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Abstract
Understanding relationships between feature vari-
ables is one important way humans use to make
decisions. However, state-of-the-art deep learn-
ing studies either focus on task-agnostic statistical
dependency learning or do not model explicit fea-
ture dependencies during prediction. We propose
a deep neural network framework, dGAP , to learn
neural dependency Graph and optimize structure-
Aware target Prediction simultaneously. dGAP
trains towards a structure self-supervision loss
and a target prediction loss jointly. Our method
leads to an interpretable model that can disen-
tangle sparse feature relationships, informing the
user how relevant dependencies impact the target
task. We empirically evaluate dGAP on multiple
simulated and real datasets. dGAP is not only
accurate, but can also recover the correct depen-
dency structure.

1. Introduction
Cognitive psychologists have identified relational structure
as one primary component humans rely on to tackle un-
structured problems (Halford et al., 2010). Relational rep-
resentations are the foundation in higher cognition. One
primary relational thinking describes complex systems as
compositions of entities and their interaction graphs. In this
paper, we borrow such an idea and design graph-oriented
relational representation learning into state-of-the-art deep
neural networks. Learning such structured representations
from data can provide semantic clarity, ease of reasoning
for generating new knowledge, and possibly causal interpre-
tation.

Existing deep learning literature has proposed effective
ways, like using graph neural networks, to represent data
when relational graphs are known apriori (Zhou et al., 2018).
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However, little attention has been paid to address cases when
the underlying relation graph is unknown. We, therefore,
ask a question: is it possible to learn graph-based relational
knowledge from data, for both knowledge communication
and prediction using knowledge at the same time.

Our method, we name dGAP , jointly learns neural
dependency Graph and exploits the inferred graph for
structure-Aware target Prediction. dGAP is trained end-
to-end by optimizing the task-specific loss plus a structure
self-supervision loss as regularization. Our method extracts
knowledge of a target task at a macro level, and at the same
time using the learned knowledge to conduct reasoning. In
summary, we make the following contributions:
• dGAP exploits an explicit neural dependency module to

model and learn variable interactions relevant to a task
we care. Our design is in a direction towards making
deep learning more human-like, since our neural depen-
dency network-oriented design is consistent with the way
humans organize knowledge for higher cognition.

• Our method leads to an interpretable model that can dis-
entangle sparse feature relationships, informing the user
how relevant dependencies impact the target task. Having
a structure not only helps understand the problem at a
macro level, it also helps to pinpoint areas that require
deeper understanding.

• We empirically evaluate dGAP on multiple simulated and
real-world datasets. dGAP predicts accurately and can
discover task-oriented knowledge. On simulated cases
we empirically prove that the discovered graphs match
well with the true dependency networks, outperforming
state-of-the-art baselines with a significant gain.

Like a tourist needs a map, human thinking requires struc-
ture. We borrow such an intuition in the design of dGAP
. To the authors’ best knowledge, dGAP is the first deep
learning architecture that extracts knowledge in the form
of neural dependency graph and conducts knowledge based
predictions at the same time.

2. Method
Notations: We denote the input data matrix byX ∈ Rn×p
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Figure 1. A schematic diagram representing dGAP .

where n represents the number of samples, and p represents
the number of input nodes or variables. We represent the
corresponding labels Y ∈ Rn×C , where C indicates the
number of classes. We denote the discrete binary graph
between the variables by Z ∈ Rp×p. We denote one indi-
vidual sample and its corresponding label by x,y.

Our main objective is to learn undirected dependencies be-
tween input variables jointly with a target supervised task.
Accordingly, dGAP has two modules: a Structure Learner
S and a Task Learner T. In the following subsections, we
describe in detail these two modules.

2.1. Structure Learner (S)

The goal of this module is to learn graph-oriented structure
representation about the input variables. We choose to learn
generic undirected dependency graphs via a neural network
module.

To learn these structures, we introduce binary variables
Z = {Zi,j}, that represent the dependency structure be-
tween the relevant variables (aka a neural dependency graph
Z). Zi,j specifies the presence or absence of a dependency
between variable i and j. Thus, the state of without a de-
pendency can be encoded by multiplying the corresponding
parent node by 0. The neighbors of each input variable i
is given by Z :,i. Finding the optimal dependency structure
corresponds to a search over all configurations of Z. Be-
sides we need to optimize the other learnable model param-
eters for each possible dependency structure in the search
space. To avoid this intractable procedure, we parametrize
Z by placing a distribution over Z. This enables us to di-
rectly optimize the parameters of this distribution to arrive
at a data-driven optimal dependency structure. In detail,
pθ(x,Z) = pθ(x|Z)p(Z)δZ,Z′ where δZ,Z′ is the Kro-
necker delta, which effectively selects a single structure.
Connecting from Eq. 7, to optimize the pseudo log likeli-
hood of the data distribution using dependency structure Z:

`p(θ) =

n∑
s=1

log(pθ(xs|Z)) ≈
n∑
s=1

p∑
i=1

log pθ(xsi|xs,−i,Z :,i)

(1)
Now, we treat each Zi,j as an independent random variable,
sampled from a Bernoulli distribution with mean γi,j , i.e.

Zi,j ∼ p(Zi,j) = Ber(Zi,j ). We denote the mean param-
eter of this Bernoulli distribution for all edges as a matrix
γ. In detail, we introduce a learnable parameter matrix
γ ∈ Rp×p. The sigmoid of the ijth entry in this matrix,
σ(γij), indicates the Bernoulli probability of an interaction
edge between the input ith and jth node. Z ∼ (Ber(σ(γ)))
defines binary graphs, representing dependencies between
the input features.

