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Abstract

Retrosynthesis prediction is a fundamental prob-
lem in organic synthesis, where the task is to iden-
tify precursor molecules that can be used to syn-
thesize a target molecule. Despite advancements
in neural retrosynthesis algorithms, they are un-
able to fully recapitulate the strategies employed
by chemists and do not generalize well to infre-
quent reactions. In this paper, we propose a graph-
based approach that capitalizes on the idea that
graph topology of precursor molecules is largely
unaltered during the reaction. The model first
predicts the set of graph edits transforming the
target into incomplete molecules called synthons.
Next, the model learns to expand synthons into
complete molecules by attaching relevant leav-
ing groups. Since the model operates at the level
of molecular fragments, it avoids full generation,
greatly simplifying the underlying architecture
and improving its ability to generalize. The model
yields 11.7% absolute improvement over state of
the art approaches on the USPTO-50k dataset.

1. Introduction
Retrosynthesis prediction, first formalized by E.J. Corey
(Corey, 1991), is a fundamental problem in organic synthe-
sis that attempts to identify a series of chemical transfor-
mations for synthesizing a target molecule. In the single-
step formulation, the task is to identify a set of reactant
molecules given a target. Beyond simple reactions, many
practical tasks involving complex organic molecules are dif-
ficult even for expert chemists. This has motivated interest
in computer-assisted retrosynthesis (Corey & Wipke, 1969),
with a recent surge in machine learning methods (Coley
et al., 2017; Dai et al., 2019; Zheng et al., 2019).

The key computational challenge is how to efficiently ex-
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plore the combinatorial space of reactions that can yield the
target molecule. Existing machine learning methods for ret-
rosynthesis prediction fall into template-based (Coley et al.,
2017; Dai et al., 2019; Segler & Waller, 2017) and template-
free approaches (Chen et al., 2019; Zheng et al., 2019).
Template-based methods match the target molecule against
a large set of templates, which are molecular subgraph pat-
terns that highlight changes during a chemical reaction. De-
spite their interpretability, these methods suffer from poor
generalization to new and rare reactions. Template-free
methods bypass templates by learning a direct mapping
from the SMILES representations (Weininger, 1988) of the
product to reactants. Despite their greater generalization po-
tential, these methods generate reactant SMILES character
by character, increasing generation complexity and which
in turn negatively impacts their complexity.

In this paper, we propose a retrosynthesis model which pro-
vides the generalization capacity of template-free models
without resorting to full generation. This is achieved by
learning to maximally reuse and recombine large fragments
from the target molecule. This idea is grounded in the fun-
damental property of chemical reactions — the molecular
graph topology is largely unaltered from products to reac-
tants. For example, in the standard retrosynthesis dataset,
only 6.3% of the atoms in the product undergo any change
in connectivity. Operating at the level of these preserved
subgraphs greatly reduces the complexity of reactant gener-
ation, leading to improved empirical performance.

Our template-free approach called GRAPHRETRO generates
reactants in two stages: (i.) deriving intermediate molecules
called synthons (Corey, 1967) from the product, and (ii.) ex-
panding synthons into reactants by adding specific function-
alities called leaving groups. Synthons are derived from
products by applying modifications called edits to bonds or
hydrogen counts on atoms in the product. Leaving groups
are selected from a precomputed vocabulary, and attached
to synthons through chemically constrained rules. The vo-
cabulary is constructed during preprocessing by extracting
subgraphs that differ between a synthon and corresponding
reactant, with a 99.7% coverage on the test set.

We evaluate GRAPHRETRO on the benchmark USPTO-50k
dataset. GRAPHRETRO achieves 64.2% top-1 accuracy with-
out the knowledge of reaction class, outperforming the state-
of-the-art method by a margin of 11.7%.
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Figure 1. Overview of Our Approach. a. Edit Prediction. We train a model to learn a distribution over possible graph edits. In this
case, the correct edit corresponds to breaking the bond marked in red. Applying this edit produces two synthons. b. Synthon Completion.
Another model is trained to pick candidate leaving groups (blue) for each synthon from a discrete vocabulary, which are then attached to
produce the final reactants.

