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Abstract
Graph Neural Networks (GNN) have been ex-
tensively used to extract meaningful representa-
tions from graph structured data and to perform
predictive tasks such as node classification and
link prediction. In recent years, there has been
a lot of work incorporating edge features along
with node features for prediction tasks. In this
work, we present a framework for creating new
edge features, via self-supervised and unsuper-
vised learning which we then use along with node
features for node classification tasks. We validate
our work on two biological datasets comprising
of single-cell RNA sequencing data of in vitro
SARS-CoV-2 infection and human COVID-19 pa-
tients. We demonstrate that our method achieves
better performance over baseline Graph Attention
Network (GAT) and Graph Convolutional Net-
work (GCN) models. Furthermore, given the at-
tention mechanism on edge and node features, we
are able to interpret the cell types and genes that
determine the course and severity of COVID-19,
contributing to a growing list of potential disease
biomarkers and therapeutic targets.

1. Introduction
Graph neural networks (GNN) have been widely used and
developed for predictive tasks such as node classification
and link prediction (1) and have been shown to learn from
any sparse and discrete relational structure in data (2).
GNNs typically use message passing, or recursive neigh-
borhood aggregation, to construct a new feature vector for
a particular node by collecting its neighbor’s feature vec-
tors (3; 4). However, most GNN schemes do not use edge
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features in learning new representations of graphical data.
Recently, edge features have been incorporated into GNNs
to harness information describing different aspects of the
relationships between nodes (5; 6). However, there are very
few frameworks for creating de novo edge feature vectors
in a domain agnostic manner. In this article, using Graph
Attention Networks, we propose a self-supervised learn-
ing framework to create new edge features which can be
used to improve GNN performance in downstream node
classification tasks.

Given the devastating impact of the coronavirus disease
of 2019 (COVID-19) caused by infection of SARS-CoV-2
and the gap in our understanding of the molecular mech-
anisms of the disease, we sought to focus our efforts on
COVID-19 datasets that can generate hypotheses related to
these gaps (7; 8). Our focus on single-cell transcriptomic
data relating to COVID-19 was motivated by recent work
showing that Graph Attention Networks are effective at pre-
dicting disease states on an individual cell-to-cell basis (9).
Single-cell RNA sequencing (scRNA-seq) is a technology
that yields large datasets comprising many thousands of
cells’ gene expression in a variety of conditions (10; 11; 12).
However, identifying factors important for determining an
individual cell’s pathophysiological trajectory or response
to viral insult remains a challenge as single-cell data is noisy,
sparse, and multi-dimensional (13; 14). We hope that our
framework’s performance could extract useful insights into
the genes and cell types that might be important determi-
nants of COVID-19 severity and SARS-CoV-2 infection.

2. Related works
There is a wealth of research on Graph Neural Networks.
A significant amount of work has been focused on graph
embedding techniques, representation learning and various
predictive analyses using node features. There has been
recent interest in using edge features to improve the perfor-
mance of Graph Neural Networks (5; 15; 16). In this work
we use an unique multi–tasking approach in creating these
edge features.

Since our work focuses on biological applications, it be-
comes necessary to be able to interpret the results of our
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network to inform further study of biology and medicine.
One of the most common and popular ways to interpret
machine learning models is via Shapley values (17) and
it’s various generalizations (18). However Shapley values
require independence of features which is generally hard
to guarantee. There is an excellent library (19) that allows
us to interpret PyTorch models. In this work we follow
the approach of (9; 20) in using attention mechanisms for
interpretability. Thus even though set2set (21) is a popular
mechanism to encode sets and has been previously used
in the graph domain (22; 23), our view is that it is hard
to interpret the hidden state of a LSTM. The transformer
model (24; 25), on the other hand, allows us to interpret the
results by looking at their attention heads.

Even though GNNs have been extensively used in biomed-
ical research to predict medications, diagnoses, and out-
comes from graphical representations of electronic health
records (26), protein-protein and drug-protein interactions
and molecular activity (27; 28; 29; 30) there is only one
recent work that uses GAT models to predict the disease
state of individual cells derived from clinical samples (9).
However they do not consider multiple disease states or
severity nor do they account for the confounding bias of
batch effects. Here, we use the information contained within
the dataset to construct edge features and a graph-structure
that is balanced across batches, which reduces the bias of
cell source while preserving biological variation (31). To
the best of our knowledge, this is the first attempt to apply a
GNN model to gain insight into multiple pathophysiologi-
cal states, merging time-points, severity, and disease-state
prediction into a multi-label node classification task from
single-cell data.