In summary, the graph Z acts as a mask to reconstruct the
input in a self supervision setting. We reconstruct xi from
[Zj,i � xj ]{j = {1, . . . , p}, j 6= i}. In other words, for
feature i, we take all other features as input features masked
by Z :,i to predict feature i via a function (MLP in our
case). Mathematically, x1

i = [Z1,ix1, · · · ,Zp,ixp],∀i ∈
{1, . . . , p}, i 6= j.
Self-supervision loss: We use x1

i , obtained using the
input masked by the neighbors learnt by dependency
graph Z :,i, as input to an MLP to reconstruct x

′

i: xi =
MLPi(x

1
i ). We use reconstruction loss `struct =∑p

i=1ReconstructionLoss(xi,x
′

i). If xi ∈ R, we use
Mean Squared Error Loss for this self-supervision based re-
construction. When on categorical input variablesXi ∈ RL,
where L is the number of categories in the categorical vari-
able Xi, we use Negative Log Likelihood Loss as Recon-
struction loss.
M-dGAP : Z may differ depending on data samples.
While some interactions may be present in all the samples
irrespective of the target class it belongs to, some interac-
tions may be specific to a cluster of samples. We denote this
variation as MultiGraph-dGAP (in short, M-dGAP ) and
explain it in detail in Appendix C.

2.2. Task Learner (T)

We want to explicitly incorporate the dependency structures
into our target objective. We want to encourage discovery
of interactions that are specifically relevant to the end task.
For this purpose, we use Graph Attention Networks(GAT)
as an interface to jointly represent dependency structures
and input features.

For each specific sample, we represent each of its i-th fea-
ture node xi as a position-specific embedding vector h0

i :
h0
i = [xi||W pos

i ], where W pos ∈ Rp×dpos . Here, [�||�]
denotes concatenation. After these node specific embed-
dings, we use graph attention to combine the discrete graph
Z and input embeddings h0

i i ∈ {1, . . . , p}. In detail, we
learn a graph attention(Veličković et al., 2017) using the
following equation for each edge Zi,j :

αlij,k =
exp(LeakyReLU(aTe [W

l
kh

l−1
i ||W

l
kh

l−1
j ]))∑p

j=1 exp(LeakyReLU(aTe [W
l
kh

l−1
i ||W

l
kh

l−1
j ]))
(2)

hli = σ(
∑
j∈Ni

αlij,kW
l
khj

l−1) (3)
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Via the above equation, the embedding of node i is up-
dated by an attention weighted sum of its neighbors’ embed-
ding. More specifically, we use a multi head attention based
formulation:hli = ||Kk=1σ(

∑
j∈Ni

αlij,kW
l
kh

l−1
j ) Here, the

neighbors for a node i are obtained usingZ :,i, k denotes the
k-th attention head out of a total of K heads, and || denotes
concatenation including all K heads based embedding. l
represents the index of graph attention layers (steps). Eq. 2
are repeated for L layers. This gives us the final representa-
tion hL ∈ Rp×d. To represent all the nodes together for a
sample x, we use a CLS node based pooling(Devlin et al.,
2018). That is, we add an additional node that is connected
to all other nodes in the graph. The final representation of
this node, followed by a single layer MLP and a log softmax,
makes the final graph level prediction ŷ. The loss from the
end task `task = `pred(y, ŷ). Additional details regarding
classification with multiple graphs for variation M-dGAP
are covered in Appendix Section C.

2.3. Training and Loss

We additionally use a sparsity constraint `sparse =∑p
i=1

∑p
j=1 σ(γij) as a regularization to encourage learn-

ing of a sparse Z. To sample discrete graphs, we use a
gumbel softmax (Jang et al., 2016; Maddison et al., 2016)
trick to sample from Bernoulli distribution parametrized by
σ(γ).

Zi,j =
exp(log(σ(γij) + ε1)/τ)

exp(log(σ(γij + ε1)/τ) + exp(log(1− σ(γij + ε2)/τ)
(4)

where ε1 and ε2 are i.i.d samples drawn from a Gumbel(0, 1)
distribution and τ is a temperature parameter. The Gumbel-
Softmax distribution is differentiable for τ > 0. This allows
us to sample discrete graphs for the graph attention net-
work, while being able to propagate gradients to the learnt
parameter γ both from the structure learner (W S) as well
as the task learner (W T ). To optimize the model, we min-
imize ` = `task + λstruct`struct + λsparse`sparse using
Adam optimizer to train all components: γ,W S andW T

together.

2.4. Connecting to related studies

We group the related work1 into (1) Classical statistical
methods to learn dependency relationships, probabilistic
graphical models (PGM)(Lachapelle et al., 2019; Zheng
et al., 2018; 2019; Magliacane et al., 2018; Ke et al., 2019).
(2) DNN based studies that aimed to estimate relationships
among input variables, but their relations are not about de-
pendency structure(Kipf et al., 2018; Franceschi et al., 2019).
(3) Methods that tried to disentangle variable interactions
learnt by deep neural models from a post-hoc interpreta-

1We have covered the detailed related work and background
about dependency structure learning in detail in the Appendix
Section A and B.

tion perspective(Tsang et al., 2017; 2020; Friedman et al.,
2008; Sorokina et al., 2008; Lundberg et al., 2018; Cui et al.,
2019; Janizek et al., 2020). These methods are different
from dGAP , because our method trains end-to-end to dis-
cover and utilize the interactions for the task at hand jointly.
We have covered these in detail in Appendix B.

