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Abstract

In this paper, we propose Continuous Graph Flow,
a generative continuous flow based method that
aims to model complex distributions of graph-
structured data. Our proposed model learns a
joint probability density over a set of related ran-
dom variables by formulating it as first order or-
dinary differential equation system with shared
and reusable functions that operate over the graph
structure. This leads to a reversible continuous
message passing over time resulting in continu-
ous transformations of probability distributions
of the variables. We evaluate our model on a di-
verse set of generation tasks: graph generation,
image puzzle generation, and layout generation
from scene graphs. Experimental results show
that CGF-based models outperform state-of-the-
art graph generative models.

1. Introduction
Modeling and generating graph-structured data has impor-
tant applications in various scientific fields such as building
knowledge graphs (Lin et al., 2015; Bordes et al., 2011),
inventing new molecular structures (Gilmer et al., 2017) and
generating images from scene graphs (Johnson et al., 2018).

Traditional graph generative methods (Erdős & Rényi, 1959;
Leskovec et al., 2010; Albert & Barabási, 2002; Airoldi
et al., 2008) are based on rigid structural assumptions and
lack the capability to learn from observed data. Modern
deep learning frameworks based on variational autoencoders
(VAE) (Kingma & Welling, 2014) enable learning structured
latent space models from data (Lin et al., 2018; He et al.,
2018; Kipf & Welling, 2016). Nevertheless, their capacity
is still limited mainly because of the assumptions placed on
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the form of distributions. Another class of graph generative
models are based on autoregressive methods (You et al.,
2018; Kipf et al., 2018). However, due to the sequential
nature of the generation process, these models suffer from
the inability to maintain long-term dependencies in larger
graphs. Therefore, existing methods for graph generation
are yet to realize the full potential of their generative power,
particularly, the ability to model complex distributions with
the flexibility to address variable data dimensions.

Alternatively, for modeling the relational structure in data,
graph neural networks (GNNs) or message passing neural
networks (MPNNs) (Scarselli et al., 2009; Gilmer et al.,
2017) have been shown to be effective in learning gener-
alizable representations over graph-structured data. These
models rely on neural message passing wherein the node
representations are updated iteratively for a fixed number
of steps. Hereafter, we use the term message passing to
refer to neural message passing in GNNs. We leverage this
representational ability towards graph generation.

In this paper, we introduce a new class of models – Continu-
ous Graph Flow (CGF): a graph generative model based on
continuous normalizing flows (Chen et al., 2018; Grathwohl
et al., 2019) that generalizes the message passing mecha-
nism to continuous time. Specifically, to model continuous
time dynamics of the graph variables, we adopt a neural
ordinary differential equation (ODE) formulation. Our CGF
model has both the flexibility to handle variable data dimen-
sions (by using GNNs) and the ability to model arbitrarily
complex data distributions due to the free-form model archi-
tectures enabled by the neural ODE formulation. Inherently,
the ODE formulation also imbues the model with proper-
ties such as reversibility and exact likelihood computation.
Recent research attempts on normalizing flow based graph
generative models (Liu et al., 2019; Madhawa et al., 2019;
Shi et al., 2020; Honda et al., 2019) propose a reversible
graph neural network using normalizing flows. However,
they are based on fixed number of transformations as com-
pared to our CGF that models continuous time dynamics.

2. Continuous graph flow
Given a set of random variables V containing n related
variables, the goal is to learn the joint distribution p(V )
of the set of variables V . Each element of set V is vi ∈
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Rm where i = 1, 2 . . . , n and m represents the number of
dimensions of the variable. For continuous time dynamics of
the set of variables V , we formulate an ordinary differential
equation (ODE) system as follows:

v̇1(t)
v̇2(t)

...
v̇n(t)

 =


f1(V (t))
f2(V (t))

...
fn(V (t))

 , (1)

where v̇i = dvi/dt and V (t) is the set of variables at time
t. The random variable vi at time t0 follows a simple base
distribution (e.g. Gaussian). The function f i implicitly
defines the interaction among the variables. Following this
formulation, the transformation of the variable vi from time
t0 to time t1 is defined as

vi(t1) = vi(t0) +

∫ t1

t0

f i(V (t))dt. (2)

2.1. Continuous message passing

The form in Eq. 2 represents a generic multi-variate update
where interaction functions are defined over all the variables
in the setV . However, the functions do not take into account
the relational structure between the graph variables.

