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Abstract

Graph deep learning has recently emerged as a
powerful ML concept allowing to generalize suc-
cessful deep neural architectures to non-Euclidean
structured data. Such methods have shown
promising results on a broad spectrum of appli-
cations ranging from social science, biomedicine,
and particle physics to computer vision, graphics,
and chemistry. One of the limitations of the major-
ity of current graph neural network architectures
is that they are often restricted to the transductive
setting and rely on the assumption that the under-
lying graph is known and fixed. In many settings,
such as those arising in medical and healthcare ap-
plications, this assumption is not necessarily true
since the graph may be noisy, partially- or even
completely unknown, and one is thus interested in
inferring it from the data. This is especially impor-
tant in inductive settings when dealing with nodes
not present in the graph at training time. In this
paper, we introduce Differentiable Graph Module
(DGM), a learnable function predicting the edge
probability in the graph relevant for the task, that
can be combined with convolutional graph neural
network layers and trained in an end-to-end fash-
ion. We provide an extensive evaluation of appli-
cations from the domains of healthcare (disease
prediction) and brain imaging (age prediction).
We show that our model provides a significant
improvement over baselines both in transductive
and inductive settings and achieves state-of-the-
art results.
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1. Introduction
Geometric deep learning (GDL) is a novel emerging branch
of deep learning attempting to generalize deep neural net-
works to non-Euclidean structured data such as graphs and
manifolds (Bronstein et al., 2017; Hamilton et al., 2017;
Battaglia et al., 2018). Graphs in particular, being general
abstract descriptions of relation and interaction systems, are
ubiquitous in different branches of science. Graph-based
learning models have been successfully applied in social
sciences (Zhang & Chen, 2018; Qi et al., 2018), computer
vision and graphics (Qi et al., 2017; Monti et al., 2017;
Wang et al., 2019), medical, and biological (Parisot et al.,
2018; 2017; Mellema et al., 2019; Kazi et al., 2019b; Zitnik
et al., 2018; 2019; Gainza et al., 2019) sciences. Graph
Neural Networks (GNNs) are a popular approach for learn-
ing on graphs. Today’s wide variety of GNN architectures
includes spectral (Bruna et al., 2013) and spectral-like (Def-
ferrard et al., 2016; Kipf & Welling, 2016; Levie et al.,
2018; Bianchi et al., 2019) methods, local charting (Monti
et al., 2017), and attention (Veličković et al., 2017; Kondor,
2018; Bruna & Li, 2017; Monti et al., 2018). Battaglia et al.
(2018) showed that most GNNs can be formulated in terms
of message passing (Gilmer et al.).

A notable drawback of most GNN architectures is the as-
sumption that the underlying graph is given and fixed, while
graph convolution-like operations typically amount to mod-
ifying the node-wise features. Architectures like message
passing neural networks (Gilmer et al.) or primal-dual con-
volutions (Monti et al., 2018) also allow to update the edge
features, but the graph topology is always kept the same.
This often happens to be a limiting assumption. In many
problems, the data can be assumed to have some underlying
graph structure, however, the graph itself might not be ex-
plicitly given (Liu et al., 2012), a setting we refer to as latent
graph. This is the case, for example, in medical and health-
care applications, where the graph may be noisy, partially-
or even completely unknown, and one is thus interested in
inferring it from the data. This is especially important in
inductive settings where some nodes might be present in the
graph at testing but not training. Furthermore, sometimes
the graph may be even more important than the downstream
task as it conveys some interpretability of the model.

Graph topology inference is a long-standing problem that
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was addressed using signal processing techniques (Dong
et al., 2019; Mateos et al., 2019). In the machine learning
literature, several models dealing with latent graphs have
recently been proposed (Li et al., 2018; Huang et al., 2018;
Jiang et al., 2019). Wang et al. (Wang et al., 2019) proposed
dynamic graph CNNs (DGCNN) for the analysis of point
clouds, where a KNN graph is constructed on the fly in the
feature space of the neural network. Franceschi et al. (2019)
formulated graph learning as a bilevel optimization problem,
by modeling the graph as a hyper-parameter and optimizing
it with a separate loss. This method is transductive and does
not scale.

Main contributions We propose a general deep learning
model that simultaneously learns the graph and graph convo-
lutional filters on it. We study several settings of our model,
including a continuous and discrete differentiable graph
construction, and show how to optimize it. We show that
previous methods for learning the graph can be considered
as particular settings of our model. We provide extensive
ablation studies of our model and evaluate it for applica-
tions from the domains of healthcare and brain imaging
(disease and age prediction). Our model shows significant
improvement over baselines and achieves state-of-the-art
results both in transductive and inductive settings.

