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Abstract
We present a multi-relational temporal Knowl-
edge Graph based on the daily interactions be-
tween artifacts in GitHub, one of the largest so-
cial coding platforms. Such representation en-
ables posing many user-activity and project man-
agement questions as link prediction and time
queries over the knowledge graph. In particu-
lar, we introduce two new datasets for i) interpo-
lated time-conditioned link prediction and ii) ex-
trapolated time-conditioned link/time prediction
queries, each with distinguished properties. Our
experiments on these datasets highlight the poten-
tial of adapting knowledge graphs to answer broad
software engineering questions. Meanwhile, it
also reveals the unsatisfactory performance of ex-
isting temporal models on extrapolated queries
and time prediction queries in general. To over-
come these shortcomings, we introduce an ex-
tension to current temporal models using relative
temporal information with regards to past events.

1. Introduction
Hosting over 100 million repositories, GitHub (GH) is one
of the biggest social coding platforms (GitHub, 2018). Over
the past decade, the available artifacts hosted on GH have
become one of the most important resources for software
engineering (SE) researchers to study various aspects of
programming, software development, the characteristics of
open source users and ecosystem (Cosentino et al., 2017).
Example questions of interest include when an issue will
be closed (Kikas et al., 2016; Rees-Jones et al., 2017), how
likely a pull request will be merged and when (Gousios &
Zaidman, 2014; Soares et al., 2015), and who should review
a pull request (Yu et al., 2016; Hannebauer et al., 2016).
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Our aim in this work is to connect the above SE research
questions to the literature on learning knowledge graph (KG)
embeddings, with a particular emphasis on temporal KGs
due to the importance of the temporal component in the
above questions. Methods for time prediction and time-
conditioned link prediction in KGs (Kazemi et al., 2020,
Section 5.1-5.2) are generally based on point process mod-
els (Trivedi et al., 2017; 2019; Knyazev et al., 2019) or
adaptations of KG embeddings that additionally use time to
compute scores (Dasgupta et al., 2018; Leblay & Chekol,
2018; Garcı́a-Durán et al., 2018; Goel et al., 2019). While
point processes are elegant, they are more challenging to
work with and require strong assumptions on the underlying
intensity functions (see e.g., Trivedi et al., 2019, Equation 1
& Section 4). Thus we focus on KG embedding-based
methods, in particular starting with Diachronic Embeddings
(DE-X) (Goel et al., 2019) for time-varying embeddings
and RotatE (Sun et al., 2019) for scoring facts.

Our contributions are the following:

• Collecting two new temporal KG datasets1 from GH
public events that allow casting the above SE questions
as time-conditioned prediction queries (Section 2).

• Benchmarking existing temporal KG embedding meth-
ods on the new datasets (Section 4).

• Based on the observation that existing temporal KG em-
bedding models do not well capture patterns in relative
time that are important to SE applications, particularly
in extrapolated settings, e.g., How long will it take from
pull request being opened to being closed?, we pro-
pose a new relative temporal KG embedding inspired
by the use of relative time in attention-based neural
networks like Music Transformer (Huang et al., 2019)
and Transformer-XL (Dai et al., 2019) (Section 3).

In total, our work brings together SE research questions and
temporal KG models by introducing new datasets, bench-
marking existing recent methods on the datasets, and sug-
gesting a new direction of leveraging Transformer-style
relative time modeling in KG embeddings.

1https://zenodo.org/record/3928580
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Table 1. Characteristics comparison of the introduced datasets to existing temporal KG datasets.