3. Experiments
Data, Baselines and Evaluation Metrics: We group our
experiments into simulation and real world datasets. The
prediction tasks include both regression and classification.
We show dGAP can achieve state-of-the-art prediction per-
formance, and also discover meaningful dependencies in
the data. For evaluation, we use Root Mean Squared Error
(RMSE) for regression and Area under Curve (AUC) for
classification. For the evaluation of estimated dependency
structure on simulated cases, we report average AUC. Our
baselines include Quadratic Discriminant Analysis (QDA)
and MLP. We also compare against a GAT without struc-
ture learning (GAT-FC). Here, we use a fully connected
graph as input to GAT. For evaluating graph recovery, we
compare against Neural Interaction Detection(Tsang et al.,
2017)(NID). 2

3.1. Simulated: Gaussian-based Classification Datasets

We consider a simple binary classification task. For each
class c, we use multivariate normal distribution N(0,Ω−1c )
to generate simulated samples. The precision matrix (in-
verse of covariance matrix) Ωc serves as the ground truth de-
pendency graph . We consider three cases: {p = 5, 10, 20}.
We show the p = 5 case in Figure 2, along with convergence
of γ during training. Table 1 shows the classification and
graph recovery performance. We have included more details
about data generation in Appendix Section D .

3.2. Real World Datasets

Cal Housing Regression Dataset(Pace & Barry, 1997):
For this regression dataset, we learn one graph. Figure 3(a)
shows the graphs learnt by dGAP and Table 2 shows the
RMSE results. Qualitative Interpretation: Our method
is able to successfully learn a relationship between latitude
and longitude which is important for house value prediction,
as shown in Figure 3(a). We also show the case where we
use solely the task loss to learn a graph in Figure 8(b). While
some interactions are similar to Figure 3(a), without the self-
supervision loss, we cannot recover a strong relationship
between latitude and longitude.

2Owing to space considerations, we have moved details ex-
plaining our choices of baselines, ablations, hyperparameters and
additional datasets in Appendix.
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Models, Baselines,
Ablations and Variations

AUC
(p = 5)

AUC
(p = 10)

AUC
(p = 20)

Graph-AUC
(p = 5)

Graph-AUC
(p = 10)

Graph-AUC
(p = 20)

dGAP 0.7132 0.7145 0.8491 1.0 0.9979 0.9957
dGAP-NSS w/o sparsity 0.7139 0.7162 0.8479 0.4667 0.4713 0.4462
dGAP-NSS 0.7144 0.7192 0.8471 0.4521 0.4602 0.5297
dGAP-GCN 0.6324 0.6191 0.6635 1.0 0.9997 0.9973
M-dGAP 0.7147 0.7142 0.8467 1.0 1.0 1.0
M-dGAP-NSS w/o sparsity 0.7135 0.7153 0.8443 0.3396 0.5680 0.5912
M-dGAP-NSS 0.7139 0.7165 0.8453 0.6021 0.4567 0.4671
M-dGAP-GCN 0.6479 0.6141 0.6614 1.0 1.0 1.0

NID NA NA NA 0.6250 0.6526 0.6300
GAT-FC 0.7145 0.7051 0.8489 NA NA NA
MLP 0.7161 0.7193 0.8548 NA NA NA
QDA 0.7178 0.7252 0.8215 NA NA NA

Table 1. Classification Results Area under Curve (AUC) on test data and Evaluation on Graph Estimations for simulation datasets averaged
across 5 random seeds.
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Figure 2. On Simulation Data p = 5: We show convergence during
training of the Graph parameters σ(γij) indicating the probability
of the edge in the graph structure. We show the True Graph Class
A adjacent to the convergence graphs. The true edges converge
to probability 1.0 and the true non-edges converge to probability
0.0.
Heart Disease Prediction(Detrano et al., 1986): For
this binary classification dataset, we show the graphs learnt
by our method in Figure 3(b) and AUC(Area Under Curve)
results obtained in Table 2. Our model is able to achieve sim-
ilar AUC performance along with successfully disentangling
meaningful dependencies.Qualitative Interpretation: Fig-
ure 3 and Figure 9(Appendix Section D) show the graphs
learnt by our dGAP . We show a stronger link between
Maximum Heart Rate (thalach) and Age in healthy class
(Figure 9(b)), whereas a weaker link in heart disease patients
(Figure 9(c)). We show this differential case explicitly in
Figure 3(b).

Models, Baselines,
Ablations and Variations

Housing
(RMSE)

Heart
(AUC)

Letter
(AUC)

Text
(AUC)

dGAP 0.4967 0.8616 0.9985 0.9010
dGAP-NSS 0.5040 0.8804 0.9981 0.9076
dGAP-NSS w/o sparsity 0.5061 0.8643 0.9984 0.9078
dGAP-GCN 0.9155 0.8966 0.7233 0.9045
M-dGAP NA 0.8482 0.9983 0.8534
M-dGAP-NSS NA 0.8481 0.9983 0.8496
M-dGAP-NSS w/o sparsity NA 0.8607 0.9988 0.8533
M-dGAP-GCN NA 0.9016 0.7274 0.8446

GAT-FC 0.5043 0.8692 0.9985 0.9075
MLP 0.5028 0.8884 0.9981 0.8296

Table 2. Real Data Results. For Housing Dataset, we report Root
Mean Squared Error (RMSE), For Heart, Letter and Text datasets,
we report Area Under Curve (AUC).
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Figure 3. On housing and heart disease data: Heatmaps of pairwise
interaction strengths learnt by dGAP and variations. (a) The
dependency graph learnt by dGAP for housing dataset. Our
method is able to successfully learn a relationship between latitude
and longitude; (b) Differential between Class specific graphs learnt
by M-dGAP for heart disease prediction dataset. We show a
stronger link between Maximum Heart Rate (thalach) and Age in
healthy case, whereas a weaker link in disease case. We show this
differential graph explicitly in (b).