2. Model Design
Molecules are represented as a graph G = (V, E) with atoms
V as nodes and bonds E as edges. A retrosynthesis pair R is
described by a pair of molecules (Gp,Gr), where Gp are the
products and Gr the reactants. Prior work has focused on
the single product case, while reactants can have multiple
connected components, i.e. Gr = {Grc}Cc=1. Retrosynthesis
pairs are atom-mapped so that each product atom has a
unique corresponding reactant atom. The retrosynthesis
task then, is to infer {Grc}Cc=1 given Gp.

Edits consist of atom pairs {(ai, aj)} with a change in bond
type from products to reactants, and atoms {ai} with a
change in associated hydrogen count. We denote the set of
edits by E. Applying edits E to the product Gp produces
incomplete molecules called synthons. To generate valid
reactants, specific functionalities called leaving groups are
added to synthons. We denote synthons by Gs and leaving
groups by Gl, and assume they have C connected compo-
nents each, i.e Gs = {Gsc}Cc=1 and Gl = {Glc}Cc=1.

Our model consists of two modules (Figure 1). Given a
product Gp, we first infer edits E (Section 2.1). Applying
editsE to Gp produces synthons Gs. Next, we infer a leaving
group Glc for each synthon component Gsc (Section 2.2).
The model is defined as

P (Gr|Gp) =
∑
E,Gl

P (E|Gp)︸ ︷︷ ︸
Edit Prediction

P (Gl|Gp,Gs)︸ ︷︷ ︸
Synthon Completion

, (1)

where Gs,Gr are deterministic given E,Gl, and Gp.

2.1. Edit Prediction

Edits can be identified automatically by using the atom-
mapping to compare bond and hydrogen count changes

between products and reactants. Our edit prediction model
has variants tailored to single and multiple edit prediction.
Since 95% of the training set consists of single-edit exam-
ples, the remainder of this section describes the setup for
single edit prediction. A detailed description of our multiple
edit prediction model can be found in Appendix B.

Each bond (u, v) in Gp is associated with a label yuvk ∈
{0, 1} indicating whether its bond type k has changed from
the products to reactants. Each atom u is associated with
a label yu ∈ {0, 1} indicating a change in hydrogen count.
We predict edit scores using representations that are learnt
using a graph encoder.

Graph Encoder To learn atom representations, we use a
variant of the message passing network (MPN) described in
(Gilmer et al., 2017). For simplicity, we denote the encoding
process by MPN(·) and describe architectural details in
Appendix A. Given features xu for atom u, xuv for bond
(u, v) and neighbors N (u) of atom u, The MPN computes
atom representations {cu|u ∈ G} via

{cu} = MPN(G, {xu}, {xuv}v∈N (u)). (2)

The graph representation cG is an aggregation of atom rep-
resentations, i.e. cG =

∑
u∈V cu. When G has connected

components {Gi}, we get graph representations {cGi}. For
a bond (u, v), we define its representation cuv = (cu || cv)
as the concatentation of atom representations cu and cv .

Using these representations to directly predict edit scores
constrains predictions to the neighborhood the messages
were aggregated from. We include global dependencies in
the prediction input by using convolutional layers, which
have been used successfully to extract globally occurring
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features using locally operating filters (Krizhevsky et al.,
2012). We apply P layers of convolutions to atom and bond
representations to obtain embeddings cPu and cPuv. These
representations are then used to predict atom and bond edit
scores using corresponding neural networks,

suvk = uk
T τ(Wkc

P
uv + bk) (3)

su = ua
T τ(Wac

P
u + b). (4)

Training The edit prediction model minimizes the cross
entropy loss over possible bond and atom edits

Le = −
∑

((u,v),k)∈E

yuvklog(suvk) +
∑
u∈E

yulog(su) (5)

2.2. Synthon Completion

Synthons are completed into valid reactants by adding spe-
cific functionalities called leaving groups. This involves two
complementary tasks: (i.) selecting the appropriate leaving
group, and (ii.) attaching the leaving group to the synthon.
As ground truth leaving groups are not directly provided,
we extract the leaving groups and construct a vocabulary X
of unique leaving groups during preprocessing. The vocab-
ulary has a limited size (|X | = 170 for a standard dataset
with 50, 000 examples). We thus formulate leaving group
selection as a classification problem over X .