To address this, we define a neural message passing process
that operates over a graph by defining the update functions
of variables according to the graph structure relying on in-
formation gathered from other neighboring variables. This
process begins from time t0 where each variable vi(t0) con-
tain local information only. For such updates, the function
f i in Eq. 2 is defined as:

f i(V (t)) = g({f̂ij(vi(t),vj(t))|j ∈ S(i)}), (3)

where f̂ij(·) is a reusable message function that passes in-
formation between variables vi and vj , S(i) is the set of
neighboring variables that interact with variable vi, and g(·)
is a function that aggregates the information passed to a vari-
able. The above formulation describes the case of pairwise
message functions, though it can be generalized to higher
order interactions.

We formulate the message passing as a continuous process,
thereby, eliminating the requirement of having a predeter-
mined number of message passing steps. By further pushing
the message passing process to update at infinitesimally
smaller steps for an arbitrarily large number of steps, vari-
able updates can be represented using shared and reusable
functions as the following ODE system.

v̇1(t)
v̇2(t)

...
v̇n(t)

 =


g({f̂1j(v1(t),vj(t))|j ∈ S(1)})
g({f̂2j(v2(t),vj(t))|j ∈ S(2)})

...
g({f̂nj(vn(t),vj(t))|j ∈ S(n)})

 , (4)

where v̇i = dvi/dt. Performing message passing to derive
final states is equivalent to solving an initial value problem
for an ODE system. Following the ODE formulation, the
final states of the ith node can be computed as follows:

vi(t1) = vi(t0) +
∫ t1
t0

g

({
f̂ij(vi(t),vj(t))|j ∈ S(i)

})
.(5)

2.2. Continuous density transformations

Continuous graph flow leverages the continuous message
passing mechanism and formulates the message passing as
implicit density transformations of the variables. Given a
set of variables V with dependencies among them, the goal
is to learn a model that captures the distribution from which
the data were sampled. Assume the joint distribution p(V )
at time t0 has a simple form such as independent Gaussian
distribution for each variable vi(t0). The continuous mes-
sage passing process allows the transformation of the set
of variables from V (t0) to V (t1). Moreover, this process
also converts the distributions over variables from simple
base distributions to complex data distributions. Building
on the independent variable continuous time dynamics de-
scribed in (Chen et al., 2018), we define the dynamics
corresponding to related graph variables as:

∂ log p(V (t))

∂t
= −Tr

(
∂F

∂V (t)

)
, (6)

where F represents a set of reusable functions incorporating
aggregated messages. Therefore, the joint distribution of set
of variables V can be expressed as:

log p(V (t1)) = log p(V (t0))−
∫ t1

t0

Tr

(
∂F

∂V (t)

)
. (7)

In this paper, we use two types of density transformations
described as follows.

Generic message transformations. Transformations
with generic update functions where trace in Eq. 7
can be approximated instead of computing it by brute
force (Grathwohl et al., 2019). The likelihood is defined as:

log p(V (t1)) = log p(V (t0))− Ep(ε)

∫ t1
t0

[
εT ∂F

∂V (t)εdt

]
, (8)

where ε is a noise vector and usually can be sampled from
standard Gaussian or Rademacher distributions.

Multi-scale message transformations. As a generaliza-
tion of generic message transformations, we design a model
with multi-scale message passing to encode different levels
of information in the variables. Similar to (Dinh et al.,
2016), we construct our multi-scale CGF model by stacking
several blocks wherein each flow block performs message
passing based on generic message transformations. After
passing the input through a block, we factor out a portion of
the output and feed it as input to the subsequent block. The
likelihood is defined as:
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Table 1. Results on graph generation. Left of vertical line: Quantitative evaluation on MMD measures between test set and generated
graphs (lower is better). The second set shows GRAPHRNN evaluation with node distribution matching (averaged over 5 different models
with 3 trials). The third set shows evaluation for the test set for all 1024 generated graphs (averaged over 5 models). Right of vertical line:
Visualization of graphs generated using our method.