3. Our Model
In this subsection we describe our model which consists of
two components: (1) Set Transformer and (2) GAT layers.

3.1. Set Transformer

We use a Set Transformer as in (25). The Set Transformer is
permutation invariant so it is an ideal architecture to encode
sets. The building block of our Set Transformer is the multi-
head attention, as in (24). Given n query vectors Q of
dimension dq, a key-value pair matrix K ∈ Rnv×dq and a
value matrix V ∈ Rnv×dv and for simplicity, let dq = dv =
d, the multihead attention is computed by first projecting
Q,K, V onto h different dhq , d

h
q , d

h
v dimensional vectors.

For simplicity, let dhq = dhv = d
h , where h is the number of

heads.
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j are projection operators of dimensions

Rdq×dh
q ,Rdq×dh

q and Rdv×dh
v respectively and WO is a lin-

ear operator of dimension d× d. Now, given a set S, the Set
Transformer Block (STB) is given the following formula:

STB(S) := LayerNorm(X + rFF (X)) (1)

where X = LayerNorm(S + Multihead(S, S, S)). rFF is a
row-wise feedforward layer and LayerNorm is layer normal-
ization (32).
A Set Transformer takes as input a 3d tensor of the form
[batch, seq-length, input-dim] and outputs 3d tensor of the
form [batch, seq-length, output-dim], i.e. it outputs sets
of the same size as the input sets. If, for a batch bi, the
set transformer outputs a set of the form {wi1, ....wij}, we
modify the output of the transformer to a fixed length vector

wi :=
∑
j

λjwij (2)

where λj are learnable weights. This step is necessary since
our downstream tasks require vectors of fixed length.

3.2. Graph Attention Network

We also use the popular Graph Attention Network
(GAT) (30). The input to a GAT layer are the node fea-
tures and it outputs a new set of node features (of possibly
different dimension). The heart of this layer is multi-head
self-attention like in (24; 30). If hi is the feature vector of
node i, then self-attention is computed on the nodes

elij = al(Wlhi,Wlhj) (3)

where Wl is a linear transformation called the weight matrix
for the head l, al is a feedforward network outputting a
scalar indexed by the head l. We then normalize these
attention coefficients.

αl
ij = softmaxj(elij) =

exp(elij)∑
k∈Ni

exp(elik)
(4)

where Ni is a 1-neighborhood of the node i. The normal-
ized attention coefficients are then used to compute a linear
combination of the features corresponding to them, to serve
as the final output features for every node (after applying a
nonlinearity, σ):

hli = σ

( ∑
j∈Ni

αl
ijWlhj

)
. (5)
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We concatenate the features of these heads to produce a new
node feature, h′i := ||hli. However, for the final prediction
layer, we average the representations over the heads and
apply a logistic sigmoid non-linearity. Thus the equation for

the final layer is : h′i = σ

(
1
K

∑K
l=1

∑
j∈Ni

αl
ijWlhj

)
,

where K is the number of heads. We create new edge
features Λij for the node eij by concatenating the αl

ij across
all heads resulting in a K-dimensional edge feature, i.e.

Λij := ||Kl=1α
l
ij (6)

3.3. Our model

In this section we will describe our model that combines
edge features, obtained as described above, with node fea-
tures for our main node classification tasks. We use two
GAT layers to encode the node representations. In the
case of the GAT layers, we concatenate the representations
obtained by different heads resulting in a 64-dimensional
node feature vector. For each node i, we construct a set
Si := {eij : j ∈ Ni}, where eij is the vector representing
the edge features of the edge connecting nodes i and j. We
then encode this set, Si, which we call the edge feature set
attached to the node i via our modified Set Transformer. We
use 2 heads and 1 block of Set Transformer outputting a
8-dimensional vector. This 8-dimensional vector is concate-
nated with the 64-dimensional node representation. We call
this new representation an enhanced node feature vector.
This enhanced node feature vector is then passed through a
dense layer with a logistic sigmoid non-linearity for classi-
fication. Note that instead of GAT layers, we can also use
GCN layers. Thus our method can be used by a variety of
message passing architectures.