2. Background
Given a set of N data points of dimension d, denoted X ∈
RN×d, a common problem in machine learning is to produce
a representation that is aware of the underlying structure of
the data. Such structure can be represented as a (weighted)
graph G = (V,A) where V = {1, . . . , n} is the vertex set
and A = (aij) is a (weighted) adjacency matrix.

Graph neural networks. Assuming this structure is pro-
vided together with the data, we have a node-attributed
graph G = (V,A,X), on which a graph neural network
(GNN) can be applied. GNN attempts to find an embedding
Z = fΘ(X,A) by doing message passing (Gilmer et al.;
Battaglia et al., 2018)

zi =
∑
j∈Ni

hΘ(xi,xj , aij) (1)

in a local neighborhood Ni = {j : (i, j) ∈ E} of the node.
Here hΘ denotes a learnable function shared across nodes,
whose parameters Θ are chosen to minimize a downstream
loss. Equation (1) is also referred to as edge convolution
(EC) (Wang et al., 2019) due to its generalization of the
classical convolution operation on grids. A particular case
of (1) with node-wise linear transformation hΘ = aijΘxj

by matrix Θ, is called graph convolution (GC) (Defferrard
et al., 2016; Kipf & Welling, 2016).

Latent graphs. We are interested in the setting when the
underlying graph is unknown, and try to learn it. Learning

the graph serves two purposes: First, it is used to represent
the structure of the data. Second, it is used as the support for
graph-based convolutions to obtain the embeddings of the
data points. The main obstacle for including the graph con-
struction as a part of the deep learning pipeline is that it is a
discrete structure, and as such non-differentiable. The most
related approach to this paper is Wang et al. (2019). In their
method the graph convolutional filters and the layer activa-
tions are optimised towards the downstream classification
and segmentation tasks. The graph, however, is constructed
ad-hoc as a KNN graph on the activations after each layer,
without a dedicated loss. As such, the graph is built dynami-
cally but not learned, and the underlying latent graph of the
domain is not recovered. Our method, described in the next
section, aims at addressing these issues.

3. Method
3.1. Architecture

We propose a general technique i) to learn the graph based
on the output features of each layer and ii) to optimize these
graphs along with the network parameters during the train-
ing. Our architecture comprises two main blocks, the Differ-
entiable Graph Module (DGM) and Diffusion Module,
which are shown in Figure 1 and detailed in the following.

Differentiable Graph Module: The DGM is tasked with
building the (weighted) graph representing the input space.
It takes the feature matrix X ∈ RN×d (and optionally an ini-
tial graph G0) as input, and yields a graph G as output. Since
the node set V is fixed, the two graphs can be represented
by their adjacency matrices A0, A.

The input features X ∈ RN×d are first transformed into
auxiliary features X̂ = fΘ(X) ∈ RN×d̂ by means of a para-
metric function fΘ typically reducing the input dimension
(d̂� d). If the initial graph G0 is provided, we can use fΘ
of the general form (1), where new features X̂ are computed
by edge- or graph-convolution on G0. Otherwise, fΘ is
applied to each node feature independently, acting row-wise
on the matrix X.

Second, the auxiliary features X̂ are used for graph con-
struction. We define the edge probability pij(X; Θ, t) =
e−t‖x̂i−x̂j‖2

2 = e−t‖fΘ(xi)−fΘ(xj)‖2
2 , where t is also a learn-

able parameter. Our choice of using a Euclidean metric for
defining the edge probability is for the sake of simplicity,
and other metrics, e.g. hyperbolic (Krioukov et al., 2010;
Nickel & Kiela, 2017), could also be used. A straightfor-
ward way to derive a graph G is to transform the probability
matrix P(X; Θ, t) into a weighted adjacency matrix, e.g.
by soft-thresholding the distances ‖x̂i − x̂j‖ using the sig-
moid function aij = 1/(1 + pije

tT ), where T denotes the
threshold. In this way, the graph is represented by the adja-
cency matrix A(X; Θ, t, T ) parametrized through Θ, t and
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Figure 1. Left: Two-layered architecture including Differentiable Graph Module (DGM) that learns the graph, and Diffusion Module that
uses the graph convolutional filters. Right: Details of DGM in its two variants, cDGM and dDGM.

the additional parameter T , and is differentiable w.r.t. these
parameters. We refer to this variant of our architecture as
continuous DGM (cDGM).