DATASET |V| |E| |R| |T| DMAX DMED

GITHUB-SE 1Y 125,455,982 249,375,075 19 365 3,519,105 2
GITHUB-SE 1Y-REPO 133,335 285,788 18 365 73,345 1

GITHUB-SE 1M 13,690,824 23,124,510 19 31 1,324,179 2
GITHUB-SE 1M-NODE 139,804 293,014 14 31 639 2

GITHUB (ORIGINAL) (TRIVEDI ET AL., 2019) 12,328 771,214 3 366 - -
GITHUB (SUBNETWORK) (KNYAZEV ET AL., 2019) 284 20,726 8 366 4,790 53.5
ICEWS14 (GARCÍA-DURÁN ET AL., 2018) 7,128 90,730 230 365 6,083 3
ICEWS05-15 (GARCÍA-DURÁN ET AL., 2018) 10,488 461,329 251 4017 52,890 5
YAGO15K (GARCÍA-DURÁN ET AL., 2018) 15,403 138,056 34 198 6,611 5
WIKIDATA (LEBLAY & CHEKOL, 2018) 11,153 150,079 96 328 586 5
GDELT (LEETARU & SCHRODT, 2013) 500 3,419,607 20 366 53,857 10,336

2. Dataset
Creation To create the dataset, we retrieved from GH
Archive2 all of the raw public events in GH in 2019. The
knowledge graph was then constructed by tuples, each of
which represents an individual event containing temporal
information based on its type and a predefined set of extrac-
tion rules. The properties of the constructed KG is shown in
the first row of Table 1, referred to as GITHUB-SE 1Y.

Due to the substantial size of the GITHUB-SE 1Y and unre-
alistic computational demands of training KG embedding
models on this KG, we sampled the GITHUB-SE 1Y using
two distinct strategies, described in more details in Ap-
pendix A.1. The first strategy aims to retain maximum tem-
poral information about particular SE projects. To achieve
this, first, an induced sub-graph containing all related nodes
was extracted for each node with type Repository. Then,
for each sub-graph a popularity score was calculated as
P (G) = W1 × SG +W2 × TG where SG is the size of the
graph, TG is the time-span of the graph, and W1,W2 ∈ R+

are weight values. Finally, from the top three ranked repos-
itories, we selected the Visual Studio Code repository to
extract a one-year slice as it exercised more functionalities
related to the target entities in this work, i.e. issues and pull
requests. We name this dataset GITHUB-SE 1Y-REPO due
to its repository-centric characteristics.

The second strategy aims at preserving the most informa-
tive nodes regardless of their type. We used a variation
of Snowball Sampling (Goodman, 1961) on all the events
in December 2019. This sampled dataset, i.e. GITHUB-
SE 1M-NODE, captures events across various projects and
therefore, can be used to answer queries such as which
project does a user start contributing at a certain time.

Characteristics In Table 1, we compare the variations of
GITHUB-SE KG proposed in this work with commonly

2https://www.gharchive.org

used datasets in the literature. Even the sampled down ver-
sions of our datasets are considerably larger in terms number
of nodes. They have much higher edge to node ratios which
translates into sparsity in graphs, but this sparsity level is
close to what appears in GitHub as a whole. Additionally,
similar to relations, each node in our datasets is also typed.

Trivedi et al. (2019) also collects a temporal KG dataset
from GitHub. However, this dataset is exclusively focused
on the social aspects of GitHub, discarding repositories
and only including user-user interactions, and it does not
appear to be publicly available beyond raw data and a small
subnetwork extracted in a follow-up work (Knyazev et al.,
2019). To differentiate our datasets, which focus on the SE
aspects of GitHub, we append -SE to the dataset names.

The distinguishing characteristics of the proposed datasets,
i.e. size, sparsity, node-typing, diversity, focus on SE as-
pects, and temporal nature, introduce a variety of engineer-
ing and theoretical challenges that make these datasets a
suitable choice for exploring and exposing the limitations
of temporal knowledge graph embedding models.

3. Method
3.1. Existing KG embedding models

We first examine the performance of the state-of-the-art
KG embedding models on the GITHUB-SE 1M-NODE and
GITHUB-SE 1Y-REPO datasets. We select RotatE (Sun
et al., 2019) for the static settings considering its ability
to infer Symmetry, Antisymmetry, Inversion, and Compo-
sition relational patterns. Moreover, we use DE-X (Goel
et al., 2019) for the dynamic setting due to its superior
performance on existing benchmarks and the fact that for
any static model X there exists an equivalent DE-X model
ensuring the ability to learn aforementioned patterns.