Vocabulary Construction We first align connected com-
ponents of synthon and reactant graphs by comparing atom
mapping overlaps. Using aligned pairs Gsc = (Vsc , Esc)
and Grc = (Vrc , Erc), the leaving group vocabulary X is
constructed by extracting subgraphs Glc = (Vlc , Elc) such
that Vlc = Vrc \ Vsc . Atoms {ai} in the leaving groups that
attach to synthons are marked with a special symbol.

Leaving Group Selection Treating each xi ∈ X as a
molecular subgraph, we learn representations exi

using the
MPN(·). We also use the same MPN(·) to learn the prod-
uct graph representation cGp and sython representations
{cGsc }

C
c=1, where C is the number of connected compo-

nents. For each step c ≤ C, we compute leaving group
probabilities via

q̂lc = σ
(
Uτ

(
W1cGp +W2cGsc +W3el(c−1)

))
, (6)

where q̂lc is the distribution learnt over X , el(c−1)
is the

representation of the leaving group predicted in step c− 1,
and σ(·) denotes the softmax function.

Training For step c, given the one hot encoding of the
true leaving group qlc , we minimize the cross-entropy loss

Ls =

C∑
c=1

L(q̂lc , qlc). (7)

Training utilizes teacher-forcing (Williams & Zipser, 1989)
so that the model makes predictions given correct histories.
During inference, we use the representation of leaving group
from the previous step with the highest predicted probability.

Leaving Group Attachment Leaving group attachment
is a deterministic process and not learnt during training. The
task involves identification of the type of bonds to add be-
tween attaching atoms in the leaving group (marked during
vocabulary construction), and the atom(s) participating in
the edit. These bonds can be inferred by applying the va-
lency constraint, which determines the maximum number
of neighbors for each atom. Given synthons and leaving
groups, the attachment process has a 100% accuracy.

2.3. Overall Training and Inference

The two modules can either be trained separately (separate)
or jointly by sharing (shared) the encoder. The shared train-
ing minimizes the loss L = λeLe + λsLs, where λe and λs
weigh the influence of each term on the final loss.

Inference is performed using beam search with a log-
likelihood scoring function. For a beam width n, we select
n edits with highest scores and apply them to the product to
obtain n synthons, where each synthon can consist of mul-
tiple connected components. The synthons form the nodes
for beam search. Each node maintains a cumulative score
by aggregating the log-likelihoods of the edit and predicted
leaving groups. Leaving group inference starts with a con-
nected component for each synthon, and selects n leaving
groups with highest log-likelihoods. From the n2 possibili-
ties, we select n nodes with the highest cumulative scores.
This process is repeated until all nodes have a leaving group
predicted for each synthon component.

3. Experiments
Data We evaluate GRAPHRETRO on the benchmark
dataset USPTO-50k (Schneider et al., 2016), which contains
50, 000 atom-mapped reactions across 10 reaction classes,
and partitioned into a 80%/10%/10% train/validation/test
split (Liu et al., 2017).

Baseline Models LV-TRANSFORMER (Chen et al., 2019)
extends the Transformer architecture with a latent vari-
able to improve diversity of suggested reactants. SCROP
(Zheng et al., 2019) uses an additional Transformer to cor-
rect the syntax of candidates generated from the first one.
RETROSIM (Coley et al., 2017) uses molecular similari-
ties to precedent reactions for template ranking. NEURAL-
SYM (Segler & Waller, 2017) learns a conditional distribu-
tion over templates given a molecule. The state-of-the-art
method, GLN (Dai et al., 2019) models the joint distribution
of templates and reactants using logic variables.
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Table 1. Overall Performance. (sh) and (se) denote shared and separate training.