One of the possible shortcomings of cDGM is that it may
produce dense adjacency matrix, i.e. a fully connected
graph with many edges having near-zero weight. As an effi-
cient alternative, we can produce a sparse k-degree graph
by using the Gumbel-Top-k trick (Kool et al., 2019) to sam-
ple edges from the probability P(X; Θ, t). Such sampling
can be regarded as a stochastic relaxation of the KNN rule.
For each node i, we extract k edges (i, ji,1), . . . , (i, ji,k)
as the first k elements of argsort(log(pi)− log(− log(q)),
where q ∈ RN is uniform i.i.d. in the interval [0, 1].
Samples extracted this way follow the categorical distri-
bution pij/

∑
r pir (Kool et al., 2019). We define the

edge set of the sparse graph G constructed this way as
E(X; Θ, t) = {(i, ji,1), . . . , (i, ji,k) : i = 1, . . . , N} and
represent it by the unweighted adjacency matrix A(X; Θ, t).
The key advantage is that this matrix is sparse. We show next
how to efficiently learn the parameters Θ, t. We refer to this
variant of our architecture as discrete DGM (dDGM). Note
that, since the dDGM graph sampling scheme is stochas-
tic, the prediction of the network at inference time is not
deterministic. We can actually take advantage of this, and
implement a consensus scheme over several samplings.

Diffusion Module: This module takes the graph G pro-
duced by the DGM and the features X as inputs, and yields
a new set of features X′ = gΦ(X) as output. Here, gΦ
represents a general function of the form (1); in our experi-
ments, it is either edge- or graph-convolution on G.

Combined model: We use a multi-layer network where
each layer, numbered as l = 1, . . . , L, comprises a DGM
and Diffusion Module, as shown in Figure 1. The lth layer
produces the output

X(l+1) = gΦ(l)(A(l+1),X(l)) (2)

where A(l+1) ∼ P(l)(X̂
(l+1)

) is the sampled graph and

X̂
(l+1)

= f
(l+1)
Θ ([X(l) | X̂(l)],A(l)) are the auxiliary fea-

tures. We assume X(0) = X and unless some initial knowl-

edge of the structure of the data is available, A(0) = I (i.e.,
the initial graph is G(0) = (V, ∅)) and f (0)

Θ is a node-wise
function (MLP). Depending on the task, the final node fea-
tures X(L) of the last layer L can then be given as input to a
MLP to obtain the final node predictions

DGCNN can be obtained as a particular setting of our model
with fΘ = id in the DGM module and using edge convolu-
tion in the Diffusion module.

3.2. Training

The sampling scheme we adopt in dDGM does not allow the
gradient of the downstream classification loss function to
flow through the graph prediction branch of our network, as
it involves only graph features X̂. To allow its optimization,
we exploit tools from reinforcement learning (Williams,
1992), rewarding edges involved in a correct classification
and penalizing edges that led to misclassification. Let y
denote the vector of node-wise labels predicted by our model
and ỹ the groundtruth labels. We define the reward function
δ(yi, ỹi) taking value −1 if yi = ỹi and 1 otherwise. We
derive the graph loss as

Lgraph =
N∑

i=1
δ(yi, ỹi)

L∑
l=1

∑
j:(i,j)∈E(l)

log p(l)
ij (Θ(l)) (3)

whose gradient approximates the gradient of the expec-
tation E(G(1),...,G(L))∼(P(Θ(1)),...,P(Θ(L)))

∑
i δ(yi, ỹi) with

respect to the parameters of the graphs in all the layers.
Graph loss Lgraph is then optimized by adding it to the
classification loss.

4. Experiments and Results
We test our method on two applications from the domains
of healthcare (disease and age prediction), and provide an
ablation study of different configurations of our architecture.

Healthcare and Brain imaging applications We use
two datasets: Tadpole (Marinescu et al., 2018) consists
of 564 patients each with a 354 dimensional representation
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Table 1. Classification accuracy in % on Tadpole in the transduc-
tive setting. The top three performance scores are highlighted in
color as: First, Second, Third.

Method Accuracy
Linear classifier 70.22±6.32
Multi-GCN (Kazi et al., 2019a) 76.06±0.72
Spectral-GCN (Parisot et al., 2017) 81.00±6.40
InceptionGCN (Kazi et al., 2019b) 84.11±4.50
DGCNN (Wang et al., 2019) 84.59±4.33
LDS (Franceschi et al., 2019) 87.06±3.67
cDGM 92.91±2.50
dDGM 94.14±2.12

derived from imaging (MRI, fMRI, PET) and non-imaging
(demographics and genotypes) features. The task is to clas-
sify each patient as ‘Normal Control’, ‘Alzheimer’s Disease’
and ‘Mild Cognitive Impairment’. UK Biobank (Miller et al.,
2016) consists of 14,503 individuals, each equipped with a
440 dimensional feature derived from brain MRI and fMRI
imaging. The task is to classify the age group of the patient
(50-59,60-69, 70-79, and 80-89). Both tasks are made either
transductive or inductive, where in the former setting all
the nodes are given during training but the labels of the test
nodes are withheld, while in the latter setting, test nodes are
completely removed from the population during training,
and reintroduced only during testing.