Notationally, a KG G is a set of tuples of the form x =
(s, r, o, t) respectively representing the subject, relation, ob-

https://www.gharchive.org
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ject, and timestamp. The diachronic embeddings are defined
as

D(e, t) = E(s)⊕ (EA(e) + sin(t ∗ EF (e) + Eφ(e)))

where E,EA, EF , Eφ are embedding lookup tables and the
last three respectively represent Amplitude, Frequency, and
Phase of a sinusoid. Similar to Goel et al. (2019), whenever
t consists of multiple set of numbers rather than one, e.g.
year, month, and day, for each set of numbers a separate D
is defined, and the values are summed up. Subsequently, the
scoring function of the DE-RotatE model is defined as

score(s, r, o, t) = D(s, t) ◦ ER(r)−D(o, t)

where ER is an embedding lookup table for relations.

3.2. Relative Temporal Context

The idea of using relative temporal information has been suc-
cessfully employed in natural language processing (Vaswani
et al., 2017; Dai et al., 2019) and music generation (Huang
et al., 2019). These models formalize the intuition that
temporal spacing between events is more central than the
absolute time at which an event happened. We believe this
framing is also appropriate for SE applications of temporal
knowledge graphs: to predict if a pull request is closed at
time t, it is more important to know how long it has been
since the pull request was opened than it is to know t.

A challenge is that there are a lot of events, and we do not
want to hard-code which durations are relevant. Instead, we
would like the model to learn which temporal durations are
important for scoring a temporal fact. As the number of
related facts to an entity could be as high as a few thousand,
we propose to pick a fixed-number of facts as temporal
context to provide as an input to the models.

LetH(e, r, t) = {t′ | (s′, r′, o′, t′) ∈ G ∧ (t′ < t) ∧ (r′ =
r) ∧ (s′ = e ∨ o′ = e)} be the set of times associated
with facts involving entity e and relation r occurring before
time t, and let δ(e, r, t) = t−maxH(e, r, t) be the relative
time since a fact involving e and relation r has occurred.
Hence, an entity’s relative temporal context at query time
tq is ∆(e, tq) = [δ(e, 1, tq), . . . , δ(e, |R|, tq)]> ∈ R|R|.

3.3. Relative Time DE-RotatE (RT-DE-ROTATE)

We now turn attention to using the relative temporal context
∆(e, t) as an input to temporal KG embeddings. Our inspira-
tion is the Transformer encoder, which has emerged as a suc-
cessful substitute to more traditional Recurrent Neural Net-
work approaches used for sequential (Vaswani et al., 2017;
Dai et al., 2019; Huang et al., 2019) and structural (Parmar
et al., 2018) tasks. The core idea is to employ a variation
of attention mechanism called Self-Attention that assigns
importance scores to the elements of the same sequence.

Unlike recurrence mechanism, the positional information
is injected to the Transformer styled encoders by 1) adding
sine/cosine functions of different frequencies to the in-
put (Vaswani et al., 2017; Dai et al., 2019), or 2) directly in-
fusing relative distance information to attention computation
in form of a matrix addition (Shaw et al., 2018; Huang et al.,
2019). Vaswani et al. (2017) introduced a positional encod-
ing scheme in form of sinusoidal vectors defined as ρ(i) =

[ρ1(i), . . . , ρd(i)], where ρj(i) = sin(i/10000
bj/2c

d ) if j is
even and cos(i/10000

bj/2c
d ) if j is odd, i is the absolute

position, and d is the embedding dimension. In the follow-
up Transformer-XL model, Dai et al. (2019) introduce a
reparameterization of the relative attention where the atten-
tion score between a query element at position i and a key
element at position j is defined as

Areli,j = E(i)>W>QWK,EE(j)︸ ︷︷ ︸
(a)

+E(i)>W>QWK,ρρ(i− j)︸ ︷︷ ︸
(b)

+ u>WK,EE(j)︸ ︷︷ ︸
(c)

+ v>WK,ρρ(i− j)︸ ︷︷ ︸
(d)

where E(i), E(j) ∈ Rd×1 are the i and j element embed-
dings, u, v ∈ Rd×1, WQ, WK,E , WK,ρ are trainable d× d
matrices, and i− j is the relative position between i and j.