Sentiment Classification Text Dataset(Socher et al.,
2013) : We also evaluate dGAP on Stanford Sentiment
Treebank (SST-2) binary sentiment classification task. We
use pretrained GloVe (Pennington et al., 2014) embeddings
both for the structure learner as well as the task learner.
We show the graph learnt by dGAP in Figure 11(Appendix
Section D) and classification AUC in Table 2. Qualitative
Interpretation: As shown in Figure 11, local neighbors
depend on each other(indicated by the thick orange diago-
nal). The sentences are variable length accounting for the
diagonal Y shape.

4. Conclusion
This paper proposes an end-to-end deep learning framework,
dGAP , to learn graph-structured representations that help in
predictions. We can view dGAP in two different ways: (1)
An approach for discovering task-oriented structured repre-
sentations that are critical components contributing towards
human-like cognitive data modeling. (2) We can also view
dGAP as being “modular" interpretable (Murdoch et al.,
2019), that is, a model in which a meaningful portion of its
prediction-making process can be interpreted independently.
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A. Background: Dependency Structure
Learning

Learning the dependency structure between input variables
is an important task in machine learning. Traditionally,
statistical Graphical Models intuitively represent relation-
ships between random variables as conditional dependence
graphs. In detail, the variables of interest are represented by
a set of nodes V , with relationships as edge set E in graph
G = (V,E). The edges E represent conditional depen-
dencies between the variables. Essentially, learning these
relationships is equivalent to learning a factorization of the
joint probability distribution. One notable method that uses
representation of undirected dependency graphs for a joint
probability distribution is the Markov Random Field(MRF).

An MRF models a set of random variables to have a joint
probability stipulated by an undirected graph G = (V,E).
These models satisfy the markov properties: (1) Pairwise
Markov Property: Any two non-adjacent variables are con-
ditionally independent given all other variables: (2) Local
Markov Property : A variable is conditionally independent
of all other variables given its neighbors. (3) Any two sub-
sets of variables are conditionally independent given a sepa-
rating subset. Discovering the MRF dependency structure
G is a reconstruction of the graphical structure of a Markov
Random Field from independent and identically distributed
samples.

Assuming a dataset D = (x1, . . . ,xn), whose xs ∈ Rp,
that is sampled i.i.d. from the parametric distribution pθ, a
maximum likelihood estimator is defined as θn:

`n(θn;D) =

n∑
s=1

log pθ(x
s) (5)

To make the learning process more tractable, (Besag, 1977)
proposed to use pseudo likelihood as an approximation.
Pseudo-log likelihood(Besag, 1977) offers a tractable re-
placement for the likelihood, defined as `p:

`p(θp;D) =

n∑
s=1

p∑
i=1

log pθ(x
s
i |xs−i) (6)

In case of a Markov Random Field, this reduces to:

`p(θp;D) =

n∑
s=1

p∑
i=1

log pθ(x
s
i |xsN(i)) (7)

Here N(i) stands for neighbors of node i in the dependency
structure G.

B. Connecting to related studies
One classic statistical way to learn dependency relationships
from data was from the family of probabilistic graphical
models (PGM). These models represent the random vari-
ables as a node set V and the relationships between variables
as an edge set E. Edges denote conditional dependencies
among variables. Learning PGM is equivalent to learning
a factorization of the joint probability distribution. PGM
roughly fall to two groups: (1) undirected PGM, for which
a non exhaustive list includes Gaussian Graphical Models,
Ising Models, etc; (2) Directed PGM that tries to model
and learn directed conditional dependency structure, nor-
mally plus acyclic graph constraints. A few recent studies
(Lachapelle et al., 2019; Zheng et al., 2018; 2019) learned
directed dependencies via deep neural networks (DNN). In
many cases of PGM learning, sparsity regularization is used
to encourage a final sparse graph. Besides, few recent liter-
ature aims to learn causal Bayesian networks (Magliacane
et al., 2018; Ke et al., 2019) via DNN based formulations. In
the absence of intervention distributions, these causal meth-
ods can only learn a Markov equivalence class of the true
networks. All studies in this category perform unsupervised
estimation, that is they don’t jointly optimize a task-specific
loss when learning the dependency structures from data.

A few recent DNN studies also aimed to estimate relation-
ships among input variables, but their relations are not about
dependency structure. For instance, Neural Relational In-
ference (NRI) (Kipf et al., 2018), is a neural network based
interaction learning framework designed for modeling dy-
namical interacting systems. NRI learns sample-specific
pairwise interactions between input units using a physics
perspective. NRI represented the edges as latent variables
in a Variational Autoencoder(VAE) framework. Relational
graphs in NRI are sample-conditioned and are learned via
unsupervised alone, that is the learnt interactions are not
informed by a target task objective. Differently, another re-
cent study, LDS from (Franceschi et al., 2019) proposed to
jointly learn the parameters of graph convolutional networks
(GCNs) and the graph structure (as unknown hyperparam-
eter of GCN) by approximately solving a bilevel program.
The whole learning is guided by a downstream node classi-
fication objective. Comparing to ours, the graph LDS has
no dependency semantics and the whole formulation only
applies to GCN.