Method COMMUNITY-SMALL EGO-SMALL
DEGREE CLUSTERING ORBIT DEGREE CLUSTERING ORBIT

GRAPHVAE 0.35 0.98 0.54 0.13 0.17 0.05
DEEPGMG 0.22 0.95 0.4 0.04 0.10 0.02
GRAPHRNN 0.08 0.12 0.04 0.09 0.22 0.003
GNF + AE 0.20 0.20 0.11 0.03 0.10 0.001
CGF 0.10 0.30 0.08 0.02 0.11 0.001
GRAPHRNN (1024) 0.03 0.01 0.01 0.04 0.05 0.06
GNF + AE (1024) 0.12 0.15 0.02 0.01 0.03 0.0008
CGF (1024) 0.02 0.02 0.001 0.002 0.007 0.0002

COMMUNITY-SMALL

EGO-SMALL

log p(V (tb)) = log p(V (tb−1))− Ep(ε)

∫ tb
tb−1

[
εT ∂F

∂V (tb−1)
εdt

]
, (9)

where b = 1, 2, . . . , (B − 1) with B as the total number of
blocks in the design of the multi-scale architecture. Assume
at time tb (t0 < tb < t1), V (tb) is factored out into two.
We use one of these (denoted as Ṽ (tb)) as the input to the
(b + 1)th block. Let Ṽ (tb) be the input to the next block,
the density transformation is formulated as:

log p(Ṽ (tb+1)) = log p(Ṽ (tb))− Ep(ε)

∫ tb+1

tb

[
εT ∂F

∂Ṽ (tb)
εdt

]
.(10)

3. Experiments
To demonstrate the effectiveness of our Continuous Graph
Flow (CGF), we evaluate our model on three diverse tasks:
(1) graph generation, (2) image puzzle generation, and (3)
layout generation based on scene graphs. These tasks have
high complexity in the distributions of graph variables with
diverse message function types, therefore, together these
tasks pose a challenging evaluation setup.

3.1. Graph Generation

Datasets & baselines. We evaluate our model on graph
generation on two benchmark datasets EGO-SMALL and
COMMUNITY-SMALL against four state-of-the-art base-
lines: GraphVAE (Simonovsky & Komodakis, 2018),
GraphRNN (You et al., 2018), DeepGMG (Li et al., 2018),
and Graph normalizing flows (GNF) (Liu et al., 2019).

Evaluation. We conduct a quantitative evaluation of
the generated graphs using Maximum Mean Discrepancy
(MMD) measures following (Liu et al., 2019). Baseline
results are directly taken from (Liu et al., 2019).

Results and Analysis. Table 1 shows the results in terms
of MMD. Our CGF outperforms the baselines by a wide
margin indicating the benefit of free-flow function forms to
model graph-structured data.We also visualize the graphs
generated by CGF in Table 1 and observe that our model can
capture the characteristics of datasets and generate diverse
graphs that are not seen during the training.

3.2. Image puzzle generation

Task description. We design image puzzles for image
datasets to test model’s ability on fitting distributions over
graphs with very complex node contents. Given an image of
size W ×W , we design a puzzle by dividing the original im-
age into non-overlapping unique patches each of size w×w
resulting in p = W/w puzzle patches both horizontally and
vertically. Each patch corresponds to a node in the graph.
To evaluate the performance of our model on dynamic graph
sizes, instead of training the model with all nodes, we sam-
ple p̃ adjacent patches where p̃ is uniformly sampled from
{1, . . . , P} as input to the model during training and test.
In our experiments, we use patch size w = 16, p ∈ {2, 3, 4}
and edge function for each direction (left, right, up, down)
within a neighbourhood of a node.