The main difference in our setting is that the above models
compute a score based on a single relative time i− j, while
our relative temporal context ∆ contains |R| relative times
for each entity. Our approach is to score a tuple (s, r, o, t)
based on the information available at query time tq.3 For
each entity e ∈ (s, o) we define a positional embeddings
matrix P of relative times between t and the events in its
relative temporal context ∆(e, tq) as

P (e, t, tq) =


ρ(t− tq + δ(e, 1, tq))
ρ(t− tq + δ(e, 2, tq))

...
ρ(t− tq + δ(e, |R|, tq))

 ∈ R|R|×d.

Intuitively, these relative times encode “if the event hap-
pened at time t, how long would it have been since the events
in the relative time context.” A learned, relation-specific
row vector WP (r) ∈ R1×|R| for r = 1, . . . , |R| chooses
which rows of P are important, and then γ(r, e, t, tq) =
WP (r)P (e, t, tq) ∈ R1×d, abbreviated γ(r, e, t), embeds
the relative temporal context of e, replacing WK,ρρ(i− j):

Arelx = D(s, t)W (r)D(o, t)>︸ ︷︷ ︸
(a)

+ γ(r, s, t)WP γ(r, o, t)>︸ ︷︷ ︸
(d)

+ E(s)WEγ(r, o, t)>︸ ︷︷ ︸
(b)

+ γ(r, s, t)W>E E(o)>︸ ︷︷ ︸
(c)

3During training, tq is the t of the positive sample, and during
evaluation, tq is set to the maximum timestamp in the training set.
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Table 2. Performance comparison on time-conditioned Link Prediction. Results within the 95% confidence interval of the best are bolded.

DATASET TYPE MODEL HITS@1 HITS@3 HITS@10 MR MRR

GITHUB-SE
1M-NODE

INTERPOLATED
ROTATE 47.58 76.66 88.95 807.40 0.6328

DE-ROTATE 47.98 76.92 88.87 779.50 0.6349
RT-DE-ROTATE (OURS) 49.70 78.67 90.48 773.90 0.6522

EXTRAPOLATED
ROTATE 25.40 49.02 57.54 4762.87 0.3797

DE-ROTATE 26.28 48.53 57.33 4840.16 0.3838
RT-DE-ROTATE (OURS) 26.50 49.54 57.94 4891.81 0.3888

GITHUB-SE
1Y-REPO

INTERPOLATED
ROTATE 44.05 57.14 80.95 18.54 0.5460

DE-ROTATE 42.17 53.88 76.88 24.67 0.5233
RT-DE-ROTATE (OURS) 48.93 60.96 78.32 14.47 0.5815

EXTRAPOLATED
ROTATE 2.11 4.82 9.71 1917.03 0.0464

DE-ROTATE 1.77 4.08 9.10 1961.75 0.0402
RT-DE-ROTATE (OURS) 38.25 40.08 64.06 1195.02 0.4345

where W (r) is a relation-specific weight matrix and WE

and WP are tuple-agnostic weight matrices; however, this
formulation is suitable for bilinear models. Hence, we derive
a translational variation for the DE-RotatE model as

Arelx = ‖D(s, t) ◦ ER(r)−D(o, t)‖︸ ︷︷ ︸
(a)

+ ‖E(s)WE − γ(r, o, t)‖︸ ︷︷ ︸
(b)

+ ‖γ(r, s, t)−WEE(o)‖︸ ︷︷ ︸
(c)

where W (r) is replaced by an embedding lookup table
ER(r). Intuitively, under this formulation (a) capture en-
tities compatibility and (b) and (c) capture entity-specific
temporal context compatibility. In comparison, the existing
models only include term (a) discarding terms (b) and (c).