Model
Top-n Accuracy (%)

Reaction class known Reaction class unknown

n = 1 3 5 10 1 3 5 10

RETROSIM 52.9 73.8 81.2 88.1 37.3 54.7 63.3 74.1
NEURALSYM 55.3 76.0 81.4 85.1 44.4 65.3 72.4 78.9
GLN 64.2 79.1 85.2 90.0 52.5 69.0 75.6 83.7
SCROP 59.0 74.8 78.1 81.1 43.7 60.0 65.2 68.7
LV-TRANSFORMER - - - - 40.5 65.1 72.8 79.4

GRAPHRETRO (sh) 67.2 81.7 84.6 87.0 64.2 78.6 81.4 83.1
GRAPHRETRO (se) 67.8 82.7 85.3 87.0 63.8 80.5 84.1 85.9

Evaluation Metrics Similar to prior work, we use the
top-n exact match accuracy as our evaluation metric, for
n = 1, 3, 5 and 10. The accuracy is computed by matching
canonical SMILES strings of predicted reactants with those
of ground truth reactants. We evaluate the top-n accuracy
with and without the knowledge of reaction class.

3.1. Overall Performance

As shown in Table 1, when the reaction class is unknown,
our shared and separate configurations outperform GLN by
11.7% and 11.3% in top-1 accuracy, respectively. Similar
improvements are achieved for larger n, with ~84% of the
true precursors in the top-5 choices. When the reaction class
is known, RETROSIM and GLN models restrict prediction
to template sets corresponding to the reaction class, thus
improving performance. Both of our model configurations
outperform the other models till n = 5.

3.2. Example Predictions

Figure 2a shows an example where the edit and leaving
groups are identified correctly. In Figure 2b, the correct
edit is identified but the predicted leaving groups are in-
correct. In the training set, leaving groups attaching to the
carbonyl carbon (C=O) are small (e.g. -OH, -NH2, halides).
The true leaving group in this example, however, is large.
GRAPHRETRO is unable to reason about this and predicts
the small leaving group -I.

4. Conclusion
Previous methods for single-step retrosynthesis restrict pre-
diction to a template vocabulary or are insensitive to molec-
ular graph structure. We address these shortcomings by
introducing a graph-based template-free model inspired by
a chemist’s workflow. Given a target molecule, we identify
synthetic building blocks (synthons) which are then real-
ized into valid reactants. Our model outperforms previous

methods by a significant margin on the benchmark dataset.
Future work aims to extend the model to realize a single
reactant from multiple synthons.

a. Correctly predicted example by the model.

b. Correctly predicted edit; incorrectly predicted leaving groups.

Figure 2. Example Predictions. Edits are highlighted in green.
The true and predicted leaving groups are marked in blue.
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A. Message Passing Network
At message passing step t, each bond (u, v) ∈ E is associ-
ated with two messages m

(t)
uv and m

(t)
vu . Message m

(t)
uv is

updated using

m(t+1)
uv = GRU

(
xu,xuv, {m(t)

wu}w∈N(u)\v

)
, (8)

where GRU denotes the Gated Recurrent Unit, adapted for
message passing (Jin et al., 2018)

suv =
∑

k∈N(u)\v

m
(t)
ku (9)

zuv = σ (Wz [xu,xuv, suv] + bz) (10)

rku = σ
(
Wr

[
xu,xuv,m

(t)
ku

]
+ br

)
(11)

r̃uv =
∑

k∈N(u)\v

rku �m
(t)
ku (12)

m̃uv = tanh (W [xu,xuv] +Ur̃uv + b) (13)

m(t+1)
uv = (1− zuv)� suv + zuv � m̃uv. (14)

After T steps of iteration, we aggregate the messages with
a neural network g(·) to derive the representation for each
atom

cu = g

xu,
∑

k∈N(u)

m(T )
vu

 . (15)

B. Multiple Edit Prediction
We also propose an autoregressive model for multiple edit
prediction that allows us to represent arbitrary length edit
sets. The model makes no assumption on the connectivity of
the reaction centers or the electron flow topology, addressing
the drawbacks mentioned in (Bradshaw et al., 2019; Jin et al.,
2017).