Our method also connects to an array of methods that tried
to disentangle variable interactions from deep neural mod-
els from a post-hoc interpretation perspective. For instance,
(Tsang et al., 2017) detects interactions learnt by multilayer
perceptron networks (MLP) by decomposing the weights
of the MLP. Similarly, (Cui et al., 2019) estimates global
pairwise interaction effects of a MLP model using Bayesian
parameter analysis. Another closely related work (Tsang
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et al., 2017; 2020) focused on discovering interactions be-
tween sparse features and then explicitly encoding them for
explaining MLP based recommendation neural models in a
two stage approach. All of these methods are post-hoc inter-
pretation methods, and most are restricted to specific DNN
architectures. Loosely related, another set of feature interac-
tion based interpretation studies have been proposed in the
literature to explain decision-tree based learning methods
(Friedman et al., 2008; Sorokina et al., 2008; Lundberg et al.,
2018). Notably, two recent studies from the post-hoc inter-
pretation category stack the discovered interactions (Tsang
et al., 2017; 2020) into a second stage of prediction task in
order to improve prediction performance. These methods
are different from dGAP , because our method trains end-
to-end to discover and utilize the interactions for the task at
hand jointly.

Besides, most of the post-hoc interaction-based interpreta-
tion methods focused on learning feature interactions for
each sample , like (Janizek et al., 2020). dGAP , instead, pro-
vides global dependency explanations. Global explanations
are desirable for interpretable data and model summariza-
tion(Tsang et al., 2017).

C. dGAP variation: M-dGAP
Z may differ depending on data samples. While some
interactions may be present in all the samples irrespec-
tive of the target class it belongs to, some interactions
may be specific to a cluster of samples. To incorporate
one kind of this variability, we use the training data la-
bels to construct class specific graphs. For example, in
the case of classification, if y ∈ {1, . . . , C}, we intro-
duce a total of C learnt dependency graphs, Zc where
c ∈ {1, . . . , C}, where C is the number of classes. Dur-
ing the training step, we use the sum of the class specific
losses: `struct =

∑C
c=1 1y=c`struct(x,Sc(x)) We denote

this variation as MultiGraph-dGAP (short as M-dGAP ).

For incorporating these multiple graphs,we use Graph At-
tention Networks one for each of Zc∀c ∈ {1, . . . , C}.
This gives us output representations hLCLSc

, one for each
class. For the final classification, we add another atten-
tion layer on the c representations. In detail, we use
a context vector v ∈ Rd. We obtain attention scores
βc = Softmax1,...,c(v � hLCLSc

). Finally, we use hout =∑C
c=1 βch

L
CLSc

as input to the MLP layer for classifica-
tion.

Additional dGAP Details : We want to point out that
modeling a binary graph with prior matrix γ allows us to
have a probabilistic interpretation of each edge in the graphs
we learn. Additionally, the combination of a global (pop-
ulation level) dependency graph along with sample level
attention (on each edge learnt by GAT) allows us to model

the global binary dependency structure, then refined with
local (sample level) fine-tuning regarding which edges were
most important for a specific prediction. An easy analogy:
learning without a structure is like a tourist without a map.
The graph we learn is the map for everyone and how to use
the map depends on each traveler’s choice (being modelled
as graph attention for each sample).

D. Experiments
Data: We group our experiments into simulation and real
world datasets. The prediction tasks include both regression
and classification. On 3 simulated and 5 real-world datasets,
we show dGAP can achieve state-of-the-art prediction per-
formance, and also discover meaningful dependencies in
the data. The real-world datasets covered our experiments
include both tabular inputs and text inputs.

Evaluation Metrics: When evaluating prediction perfor-
mance for a regression task, we use Root Mean Squared
Error (RMSE) on test set. When evaluating prediction for a
classification task, we report area under curve (AUC) on test
set. For the evaluation of estimated dependency structure
on simulated cases (in which we know the true dependency
graphs), we report average AUC to compare estimated graph
probability (or interaction score from baselines) with the
true binary graphs.

Baselines: (1) QDA: We use QDA as one baseline on
simulation cases as it is close to ground truth for classifying
Gaussian Datasets with distinct covariance matrices. (2)
MLP: we compare against multi-layer perceptron networks
(MLP). (3) GAT-FC: We compare against a GAT without
graph training (GAT-FC). Here we use a Fully Connected
graph to GAT. For Graph Recovery, we compare against
Neural Interaction Detection(Tsang et al., 2017)(NID).

Ablation Variations: To understand how each compo-
nent impact dGAP , we explore the following:

• dGAP : Basic version with one graph.
• dGAP-GCN : In this variation, dGAP is trained with GCN

model for prediction.
• dGAP-NSS : dGAP is trained without self-supervision

loss. Concretely, λstruct = 0. We only use the task loss
with sparsity to train the graph.
• dGAP-NSS w/o sparsity : In this variation, dGAP is

trained without self-supervision loss and sparsity reg-
ularization is also removed. Concretely, λstruct = 0,
λsparse = 0.

• M-dGAP : Multiple graphs variation of dGAP .
• M-dGAP-GCN : In this variation, M-dGAP is trained

with GCN model for prediction.
• M-dGAP-NSS : M-dGAP is trained without self-
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supervision loss. .i.e., λstruct = 0.
• M-dGAP-NSS w/o sparsity : M-dGAP is trained without

self-supervision loss. and sparsity regularization is also
removed in M-dGAP-NSS .i.e., λstruct = 0, λsparse =
0.