4. Experiments
Datasets: We use a 90%-5%-5% events split for construct-
ing the train, validation, and test sets. For the interpolated
queries the split was done randomly, whereas we split the
data using event timestamps for the extrapolated queries.
Table 3 in the Appendix presents details of the splits.

Queries: For time-conditioned link prediction, we selected
events related to the resolution of Github issues and pull
requests due to their direct impact on software development
and maintenance practice. Particularly, we used “Who will
close issue X at time T?” and ‘Who will close pull-request
X at time T?” for evaluation. For time prediction, we used
the analogous time queries of the aforementioned queries
for evaluation, i.e. “When will issue X be closed by user Y?”
and ‘When will pull-request X be closed by user Y?”.

Evaluation and Results: We calculated the standard met-
rics to evaluate the model performance on the test set. For

the extrapolated time-conditioned link prediction queries,
after using the validation set for hyperparameter tuning,
we retrained the selected models using both training and
validation sets for evaluation. We also report the model
performance without retraining in the Appendix Table 5.

In Table 2 we compare the model performance on the time-
conditioned link prediction queries. On the GITHUB-SE
1M-NODE queries, our model slightly outperforms exist-
ing models in some cases, but the difference is statistically
insignificant in others. On the GITHUB-SE 1Y-REPO,
on the other hand, our RT-DE-ROTATE model shows a
significant performance boost, particularly on the extrapo-
lated time-conditioned link prediction queries, indicating
the importance of using relative time as temporal context.

For the extrapolated time prediction queries on GITHUB-
SE 1Y-REPO dataset, our model performed slightly better
on HITS@1, HITS@3, and Mean Reciprocal Rank (MRR)
than the other existing models while marginally surpassing
the random baseline on all metrics. These results, detailed in
the Appendix Table 8, stress the necessity of having further
studies on extrapolated time prediction queries.

5. Conclusion
In this work, we bridge between the SE domain questions
and the literature on KG embedding models by introducing
two new datasets based on the daily interactions in the GH
platform and casting those questions as queries on an ap-
propriate KG. Furthermore, we introduce RT-X, a novel ex-
tension to existing KG embedding models that make use of
relative time with regards to past relevant events. Our exper-
iments highlight shortcomings of existing temporal KG em-
bedding models, notably on extrapolated time-conditioned
link prediction, and exhibit the advantage of leveraging rel-
ative time as introduced in the RT-X model. In total, this
work highlights new opportunities for improving temporal
KG embedding models on time prediction queries.
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Calcul Québec, and Compute Canada. We thank Daniel
Johnson for helpful comments.

References
Cosentino, V., Izquierdo, J. L. C., and Cabot, J. A system-

atic mapping study of software development with github.
IEEE Access, 5:7173–7192, 2017.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V., and
Salakhutdinov, R. Transformer-xl: Attentive language
models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

Dasgupta, S. S., Ray, S. N., and Talukdar, P. Hyte:
Hyperplane-based temporally aware knowledge graph
embedding. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pp.
2001–2011, 2018.
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A. Dataset
A.1. Sampling

Algorithm 1 describes the snowball sampling used to create
the GITHUB-SE 1M-NODE dataset. This algorithm aims
at preserving the most informative nodes regardless of their
types. Moreover, Algorithm 2 describes the temporal sam-
pling used to create the GITHUB 1Y-REPO dataset. This
algorithm aims at preserving maximum temporal informa-
tion regarding particular repositories.

Algorithm 1 Snowball Sampling strategy used for extract-
ing the GITHUB-SE 1M-NODE dataset.

Require: set of nodes V , set of edges E, sample size N ,
growth size S, initial sample size K
L← sortDescending(V ) w.r.t node degree
Q←MaxPriorityQueue()
for i = 1, ...,K do
Q.put(L[i])

end for
U ← Set()
while size(U) < N do
Vu ← Q.top() w.r.t node degree
U .put(Vu)
Us← randomSample(E[Vu]) with size S
for i = 1, ..., S do
Q.put(Us[i])

end for
end while

Algorithm 2 Temporal Sampling strategy used for extract-
ing the GITHUB 1Y-REPO dataset.