Previous methods (Parisot et al., 2017; Kazi et al.,
2019a;b;c) used GNNs with hand-crafted patient popula-
tion graphs built from non-imaging meta-features like the
age and sex of patients. Our method allows to learn the
graph directly from the input patients features, avoiding any
handcrafted construction. We use the following baselines:
simple linear classifier as a non-graph method; Multi-GCN
(Kazi et al., 2019a), Spectral-GCN (Parisot et al., 2017),
InceptionGCN (Kazi et al., 2019b) as graph methods with
hand-crafted graph; and DGCNN (Wang et al., 2019) and
LDS (Franceschi et al., 2019) as methods that learn the
graph. We note that LDS does not support inductive learn-
ing. Results are reported in Tables 1 and 3 using 10-fold
cross validation. Our model significantly outperforms the
state-of-the-art on all the tasks.

Ablation study We perform a detailed ablation study of
different configurations of our architecture, in particular,
the choice of functions f and g (identity, node-wise (MLP),
graph convolution (GC), edge convolution (EC)) and the
graph construction strategy (cDGM and dDGM), using the
Tadpole dataset in the transductive setting.

We use two convolutional layers with output size of 16 and
a final linear layer of size 16 for classification. Results are
shown in Table 2. We observe that with f = id we obtain
the DGCNN, here a kNN selection based graph is computed
dynamically only on the node feature representation space
during each epoch; this setting is significantly inferior to

Table 2. Ablation study on Tadpole transductive task. Shown is
classification accuracy for different architectural choices. Nota-
tion f+g refers to the choice of the DGM and Diffusion modules
(GC: graph convolution, EC: edge convolution; I: identity, MLP:
multilayer perceptron). ∗Configuration equivalent to DGCNN.

Method cDGM dDGM
I + EC — 84.27±4.20*
MLP + GC 92.42±3.82 93.47±3.82
GC + GC 90.68±4.58 94.09±1.81
MLP + EC 92.29±4.18 93.27±3.20
GC + EC 91.78±3.21 94.14±2.12

the use of graph-based convolution. The best combination
is using graph convolution for both f and g.

5. Discussion and conclusion
In this paper, we tackled the challenge of graph learning in
convolutional graph neural networks. We have proposed a
novel Differentiable Graph Module (DGM) that predicts a
probabilistic graph, allowing a discrete graph to be sampled
in order to be used in any graph convolutional operator.
DGM is generic and adaptable to any graph convolution
based method. We prove this by an etensive ablation study
and by using it to solve a wide variety of tasks in healthcare
(disease prediction and age prediction) in both transductive
and inductive settings.

There are some open questions with the proposed
method. Our method, despite being computationally more
lightweight than existing approaches (e.g. (Jang et al.,
2019)), still has a quadratic complexity with respect to the
number of input nodes, as it requires the computation of
all pairwise distances. Restricting the computation of prob-
abilities in a neighborhood of the node and using a tree-
based algorithm could help in reducing the complexity to
O(n logn). Further, our choice of sampling k neighbors
does not consider the heterogeneity of the graph in terms of
the degree distribution of nodes. Other sampling schemes
(e.g. threshold-based sampling (Jang et al., 2019)) could
be investigated. It would be also interesting to take into
consideration previous knowledge about the graph, e.g. by
imposing a node degree distribution, or providing an initial
input graph to be optimized for a specific task.

Table 3. Classification accuracy for disease and age prediction
tasks in the transductive and inductive settings on the Tadpole and
UK Biobank datasets. †Does not support inductive setting.

Method
TADPOLE UK Biobank

Transductive Inductive Transductive Inductive
DGCNN 84.59±4.33 82.99±4.91 58.35±0.91 51.84±8.16
LDS 87.06±3.67 † OOM †
cDGM 92.91±2.50 91.85±2.62 61.32±1.51 55.91±3.49
dDGM 94.10±2.12 92.17±3.65 63.22±1.12 57.34±5.32
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7. Supplementary material
We show an ablation study for the time in table 4 and report
the training and testing times of our model for different
dataset size, which shows that it is on par with DGCNN and
about three orders of magnitude faster than LDS. All the
setting for the training are kept same as the ablation test in
the paper with two convolutional layers with output size of
16 and a final linear layer of size 16 for classification.

Table 4. Scalability: training and test iteration times for different
number of nodes.

Training iteration
Method n =564 5k 10k
DGCNN(Wang et al., 2019) 6.99ms 28.2ms 104ms
LDS (Franceschi et al., 2019) 1.84s >1m >1m
cDGN 7.35ms 47.8ms 211ms
dDGN 8.29ms 37.0ms 141ms

Test iteration
Method n =564 5k 10k
DGCNN(Wang et al., 2019) 4.60ms 25.2ms 102ms
LDS (Franceschi et al., 2019) 1.84s >1m >1m
cDGN 3.02ms 15.1ms 51ms
dDGN 3.97ms 24.6ms 104ms
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