D.1. Simulated 2D Classification Datasets

We first evaluate our model on a simple 2D dataset. We
consider the binary classification of the dataset shown in
Figure 4(a). The task is to classify Black Points (denoted as
Class A) from the Green Points (Class B). We generate Gaus-
sian dataset samples from Class A usingXA ∼ N (0,Ω−1A )
and XB ∼ N (0,Ω−1B ). Here, ΩA = ( 1.0 0.99

0.99 1.0 ) and
ΩB = ( 1.0 −0.99

−0.99 1.0 ). In this case, both x1 and x2 have
identical marginal distributions. The model needs to incor-
porate the interactions between x1 and x2 i.e. both the input
variables to classify correctly. Note that this data has two
types of interactions, in Class A the two features interact pos-
itively, while the points from Class B interact negatively. As
shown in Figure 4, we are successfully able to discover the
correct graphs. We compare the class specific graphs from
M-dGAP in Figure 4(c)(Class A) and Figure 4(d)(Class
B) learnt using the dGAP in Figure 4(b). If we use a single
shared graph, we are unable to recover a true representative
set of interactions. Instead, our M-dGAP variation allows
us to incorporate this class specific variability. In terms
of classification performance, dGAP is able to achieve a
classification AUC of 0.9956, M-dGAP of 0.9956 and a 2
layer MLP is able to achieve 0.9957.

Hyper parameters: We use hidden size taskH = 8, lay-
ers taskL = 2, headsK = 2, structure learner’s hidden size
funcH = 8 and dpos = 4. We compare to an MLP with
2 hidden layers and hidden size 16. We use `sparse = 0.0
and `struct = 10.0. We train the models for 250 epochs. To
optimize the model, we use Adam optimizer with learning
rate 0.001. We report the average performance for 3 random
seeds.

D.2. Simulated: Gaussian-based Classification Datasets

We consider a simple binary classification task. For each
class, we use a multivariate normal distribution to generate
simulated samples. For a multivariate normal distribution,
the precision matrix Ω, inverse of the covariance matrix, is
representative of the conditional dependency graph. The val-
ues indicate partial correlation between two variables, while
the zero entries represent conditional independence given
all other variables (therefore no edge in the graph). Specif-
ically, Ωij=0 if and only if Xi and Xj are conditionally
independent given all other coordinates ofX .

In detail, we simulate two dependency graphs being sampled
as Erdos Renyi Graphs: matrices ∆ andRI ∈ Rp×p, with

probability pd and pi respectively. Then we generate data
from two classes A and B using the following equations:
ΩA = ∆+RI + δdI , and ΩB = RI + δdI . δc and δd are
selected large enough to guarantee positive definiteness. We
generate Gaussian samples using XA ∼ N(0,Ω−1A ) and
XB ∼ N(0,Ω−1B ).

We consider three cases: p = 5, p = 10 and p = 20.
For p = 5, we consider the graphs shown in Figure 5. For
p = 10, we consider pd = 0.3 and pi = 0.2. For p = 20, we
consider pd = 0.3 and pi = 0.1. We use training samples
n = 40000, and validation and test samples, each as 8000.
In Table 3, we present the classification results of dGAP and
variations. For the task learner, we use taskH = 32, K = 4,
taskL = 2, dpos = 16. We compare to Quadratic Discrimi-
nant Analysis (QDA) and a two layer MLP with hidden size
128 with similar number of parameters(∼ 20000). We use
structH = 64 and structL = 1. We pretrain the structure
learner for 50 epochs using a fully connected graph with a
dropout of 0.3, to encourage the structure learner to use all
input nodes for reconstruction. We report the results aver-
aged across 5 random seeds. Table 3 shows our classification
results(AUC) as well as our graph recovery results(AUC wrt
the true graph) on Gaussian Datasets for all settings. We
use bold text to represent the best variation from our model
and from the baselines. We report the standard deviation
across the seeds in the Appendix. Figure 5 shows that the
Bernoulli parameters σ(γ) converge, with edges converging
to probability 1.0 and non edges to probability 0.0.

		𝒙!

		𝒙" 		𝒙#

		𝒙$ 		𝒙%

True Graph Class A

		𝒙!

		𝒙" 		𝒙#

		𝒙$ 		𝒙%

True Graph Class B

Figure 5. On Simulation Data: We show convergence during train-
ing of the Graph parameters σ(γij) indicating the probability of
the edge in the graph structure. We show the ground truth graphs
True Graph Class A and True Graph Class B adjacent to the con-
vergence graphs. The true edges converge to probability 1.0 and
the true non-edges converge to probability 0.0.
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Figure 4. On Simulation: Learnt Graphs using dGAP : (a) 2D Gaussian Data (b) dGAP ; M-dGAP (c) Graph from Class A and (d) Graph
from Class B.

Models, Baselines,
Ablations and Variations

AUC
(p = 5)

AUC
(p = 10)

AUC
(p = 20)

dGAP 0.7132(±0.006) 0.7145(±0.026) 0.8490(± 0.019)
dGAP-NSS w/o sparsity 0.7139(±0.006) 0.7162(±0.029) 0.8479(± 0.019)
dGAP-NSS 0.7144(±0.006) 0.719(± 0.029) 0.8471(± 0.020)
dGAP-GCN 0.6324(± 0.028) 0.6191(± 0.030) 0.6635(± 0.032)
M-dGAP 0.7147(± 0.005) 0.7142(± 0.033) 0.8467(±0.018)
M-dGAP-NSS w/o sparsity 0.7135(± 0.006) 0.7153(±0.029) 0.8443(±0.018)
M-dGAP-NSS 0.7139(± 0.005) 0.7165(±0.029) 0.8453(±0.020)
M-dGAP-GCN 0.6479(±0.012) 0.6141(±0.038) 0.6614(±0.071)
GAT-FC 0.7137(±0.006) 0.7051(± 0.014) 0.8489(± 0.020)
MLP 0.7161(± 0.006) 0.7193(±0.029) 0.8548(±0.017)
QDA 0.7178(±0.004) 0.7252(±0.026) 0.8215(± 0.021)

Table 3. Classification Results Area under Curve (AUC) on test data and Evaluation on Graph Estimations for simulation datasets averaged
across 5 random seeds.