Require: set of nodes V , size importance factor W1, time
span importance factor W2, sample size N
R← extractRelated(V ) {Repository node type only}
P ← Array(|R|)
for i = 1, ..., |R| do
Pi← calculatePopularity(Ri,W1,W2)

end for
S ← sorted(P )
U ← Set()
for i = 1, ..., |S| do

if size(U) < N then
U .union(Si)

end if
end for

A.2. Extraction

Table 9 presents the set of extraction rules used to build
the KG from raw events each representing a relation type.
Although 80 extractions rules are defined in Table 9, the raw
events that we used only contained 18 of them.

The codes presented in the Relation column of Table 9, when
divided on underscore, are interpreted as a) the first and the
last components respectively represent entity types of the
event’s subject and object, b) AO, CO, SE, SO, and HS are
abbreviations of extracted information from raw payloads 4

serving as distinguishers between different relation types
among entities, and c) the second to the last component
represents the concrete action taken that triggers the event.

B. Model
B.1. Complexity

Table 4 presents time and space complexity comparison be-
tween the existing models and the introduced RT-X model.
Notice that, while yielding superior performance, the num-
ber of free-parameters introduced in our extension does not
increase linearly with the number of entities which is one of
the bottlenecks of training large KG embedding models.

B.2. Loss Function

Similar to the self-adversarial negative sampling introduced
in Sun et al. (2019), we use weighted negative samples as

p(h
′

j , r, t
′

j |{(hi, r, ti)}) =
exp ηfr(h

′

j , t
′

j)∑
i exp ηfr(h

′
i, t

′
i)

where η is the sampling temperature and (h
′

i, r, t
′

i) is the
i-th negative sample. Hence, the loss function is defined as

L = − log σ(ω − dr(h, t))

−
n∑
i=1

p(h
′

i, r, t
′

i) log σ(dr(h
′

i, t
′

i)− ω)

where ω is a fixed margin and σ is the sigmoid function.

C. Experiments
C.1. Time Prediction

To evaluate the time prediction queries, we consider the
dates in the min-max timestamp range of the set that is
being evaluated as the candidate set.

C.2. Model Selection

The best model is selected using the MRR on validation set
and HITS@N with N = 1, 3, 10, Mean Rank (MR), MRR
on test set are reported.

4https://developer.github.com/webhooks/
event-payloads/

https://developer.github.com/webhooks/event-payloads/
https://developer.github.com/webhooks/event-payloads/
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Table 3. Details of train, validation, and test splits.

DATASET TYPE #TRAIN #VALIDATION #TEST

GITHUB-SE 1M-NODE

INTERPOLATED 285,953 3,530 3,531
EXTRAPOLATED 281,056 2,104 3,276

STANDARD
EXTRAPOLATED

275,805 2,104 3,276

GITHUB-SE 1Y-REPO

INTERPOLATED 282,597 1,595 1,595
EXTRAPOLATED 269,789 2,281 1,472

STANDARD
EXTRAPOLATED

252,845 2,281 1,472

Table 4. Time and space complexity comparison of the models given static embedding dimension ds, diachronic embedding dimension dt,
relative time embedding dimension dr , entity set E, and relation set R.

MODEL COMPUTATIONAL COMPLEXITY FREE PARAMETERS COMPLEXITY

ROTATE O(ds) O(ds(|E|+ |R|))
DE-ROTATE O(ds + dt) O((ds + dt)(|E|+ |R|))

RA-DE-ROTATE (OURS) O(ds + dt + dsdr + dr|R|) O((ds + dt)(|E|+ |R|) + d2r + dsdr)

Table 5. Performance comparison on standard extrapolated time-conditioned Link Prediction. Results within the 95% confidence interval
of the best are bolded.