Datasets & baselines. We design this task for
three datasets: MNIST (LeCun et al., 1998), CI-
FAR10 (Krizhevsky et al., 2009), and CelebA (Liu et al.,
2015). We split the CelebA dataset into a training set
of 27,000 images and test set of 3,000 images follow-
ing (Kingma & Dhariwal, 2018). We compare our model
with six state-of-the-art models: (1) BiLSTM + VAE: a
bidirectional LSTM used to model the interaction between
latent variables (obtained after serializing the graph) in an
autoregressive manner as in (Gregor et al., 2015), (2) Struc-
turedVAE (He et al., 2018), (3) Graphite (Grover et al.,
2019), (4) Variational message passing using structured
inference networks (VMP-SIN) (Lin et al., 2018), (5) Vari-
ational graph autoencoder (GAE) (Kipf & Welling, 2016),
and (6) Neural relational inference (NRI) (Kipf et al., 2018).

Results and analysis. We report the negative log likelihood
(NLL) in bits/dimension (lower is better). The results in
Table 2 indicate that CGF significantly outperforms the base-
lines. In addition to the quantitative results, we also conduct
sampling based evaluation and perform two types of genera-
tion experiments: (1) Unconditional Generation: Given a
puzzle size p, p2 puzzle patches are generated using a vector
z sampled from Gaussian distribution (refer Figure 1(a));



Continuous Graph Flow

Table 2. Quantitative results on image puzzle generation and layout generation. Comparison of our CGF model with baselines in
bits/dimension (lower is better). These results are for unconditional generation obtained using multi-scale message transformations for
image puzzle generation and generic message transformations for scene graph based layout generation.

Image Puzzle Generation Layout Generation
Methods MNIST CIFAR-10 CelebA-HQ

2x2 3x3 4x4 2x2 3x3 4x4 2x2 3x3 4x4
BiLSTM + VAE 4.97 4.77 4.42 6.02 5.20 4.53 5.72 5.66 5.48
StructuredVAE (He et al., 2018) 4.89 4.65 3.82 6.03 5.02 4.70 5.66 5.43 5.27
Graphite (Grover et al., 2019) 4.90 4.64 4.02 6.06 5.09 4.61 5.71 5.50 5.32
VMP-SIN (Lin et al., 2018) 5.13 4.92 4.44 6.00 4.96 4.34 5.70 5.43 5.27
GAE (Kipf & Welling, 2016) 4.91 4.89 4.17 5.83 4.95 4.21 5.71 5.63 5.28
NRI (Kipf et al., 2018) 4.58 4.35 4.11 5.44 4.82 4.70 5.36 5.43 5.28
CGF 1.24 1.21 1.20 2.42 2.31 2.00 3.44 3.17 3.16

Visual Genome COCO-Stuff

-1.20 -1.60
-1.05 -1.36
-1.17 -0.93
-0.61 -0.85
-1.85 -1.92
-0.76 -0.91
-4.24 -6.21

Figure 1. Qualitative results for image puzzle generation. Samples generated using our model for 2x2 MNIST puzzles and 3x3
CelebA-HQ puzzles in (left) unconditional generation and (right) conditional generation settings. For conditional setting, generated
patches (highlighted in green boxes) are conditioned on the remaining patches (from ground truth).

Figure 2. Visualization for layout generation on Visual Genome. Our CGF model can generate diverse layouts for the same scene graph.
Left: layout samples with unconditional generation. Right: Layout generation conditioned on known layout.

and (2) Conditional Generation: Given p1 patches from an
image puzzle having p2 patches, we generate the remaining
(p2 − p1) patches of the puzzle using our model (see Figure
1(b)). We believe the task of conditional generation is easier
than unconditional generation as there is more relevant infor-
mation in the input during flow based transformations. For
unconditional generation, samples from a base distribution
are transformed into learnt data distribution using the CGF
model. For conditional generation, we map xa ∈Xa where
Xa ⊂ X to the points in base distribution to obtain za.
Subsequently, we concatenate the samples from Gaussian
distribution to za and obtain z′ that matches the dimensions
of desired graph, and generate samples by transforming z′

to pixel space using a trained graph flow.