4. Experiments

Table 1. Dataset description showing train/val/test splits.

Datasets SARS-CoV-2
infected organoids COVID-19 patients

# Nodes 54353/11646/11648 63486/13604/13605
# Node features 24714 25626

# Edges 1041226/230429/228630 2746280/703217/707529
# Edge features 18 18

# Classes 7 3

We validate our model on the following scRNA-seq datasets:
(I) 4 human bronchial epithelial cell cultures or “organoids”
that were inoculated with SARS-CoV-2 and co-cultured for
1, 2, and 3 days post-infection (33); (II) Bronchoalveolar
lavage fluid samples from 12 patients enrolled in a study at
Shenzen Third People’s Hospital in Guangdong Province,
China of whom 3 were healthy controls, 3 had a mild or
moderate form of COVID-19 and 6 had a severe or critical

COVID-19 illness (34). Table 1 gives a summary of our
datasets.
Creating new edge features : We cluster our datasets using
Louvain clustering (35), and annotate these clusters as “cell
types,” as commonly done in single-cell analysis (14). Then,
we use a 2-layer GAT with 8 attention heads in each layer
to predict the cell type label. We extract the edge attention
coefficients from the first layer of our trained model as edge
features. Thus we get an 8-dimensional edge feature vector
by equation 6. All of our biological datasets have a batch
ID associated to it, i.e. some metadata that keeps track of
the origin of the cell. We use the same method as before to
create another 8-dimensional edge feature vector. We also
use the Forman-Ricci curvature (36) as a measure of local
geometry of the graph. Finally we use node2vec (37) to
embed the nodes in 16-dimensional space and then we cal-
culate the dot product between the node embeddings, which
share an edge, as a measure of similarity. We concatenate
the above vectors to create a 18 dimensional edge feature
vector.

Table 2. Results of inductive tasks on single-cell datasets showing
accuracy and 95% confidence intervals.

Models SARS-CoV-2
infected organoids

COVID-19
patients

P
(Welch’s t-test)

GCN 65.43 (65.21-65.65) 89.26 (89.06-89.47) -
GCN + Edge Features (Ours) 81.61 (79.34-83.87) 92.84 (91.95-93.74) < 0.001

GAT 73.10 (70.93-75.27) 92.25 (91.27-93.24) -
GAT + Edge Features (Ours) 82.95 (81.75-84.15) 95.12 (94.02-96.22) < 0.001

5. Discussion
We achieved significant improvements using self-supervised
edge features when comparing our model to the two popu-
lar GNN architectures, GCN and GAT. This suggests that
using edge features derived from self-supervised learning
and local graph information, with no requirement for hand-
crafted edge features, can improve graph neural network
performance on challenging node classification tasks. Our
models are simple, easy to train and can be used with vari-
ous graph neural network architectures. Additionally, our
edge feature creation framework is applicable to any graphi-
cal data. Given the excellent performance of our GAT with
added edge features at predicting the disease-state at single-
cell level, we sought to use the insight learned from our
model to better understand SARS-CoV-2 infection dynam-
ics and COVID-19 disease severity on an individual gene
and cell basis. We show the various aspects of model in-
terpretability that we can glean from our model in Figure
1. First, we extract the learned, edge attentions from our
Set Transformer and average the coefficients across heads
and dimensions to construct a new adjacency matrix. Then,
using a cosine distance metric, we learn a new embedding
of the cells (1A. In addition, to evaluate the importance of
different types of edge features, we plot the average weights
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Figure 1. Model interpretability to generate hypotheses for genes and cells important to COVID-19 severity. (A) Embedding learned from
graphs extracted from average edge attentions across Set Transformer output dimensions, showing cell type or condition per cell. (B)
Relative importance of crafted edge features in disease state prediction tasks, averaged across the query layer from the Set Transformer.
(C) Top 5 important gene features for each GAT head, colored by normalized, learned weights.