Visualization:Figure 6 shows the different graphs learnt
by ablations and variations of dGAP . In Figure 6(b), We
show that the learnt graph for the single graph case dGAP
corresponds to the shared graph entries in the ground truth
graph. Figure 6(f) indicates the importance of the self-
supervision loss as without this loss even with the sparsity
assumption, we are unable to recover any correct edges at
all. Similarly, Figure 7 shows the discovered graphs for
multi graph variation M-dGAP for p = 20.

D.3. Real World Dataset: California housing Dataset

This is a regression data where the target variable is the me-
dian house value for California districts. The total number
of training points are 20640. The number of input features
p = 8. 3 We scale the features to zero mean and unit vari-
ance. We split the data from (Pace & Barry, 1997) into train,
valid and test using 80/10/10 splits. As this is a regression
dataset, we learn one graph. We show the graphs learnt by
our method in Figure 8 and RMSE (Root Mean Squared

3The relevant features are median income in block (MedInc),
median house age in block (HouseAge), average number of rooms
(AveRooms), average number of bedrooms (AveBedrms), block
Population, average house occupancy (AveOccup), house block
latitude(Latitude) and house block longitude (Longitude).

Error) results in Table 2.

Hyperparameters: We use the validation data to select the
best hyperparameters. We use an initial position embedding
dpos = 16 and structH = 16 with a single layer in the struc-
ture learner S. We vary taskH in the set of {16, 32, 64},
taskL in {2, 4} and nheads in {4, 8}. We use dropout of
{0.3} for the pretraining step in the structure learner S . We
use a learning rate of 0.001 for the Adam Optimizer. We
vary `sparse = {0.001, 0.005, 0.01}. For the MLP baseline,
we vary taskL ∈ {2, 4, 6} and taskH ∈ {16, 32, 64}. We
choose the reported based on validation results.

Qualitative Interpretation: Figure 8(a) shows that our
method is able to successfully learn a relationship between
latitude and longitude which is important for house value
prediction. We also show the case where we use solely
the task loss to learn a graph in Figure 8(b). While some
interactions are similar to (a), without structure loss we
cannot recover a strong relationship between latitude and
longitude.
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Models, Baselines,
Ablations and Variations

Graph-AUC
(p = 5)

Graph-AUC
(p = 10)

Graph-AUC
(p = 20)

dGAP 1.0(±0.000) 0.9979(±0.004) 0.9957(±0.004)
dGAP-NSS w/o sparsity 0.4667(±0.155) 0.4713(±0.164) 0.4462(± 0.095)
dGAP-NSS 0.4521 (±0.160) 0.4602(± 0.074) 0.5297(±0.047)
dGAP-GCN 1.0(±0.000) 0.9997(±0.0014) 0.9973(±0.0053)
M-dGAP 1.0(±0.000) 1.0(±0.000) 1.0(±0.000)
M-dGAP-NSS w/o sparsity 0.3396(±0.228) 0.5680(±0.119) 0.5912(±0.080)
M-dGAP-NSS 0.6021(±0.177) 0.4567(± 0.059) 0.467(±0.065)
M-dGAP-GCN 1.0(±0.000) 1.0(±0.000) 1.0(±0.000)
NID 0.6250(±0.088) 0.6526(± 0.026) 0.6300(±0.026)

Table 4. Evaluation on Graph Estimations for simulation datasets averaged across 5 random seeds.

D.4. Real World Dataset: Heart Disease Prediction
Dataset

We use the Cleveland heart disease dataset from (Detrano
et al., 1986). The task is to predict whether or not a patient
has coronary artery disease given demographic information
like age, gender and clinical measurements. After prepro-
cessing, the dataset contains 298 patients with 13 associated
features. We split the data into training, validation and test
randomly using 70/10/20 splits. 4 We show the graphs
learnt by our method in Figure 9 and AUC(Area Under
Curve) results obtained in Table 2. Our model is able to
achieve similar AUC performance along with successfully
disentangling dependencies.

Hyperparameters: To select hyperparameters, we use val-
idation AUC for each random seed, and report the test
AUC. We use an initial position embedding dpos = 16
and structH = 64 with a single layer in the structure
learner S. We vary taskH in the set of {8, 16, 32}, taskL
in {2, 4} and nheads in {2, 4}. We use dropout of {0.3}
for the pretraining step in the structure learner S. We use
a learning rate of 0.001 for the Adam Optimizer. We use
`sparse = 0.01 and `struct = 1.0. For the GCN variation,
we vary taskH in the set of {16, 32, 64, 128}, and taskL in
{2, 4}. For the MLP baseline, we vary taskL ∈ {2, 4, 6}
and taskH ∈ {16, 32, 64}. We vary task dropout in
{0.0, 0.1, 0.3}. We report average results for two random
seeds.