3.3. Layout generation from scene graphs

Task description. Scene graphs represent scenes as di-
rected graphs wherein nodes are objects and edges give
relationships between objects. Object layouts are described
by sets of corresponding bounding box annotations (John-
son et al., 2018). Our model uses scene graph as inputs.
An edge function is defined for each relationship type. The
output contains a set of object bounding boxes described
by {[xi, yi, hi, wi]}ni=1, where xi, yi are the top-left coor-
dinates, and wi, hi are the bounding box width and height
respectively. We use negative log likelihood per node (lower

is better) to evaluate the models.

Datasets & baselines. We use two large-scale datasets
for evaluation: Visual Genome (Krishna et al., 2017) and
COCO-Stuff (Caesar et al., 2018) datasets. We use the same
baselines as in Sec. 3.2.

Results and analysis. We show quantitative results in Ta-
ble 2 against several state-of-the-art baselines. Our CGF
model significantly outperforms these baselines in terms of
negative log likelihood. Moreover, we show some qualita-
tive results in Figure 2. Our model can learn the correct
relations defined in scene graphs for both conditional and
unconditional generation. Furthermore, our model learns
one-to-many mappings and generates diverse layouts for the
same scene graph.

4. Conclusion
In this paper, we presented continuous graph flow, a gener-
ative model that generalizes the neural message passing in
graphs to continuous time. Experimental results on diverse
set of generation tasks showed that continuous graph flow
achieves significant performance improvement over vari-
ous state-of-the-art baselines. For future work, we intend
to focus on reversible generative modeling for large-scale
complex graphs and spatio-temporal graphs to effectively
leverage continuous time modeling.
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5. Appendix
We provide supplementary materials to support the contents
of the main paper. In this part, we describe implementation
details of our model.

5.1. Implementation Details

The ODE formulation for continuous graph flow (CGF)
model was solved using ODE solver provided by Neu-
ralODE (Chen et al., 2018). In this section, we provide
specific details of the configuration of our CGF model used
in our experiments on two different generation tasks used
for evaluation in the paper.

Graph Generation. For each graph, we firstly generate its
line graph with edges switched to nodes and nodes switched
to edges. Then the graph generation problem is now generat-
ing the current nodes values which represents the adjacency
matrix in the original graph. Each node value is binary
(0 or 1) and is dequantized to continuous values through
variational dequantization, with a global learnable Gaussian
distribution as variational distribution. For our architec-
ture, we use two blocks of continuous graph flow with two
fully connected layers in Community-small dataset, and one
block of continuous graph flow with one fully connected
layer in Citeseer-small dataset. The hidden dimensions are
all 32.

Image puzzle generation. Each graph for this task com-
prise nodes corresponding to the puzzle pieces. The pieces
that share an edge in the puzzle grid are considered to be
connected and an edge function is defined over those con-
nections. In our experiments, each node is transformed to an
embedding of size 64 using convolutional layer. The graph
message passing is performed over these node embeddings.
The image puzzle generation model is designed using a
multi-scale continuous graph flow architecture. We use two
levels of downscaling in our model each of which factors
out the channel dimension of the random variable by 2. We
have two blocks of continuous graph flow before each down-
scaling wth four convolutional message passing blocks in
each of them. Each message passing block has a unary mes-
sage passing function and binary passing functions based
on the edge types – all containing hidden dimensions of 64.

Layout generation for scene graphs. For scene graph lay-
out generation, a graph comprises node corresponding to
object bounding boxes described by {[xi, yi, hi, wi]}ni=1,
where xi, yi represents the top-left coordinates, and wi, hi

represents the bounding box width and height respectively
and edge functions are defined based on the relation types.
In our experiments, the layout generation model uses two
blocks of continuous graph flow units, with four linear graph
message passing blocks in each of them. The message
passing function uses 64 hidden dimensions, and takes the

embedding of node label and edge label in unary message
passing function and binary message passing function re-
spectively. The embedding dimension is also set to 64 di-
mensions. For binary message passing function, we pass the
messages both through the direction of edge and the reverse
direction of edge to increase the model capacity.


