation embeddings.

Furthermore, letM = {M1,M2, . . . ,Mm} be the set of
metapaths, where each element corresponds to the body of a
rule. For every metapath M , we assign a score S(M) ∈ R
that indicates a quality measure of the corresponding rule,
such as the confidence or the support with respect to making
a correct prediction. For a path P , we denote with P̃ the
corresponding metapath.

During training, a terminal reward is computed according to

R = I{eT+1=ed}

(
1 + λ

m∑
i=1

S(Mi)I{P̃=Mi}

)
.

The first term indicates whether the agent has reached the
correct target disease. The second term checks whether
the metapath corresponds to the body of a rule and adds
to the score accordingly. Heuristically speaking, we want
to reward the agent with a higher score for extracting a
metapath that corresponds to a body. The hyperparameter
λ ≥ 0 balances the two components of the reward. For
λ = 0, we recover MINERVA.

We employ REINFORCE (Williams, 1992) to maximize the
expected rewards. Thus, the agent’s maximization problem
is given by

argmax
θ

Eec∼EcEA1,A2,...,AT∼πθ
[R | ec] , (3)

where Ec denotes the true underlying distribution of the set
of chemical compounds.

4. Experiments
4.1. Dataset

Hetionet (Himmelstein et al., 2017) is a biomedical KG that
integrates data from 29 highly reputable and cited public
databases. It consists of 47,031 entities with 11 different
types and 2,250,197 edges with 24 different types. We aim
to predict edges with type treats between entities that corre-
spond to compounds and diseases. The goal is to perform
candidate ranking according to the likelihood of successful
drug repurposing in a novel treatment application. There
are 1552 compounds and 137 diseases in Hetionet with
775 observed links of type treats between compounds and
diseases.

4.2. Metapaths as Background Information

Himmelstein et al. (2017) compiled a list of 1206 meta-
paths corresponding to various pharmacological efficacy
mechanisms that connect entities of type Compound with
entities of type Disease. Through hypothesis testing and
domain expertise, they identified 31 effective metapaths
that served as features for a logistic regression model. Out
of these metapaths, we select the 10 metapaths as back-
ground information that have at most path length 3 and
exhibit positive regression coefficients, indicating their im-
portance for predicting drug efficacy. The metapaths are
included as rule bodies inM, where the rule head is always
(Compound, treats, Disease). We estimate the confidence
score for each rule by sampling 10,000 paths whose meta-
paths correspond to the rule body and use the confidence
for the score S(M) (see Section 3). Table 1 shows the three
metapaths with the highest confidences.
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Table 1. Three metapaths and their scores.

S(M) Metapath M

0.446 (Compound includes−1

−−−−−−→ Pharmacologic Class includes−−−−→ Compound
treats−−−→ Disease)

0.265 (Compound resembles−−−−−→ Compound resembles−−−−−→ Compound treats−−−→ Disease)

0.184 (Compound binds−−−→ Gene associates−1

−−−−−−−→ Disease)

4.3. Experimental Setup

We apply our method, denoted by MINERVA+, to Het-
ionet and calculate hits@1, hits@3, hits@10, and the mean
reciprocal rank (MRR). During inference, a beam search
is carried out, and the entities are ranked by the probabil-
ity of their corresponding paths. Moreover, we consider
another evaluation scheme (MINERVA+ (pruned)) that re-
trieves and ranks only those paths from the test rollouts
that correspond to one of the metapaths. All the other ex-
tracted paths are not considered in the ranking. We compare
our approach with the path-based method MINERVA, the
rule-based method AnyBURL, and the embedding-based
methods TransE, RESCAL, and R-GCN.

4.4. Results

Table 2. Comparison with baseline methods.

Method Hits@1 Hits@3 Hits@10 MRR
AnyBURL 0.139 0.254 0.358 0.210

AnyBURL (metapaths) 0.252 0.364 0.609 0.354
TransE 0.073 0.172 0.318 0.161

RESCAL 0.205 0.35 0.576 0.317
R-GCN 0.093 0.245 0.364 0.188

MINERVA 0.249 0.391 0.605 0.357
MINERVA+ 0.294 0.437 0.615 0.396

MINERVA+ (pruned) 0.319 0.468 0.628 0.416

Table 2 displays the test results for the experiments. The
reported values for MINERVA and MINERVA+ correspond
to the mean across five independent training runs. The stan-
dard errors lie between 0.0072 and 0.0198. This indicates
that the reported performance gains are highly significant.

AnyBURL only learns one rule for the relation treats that
has a length of at least 2. To see the effect of applying a
larger number of rules, we try a setting where we use the
metapaths for the prediction step, which leads to signifi-
cantly improved results. TransE and R-GCN show simi-
lar performance, and RESCAL performs best among the
embedding-based methods. Applying the modified ranking
scheme, our method yields performance gains of 26.6% for
hits@1, 19.7% for hits@3, 3.1% for hits@10, and 16.5%
for MRR with respect to best performing baseline method.

4.5. Discussion

Our method can act as a generic mechanism to inject do-
main knowledge into reinforcement learning-based reason-
ing methods on KGs (Lin et al., 2018; Xiong et al., 2017).
While we employ rules that are extracted in a data-driven
fashion, our method is agnostic towards the source of back-
ground information. The additional reward for extracting
a rule (see Equation (3)) can be considered as a regulariza-
tion that enforces the agent to walk along metapaths that
generalize to unseen instances.

AnyBURL is strictly outperformed by both MINERVA and
our method. Most likely, the large amount of high-degree
nodes in Hetionet lead to the outcome that hardly any strong,
predictive rules are extracted. Multi-hop reasoning meth-
ods contain a natural transparency mechanism by providing
explicit inference paths. Surprisingly, our experimental
findings show that path-based reasoning methods outper-
form existing black-box methods on the drug repurposing
task without a trade-off between explainability and perfor-
mance. Both TransE and RESCAL are trained to minimize
the reconstruction error in the immediate first-order neigh-
borhood, and our results indicate that these methods seem
not to be suitable for the drug repurposing task. R-GCN is
in principle capable of modeling long-term dependencies
due to the receptive field containing the entire set of nodes
in the multi-hop neighborhood. However, the aggregation
and combination step of R-GCN essentially acts as a low-
pass filter on the incoming signals, and in the presence of
many high-degree nodes, the center nodes may receive an
uninformative signal that smooths over the neighborhood
embeddings.

To illustrate the applicability of our method, consider the
compound sorafenib from Figure 2. The three highest
predictions of our model for new target diseases include
hematologic cancer, breast cancer, and Barrett’s esophagus.
The database ClinicalTrails.gov (U. S. National Library of
Medicine, 2000) lists 23 clinical studies for testing the ef-
fect of sorafenib on these three diseases, showing that the
predictions are meaningful targets for further investigation.

5. Conclusion
We have proposed a novel neuro-symbolic knowledge graph
reasoning approach that leverages path-based reasoning,
representation learning, and logical rules. We apply our
method to the highly relevant task of drug repurposing and
compare our approach with both embedding-based and rule-
based methods. We achieve better performance and an
improvement of 26.6% for hits@1 and 16.5% for the mean
reciprocal rank compared to popular baselines.
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