DATASET MODEL HITS@1 HITS@3 HITS@10 MR MRR

GITHUB-SE 1M-NODE
ROTATE 19.60 38.37 45.54 6437.30 0.2965

DE-ROTATE 20.97 38.03 45.21 6504.79 0.3005
RT-DE-ROTATE (OURS) 22.10 38.61 45.54 5782.83 0.3113

GITHUB-SE 1Y-REPO
ROTATE 0.41 1.49 2.45 2259.03 0.0141

DE-ROTATE 5.16 8.83 16.44 1342.25 0.0911
RT-DE-ROTATE (OURS) 38.59 40.01 43.27 1613.70 0.4034

C.3. Negative Sampling

We follow the negative sampling scheme employed by Das-
gupta et al. (2018) providing the model with both sets of
time-agnostic and time-dependent negative samples.

C.4. Regularization

We apply L3 regularization parameterized by λ as intro-
duced in Lacroix et al. (2018) on E, EA, WE , and WP .

C.5. Re-ranking Heuristics

We employed two re-ranking heuristics during the evalua-
tion time for time-conditioned link prediction. First, each
entity was only evaluated among entities with the same
type. Next, we push down the ranks of entities with prior
interactions with the given entity.

C.6. Hyperparameters

Initially, we tuned our models using the hyperparameter
ranges reported in Table 6 for dropout, η, ω, and α result-

Table 6. Hyperparameter ranges used for experiments.

HYPERPARAMETER RANGE

DROPOUT {0.0, 0.2, 0.4}
η {0.5, 1.0}
ω {3.0, 6.0, 9.0}
α {10−3, 10−4, 3× 10−5, 10−5}
λ {10−3, 5× 10−4, 10−4}
ds {128, 96, 64, 32, 0}
da {128, 96, 64, 32, 0}
dr {128, 64, 32, 0}

Table 7. Average runtime comparison of the models in seconds.

MODEL SAMPLES AVG RUNTIME

ROTATE 6400 77S
DE-ROTATE 6400 80S

RT-DE-ROTATE 6400 87S

ing in total of 72 runs. Then, following the best hyperpa-
rameters achieved on RotatE and DE-RotatE models, we



Software Engineering Event Modeling using Relative Time in Temporal Knowledge Graphs

Figure 1. Example heatmap of the absolute importance scores between relations learned as part of the model.

Table 8. Performance comparison on extrapolated Time Prediction.

DATASET MODEL HITS@1 HITS@3 HITS@10 MR MRR

GITHUB-SE 1Y-REPO

ROTATE 1.77 18.27 56.05 10.62 0.1675
DE-ROTATE 3.46 7.27 60.73 9.35 0.1724

RT-DE-ROTATE (OURS) 6.18 19.29 55.91 9.40 0.2073
RANDOM 5.26 15.79 52.63 9.5 0.1867

used dropout = 0.4, η = 0.5, ω = 6.0, α = 3 × 10−5,
λ = 5 × 10−4, time-agnostic negative ratio = 256, time-
dependant negative ratio = 32, batch size = 64, warm-
up steps = 100000, warm-up α decay rate = 0.1, steps =
200000, and validation steps = 10000 for all experiments.

To make a fair comparison, we chose a base embedding size
of 128 for all experiments. Subsequently, we only report on
the combinations of static embedding dimension ds values
and diachronic embedding dimension dt values presented
in Table 6 where ds + dt = 128. We evenly distribute dt
among all diachronic embeddings to prevent giving models
a distinct advantage in terms of free-parameters. As for the
relative time embedding dimension dr, we report on all the

combinations in Table 6 with ds and dt respecting the stated
restriction resulting in total of 17 experiments per dataset.

C.7. Runtime

Table 7 presents the average runtime of each model for every
100 steps with batch size set to 64. All experiments were
carried on servers with 16 CPU cores, 64GB of RAM, and
a NVIDIA V100/P100 GPU.

C.8. Standard Error

We use standard error to calculate confidence intervals and
detect statistically indistinguishable results.
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C.9. Relations Importance Matrix

Figure 1 presents the importance matrix between relations,
i.e. WP , learned as part of the RT-X model. From this
figure, it is evident that the learned matrix is not symmetric,
indicating that the model learns different importance scores
conditioned on the query relation.
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Table 9. Extraction rules used to build the KG from raw events.