of the query layer in the set transformer (1B). Learning a
manifold in this way shows better segregation of cell types
than typically used for embedding high-dimensional single-
cell data, possibly because our models give weight to cell
type labels via their edge feature representation. In addi-
tion, we also extract the learned weights from our models’
first GAT layer in order to investigate our model’s feature
saliency with respect to gene importance. In predicting
COVID-19 severity from patient samples, our model gives
high weight to genes involved in the innate immune sys-
tem response to type I interferon (CCL2, CCL7, IFITM1),
regulation of signaling (NUPR1, TAOK1, MTRNR2L12),
a component of the major histocompatibility complex II
(HLA-DQA2), which is important for developing immu-
nity to infection, and a marker of eosinophil cells, which
are involved in fighting parasites (RETN). In predicting
SARS-CoV-2 infection, our model finds saliency in counts
of viral transcript, which is encouraging, as well as genes
that are involved in inflammatory response and cell death
(NFKBIA) and signaling (IFI27, HCLS1, NDRG1, NR1D1,
TF), which may provide clues as to the dynamic regulatory
response of cells in the lung’s airways to SARS-CoV-2. The
learned embedding for the SARS-CoV-2 infected organoids
dataset highlights that our model segregates infected cili-
ated cells, which is the reported SARS-CoV-2 cell tropism,
validating our models’ interpretability (33). In predicting

COVID-19 severity, it is interesting that our model learns to
mix macrophages and monocytes in a predominantly severe
patient cell cluster while cells derived from mild and severe
COVID-19 patients are mixed in a T cell cluster. Monocytes
derived from macrophages are thought to be enriched in
severe COVID-19 cases and T cells are proposed targets for
immune checkpoint therapy of COVID-19, despite lack of
understanding as to the transcriptional differences between
mild and severe COVID-19 illness (38; 34; 39). Lastly, it
is interesting that our models find that genes involved in
type I interferon signaling are important in predicting both
COVID-19 severity and susceptibility to SARS-CoV-2 in-
fection. Interferon signaling is involved in pro-inflammatory
immune responses and it is suspected that type I interferon
signaling may cause immunopathology during SARS-CoV-
2 infection, leading to critical illness (33; 39). Further study
into the interaction partners and the subtle transcriptional
differences between the cells and cell types that we identi-
fied may provide complementary hypotheses or avenues for
therapeutic intervention to mitigate the impacts of COVID-
19. However, we are not medical professionals so we do
NOT claim that interpretation of our model will bear any
fruit. Rather, we hope that the approach of seeking state-
of-the-art results on predicting disease states at single-cell
resolution will enhance study of biology and medicine and
potentially accelerate our understanding of critical diseases.
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Figure 2. Our framework and datasets of interest. (A) Overview of our approach with respect to gaining molecular and cellular insights
into COVID-19. (B) Our framework and models’ architecture, integrating edge features with GNNs via a Set Transformer. (C) Graphical
data used, showing cell types for each cell and edges in a node-feature, dimension-reduced embedding.

A. Model Figure
The figure 2 shows (A) our approach to the problem, (B) an
overview of the model description, (C) a low dimensional
embedding of our graphs.

B. Auxillary tasks

Table 3. Experimental tasks

Task SARS-CoV-2
infected organoids COVID-19 patients

Louvain cluster ID Cell type Cell type
Batch or node metadata Culture sample ID Patient ID
Inductive prediction Timepoint and infection No, Mild, or Severe Disease

Table 4. Number of labels for auxiliary tasks

Task SARS-CoV-2
infected organoids COVID-19 patients

Cell type 8 10
Batch 4 12

C. Hyperparameters and Training details

Table 5. Default hyperparameters used in the experiments
Graph Attention Network Graph Convolution Network

Number of layers 2 2
Hidden size 8 256

Attention Heads 8 N/A
Optimizer Adagrad Adagrad

weight decay .0005 .0005
Batch size 256 256
Dropout .5 .4

Slope in LeakyRelu .2 .2
Training Epochs 1000 1000
Early stopping 100 100

For auxiliary tasks and for training our models, we break our
graph into 5000 subgraphs using the ClusterData function
in PyTorch Geometric library and then minibatched the
subgraphs using the ClusterData function. These algorithms
are originally introduced in (40). We used a single block of
Set Transformer with input dimension 18, output dimension
8 and 2 heads.