4The list of features (Detrano et al., 1986) are: real vari-
ables include: age of patient (age), resting systolic blood pres-
sure (trestbps), cholesterol (chol), maximum heart rate achieved
exercise (thalach) and exercise-induced ST-segment depression
(oldpeak). Categorical variables include: type of pain a patient
experienced if any (cp), slope of peak exercise ST segment (slope),
classification of resting electrocardiogram (restecg), whether or
not a patient had thallium defects (thal) as revealed by scintigraphy,
number of major vessels appearing to contain calcium as revealed
by cinefluoroscopy (ca), gender (gender),whether or not a patient’s
fasting blood sugar was above 120 mg/dl (fbs), and whether or not
a patient has exercise-induced angina (exang).

Qualitative Interpretation: Figure 9 shows the graphs
learnt by our dGAP . We show a stronger link between
Maximum Heart Rate (thalach) and Age in healthy class
Figure 9(b), whereas a weaker link in heart disease patients
Figure 9(c). We show this explicitly in the differential case
Figure 9(d).

D.5. DNA MYC Binding Data

We use the MYC binding DNA data5 about DNA binding
specificity of a transcription factor MYC. We use the bound
sequences as positive class and the unbound sequences as
negative class. We split the data into 80/10/10. Figure 10
shows the learnt dependency structure for bound sequences.
We observe a densely connected subgraph for positions 16
to 22. We show the corresponding sequence logo for the
test data bound sequences. We observe the motif CACGTG
which which forms a canonical DNA sequence(Staiger et al.,
1989), also shown by (Tsang et al., 2020). We also observe
that in general the adjacent sequential positions depend on
each other.

Hyperparameters: We use structH = 128, lsparse =
0.001, taskH = 64, initH = 32, taskL = 2, nheads = 4
and a learning rate of 0.001. We use a batch size of 256.

D.6. Real World Dataset: Stanford Sentiment
Treebank-2 Dataset

We also evaluate dGAP on Stanford Sentiment Treebank
(SST-2) binary sentiment classification task. We pad all
sentences to a fixed length of 56. Instead of one hot feature
representation, we use pretrained GloVe(Pennington et al.,
2014) embeddings both for the structure learner as well as
the task learner.

Hyperparameters: For this dataset, we use a shared
structure learner MLP with two layers with hidden size

5https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE47026

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47026
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47026
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Figure 6. On Simulation: Heat maps of pairwise interaction strengths learnt by dGAP framework on for simulation datasets p = 10.
Cross-marks indicate ground truth interactions. Red cross marks indicate Class A and Yellow cross marks indicate Class B. (a), Graph
learnt by dGAP (b) Graph learnt by dGAP in comparison to the graph edges common to both classes. Here, we treat the common edges
as ground truth indicated by red cross marks. (c) and (d) Graph learnt by M-dGAP . (c) shows the graph learnt for Class A and (d) shows
the graph learnt for Class B. In the second row, (e) shows the graphs learnt by dGAP-NSS w/o sparsity , (f) shows the graphs learnt by
dGAP-NSS and λsparse = 0.005, (g) and (h) show the graphs learnt by M-dGAP-NSS w/o sparsity : (h) graph corresponding to Class A
and (h) graph corresponding to Class B.

{1024, 512}, lsparse = 0.01, taskH = 128, initH = 100,
taskL = 4, nheads = 4 structure learner dropout of 0.3,
task learner dropout 0.2 and a learning rate of 0.0001. We
use a batch size of 128. For the M-dGAP variation, we
use taskH = 64. For GCN and MLP variations, we use
taskH = 1024. We show the learnt graph in Figure 11
and AUC in Table 2. Here, the color indicates belief in the
presence or absence of an edge. Red indicates probability
of an edge; blue indicates belief in the absence of an edge
and yellow indicates maximum uncertainty. Local neigh-
bors depend on each other(indicated by the thick orange
diagonal). The sentences are variable length accounting for
the diagonal Y shape in the learnt dependency graph.

1

56

W
ord

Positions 1-56

Word Positions 1-56

Figure 11. Graph learnt by dGAP on the sentiment classification
SST-2 dataset. Red indicates belief in the presence of an edge;
Blue indicates belief in the absence of an edge. In the learnt
graph by dGAP , local neighbors depend on each other(indicated
by the thick orange diagonal). The sentences are variable length
accounting for the diagonal Y shape.
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Figure 7. On Simulation: Learnt graphs for p = 20, (LEFT) Heat Map for Graph learnt for Class A by M-dGAP , Red Cross Marks show
the ground truth graphs, and (RIGHT) Heat Map for Graphs learnt by Class B by M-dGAP , Yellow Cross Marks show the ground truth
graphs.
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Figure 8. Heatmaps of pairwise interaction strengths learnt
by dGAP on the Cal-Housing data: (a) Graph learnt by
dGAP . Our method is able to successfully learn a rela-
tionship between latitude and longitude; (b) Graph learnt
by dGAP-NSS w/o sparsity . While some interactions are
shared with (a), without structure loss we cannot recover a
strong relationship between latitude and longitude.
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Figure 9. On heart disease data: Heatmaps of pairwise interaction strengths learnt by dGAP and variations. (a) The dependency graph
learnt by dGAP . (b) and (c) Class specific graphs learnt by M-dGAP . We show a stronger link between Maximum Heart Rate (thalach)
and Age in healthy case (b), whereas a weaker link in disease case (c). We show this differential graph explicitly in (d).



Relate and Predict: Structure-Aware Prediction with Jointly Optimized Neural Dependency Graph

Figure 10. Dependency Graph for MYC bound DNA sequences learnt by M-dGAP on MYC dataset. We observe the motif “CACGTG”
in the densely connected positions 16 to 22 which forms a canonical DNA sequence(Staiger et al., 1989).