EVENT TYPE HEAD RELATION (CODE) TAIL

COMMIT COMMENT USER ACTOR (U AO CC) COMMIT COMMENT

FORK REPOSITORY FORK (R FO R) REPOSITORY

ISSUE COMMENT

USER
CREATED (U SO C IC)

ISSUE COMMENTEDITED (U SO E IC)
DELETED (U SO D IC)

ISSUE COMMENT
CREATED (IC AO C I)

REPOSITORYEDITED (IC AO E I)
DELETED (IC AO D I)

ISSUES

USER

OPENED (U SE O I)

ISSUE

EDITED (U SE E I)
DELETED (U SE D I)
PINNED (U SE P I)

UNPINNED (U SE UP I)
CLOSED (U SE C I)

REOPENED (U SE RO I)
ASSIGNED (U SE A I)

UNASSIGNED (U SE UA I)
LOCKED (U SE LO I)

UNLOCKED (U SE ULO I)
TRANSFERRED (U SE T I)

USER
ASSIGNED (U AO A I) ISSUEUNASSIGNED (U AO UA I)

ISSUE

OPENED (I AO O R)

REPOSITORY

EDITED (I AO E R)
DELETED (I AO D R)
PINNED (I AO P R)

UNPINNED (I AO UP R)
CLOSED (I AO C R)

REOPENED (I AO RO R)
ASSIGNED (I AO A R)

UNASSIGNED (I AO UA R)
LOCKED (I AO LO R)

UNLOCKED (I AO ULO R)
TRANSFERRED (I AO T R)

MEMBER USER
ADDED (U CO A R)

REPOSITORYREMOVED (U CO E R)
EDITED (U CO R R)

PULL REQUEST REVIEW COMMENT

USER
CREATED (U SO C PRC)

PULL REQUEST REVIEW COMMENTEDITED (U SO E PRC)
DELETED (U SO D PRC)

PULL REQUEST REVIEW COMMENT
CREATED (PRC AO C P)

PULL REQUESTEDITED (PRC AO E P)
DELETED (PRC AO D P)

PULL REQUEST REVIEW

USER
SUBMITTED (U SO S PR)

PULL REQUEST REVIEWEDITED (U SO E PR)
DISMISSED (U SO D PR)

PULL REQUEST REVIEW
SUBMITTED (PR AO S P)

PULL REQUESTEDITED (PR AO E P)
DISMISSED (PR AO D P)

PULL REQUEST

USER

ASSIGNED (U SO A P)

PULL REQUEST

UNASSIGNED (U SO UA P)
REVIEW REQUESTED (U SO RR P)

REVIEW REQUEST REMOVED
(U SO RRR P)

OPENED (U SO O P)
EDITED (U SO E P)
CLOSED (U SO C P)

READY FOR REVIEW (U SO RFR P)
LOCKED (U SO L P)

UNLOCKED (U SO UL P)
REOPENED (U SO R P)

SYNCHRONIZE (U SO S P)

USER
ASSIGNED (U AO A P) PULL REQUESTUNASSIGNED (U AO U P)

USER
REVIEW REQUESTED (U RRO A P) PULL REQUESTREVIEW REQUEST REMOVED (U RRO R P)

PULL REQUEST

ASSIGNED (P AO A R)

REPOSITORY

UNASSIGNED (P AO UA R)
REVIEW REQUESTED (P AO RR R)

REVIEW REQUEST REMOVED
(P AO RRR R)

OPENED (P AO O R)
EDITED (P AO E R)
CLOSED (P AO C R)

READY FOR REVIEW (P AO RFR R)
LOCKED (P AO L R)

UNLOCKED (P AO UL R)
REOPENED (P AO R R)

SYNCHRONIZE (P AO S R)

PUSH USER SENDER (U SO C) REPOSITORY

STAR USER
CREATED (U HS A R) REPOSITORYDELETED (U HS R R)