Each edit step t uses the intermediate graph G(t)s as in-
put, obtained by applying the edits until t to Gp. Atom
and bond labels are now indexed by the edit step, and
a new termination symbol y(t)d is introduced such that∑

(u,v),k y
(t)
uvk+

∑
u yu

(t)+y
(t)
d = 1. The number of atoms

remain unchanged during the edit prediction, allowing us
to associate a hidden state h

(t)
u with every atom u. Given

representations c
(t)
u returned by the MPN(·) for G(t)s , we

update the atom hidden states

h(t)
u = τ

(
Whh

(t−1)
u +Wcc

(t)
u + b

)
. (16)

The bond hidden state h(t)
uv = (h

(t)
u || h(t)

v ) is defined similar
to the single edit case. We also compute the termination

score using a molecule hidden state h
(t)
m =

∑
u∈G(t)

s
h
(t)
u .

The edit logits are predicted by

s
(t)
uvk = uk

T τ
(
Wkh

(t)
uv + bk

)
(17)

s(t)u = ua
T τ
(
Wah

(t)
u + ba

)
(18)

s
(t)
d = ud

T τ
(
Wdh

(t)
m + bd

)
. (19)

Training: The model is trained to minimize the following
loss function

Le(T ) = −
∑

(Gp,E)∈T

|E|∑
t=1

∑
(j,k)∈E[t]

y
(t)
uvklog(s

(t)
uvk)+∑

u∈E[t]

y(t)u log(s(t)u ) + y
(t)
d log(s

(t)
d ).

(20)

During training, we perform teacher-forcing (Williams &
Zipser, 1989): after edit prediction at every stage, we replace
them with the label of the true edit so that the model can
make predictions given correct histories.

C. Experimental Details
Our model is implemented in PyTorch (Paszke et al., 2019).
We also use the open-source software RDKit (Landrum,
2016) to process molecules for our training set, for at-
taching leaving groups to synthons and generating reactant
SMILES.

C.1. Input Features

Atom Features We use the following atom features:

• One hot encoding of the atom symbol (65)

• One hot encoding of the degree of the atom (10)

• Explicit valency of the atom (6)

• Implicit valency of the atom (6)

• Whether the atom is part of an aromatic ring (1)

Bond Features We use the following bond features:

• One hot encoding of bond type (4)

• Whether the bond is conjugated (1)

• Whether bond is part of ring (1)
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C.2. Retrosynthesis Benchmarks

The hidden layer dimension of the GRU based Message
Passing Network is set to 300. We run T = 10 iterations of
message passing in the encoder. All models are trained with
the Adam optimizer and an initial learning rate of 0.001.
Gradients are clipped to have a maximum norm of 20.0.

Edit Prediction The global dependency module com-
prises three convolutional layers with 600, 300 and 150
filters respectively, and a kernel size of 5. The atom and
bond edits scoring network has a hidden layer dimension of
300. The model is trained for 100 epochs, and the learning
rate is reduced by a factor of 0.9 when a plateau, as mea-
sured by the accuracy of predicted edits on the validation set,
is observed. The edit prediction model has 2M parameters.

Synthon Completion The embedding dimension of leav-
ing groups is set to 200, and graph representations are pro-
jected to the embedding dimension with a learnable projec-
tion matrix. The classifier over leaving groups also has a
hidden layer dimension of 300, and a dropout probability of
0.2. The synthon completion model has 0.8M parameters.

Shared Encoder Model Trainable parameters of the as-
sociated edit prediction and synthon completion modules
have the same dimensions as above. We set λe to 1.0 and λs
to 2.0. The model is trained for 100 epochs, and the learning
rate is reduced by a factor of 0.9 when a plateau, as mea-
sured by the accuracy of predicted edits and leaving groups
on the validation set, is observed. The shared encoder model
has 2.3M parameters.


