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Abstract

Many common neurological and neurodegenera-
tive disorders, such as Alzheimer’s disease, de-
mentia and multiple sclerosis, have been associ-
ated with abnormal patterns of apparent ageing of
the brain. Discrepancies between the estimated
brain age and the actual chronological age (brain
age gaps) can be used to understand the biologi-
cal pathways behind the ageing process, assess an
individual’s risk for various brain disorders and
identify new personalised treatment strategies. By
flexibly integrating minimally preprocessed neu-
roimaging and non-imaging modalities into a pop-
ulation graph data structure, we train two types
of graph neural network (GNN) architectures to
predict brain age in a clinically relevant fashion as
well as investigate their robustness to noisy inputs
and graph sparsity. The multimodal population
graph approach has the potential to learn from the
entire cohort of healthy and affected subjects of
both sexes at once, capturing a wide range of con-
founding effects and detecting variations in brain
age trends between different sub-populations of
subjects.

1. Introduction and Related Work
The link between the prevalence of neurological and neu-
rodegenerative disorders and abnormal brain ageing pat-
terns (Kaufmann et al., 2019) has inspired numerous studies
in brain age estimation using neuroimaging data (Franke
& Gaser, 2019). The resulting brain age gaps, defined as
discrepancies between the estimated brain age and the true
chronological age, has been associated with symptom sever-
ity of disorders such as dementia and autism (Gaser et al.,
2013; Tunç et al., 2019), and could therefore be useful in
monitoring and treatment of disease.
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Numerous studies exist applying machine learning algo-
rithms to the problem of brain age estimation, typically
using structural magnetic resonance imaging (MRI) and
genetic data (Franke & Gaser, 2019). They tend to model
healthy controls separately from individuals with brain dis-
orders, and often develop separate models for each sex (Niu
et al., 2019; Kaufmann et al., 2019) without explicitly con-
sidering potential variation in ageing patterns across differ-
ent subgroups of subjects. Moreover, these studies rarely
include other important brain imaging modalities such as
functional MRI (fMRI) time-series data, or clinical expertise
of neurologists and psychiatrists, even though a combina-
tion of different modalities has been shown to improve the
results (Niu et al., 2019).

In this work, we use population graphs (Parisot et al.,
2017; 2018) to flexibly combine neuroimaging as well as
non-imaging modalities in order to predict brain age in
a clinically relevant fashion. In the population graph, the
nodes contain subject-specific neuroimaging data, and edges
capture pairwise subject similarities determined by non-
imaging data. In addition to controlling for confounding
effects (Ruigrok et al., 2014; The Lancet Psychiatry, 2016),
these similarities help to exploit neighbourhood information
when predicting node labels – an approach that has success-
fully been applied to a variety of problems in both medical
and non-medical domains (Tong et al., 2017; Wang et al.,
2017; Parisot et al., 2018).

We analyse the effectiveness of population graphs for brain
age prediction by training two types of graph neural net-
works – the Graph Convolutional Network (Kipf & Welling,
2017) and the Graph Attention Network (Veličković et al.,
2018). We additionally explore the robustness of our
approach to node noise and edge sparsity as a way to
estimate the generalisability of the models to real clini-
cal settings. The code is available on GitHub at https:
//github.com/kamilest/brain-age-gnn.

2. Methods
2.1. Brain age estimation

The brain age is defined as the apparent age of the brain,
as opposed to the person’s true (or chronological) age (Niu
et al., 2019). Brain age cannot be measured directly and
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Figure 1: Overview of the population graph preparation and graph neural network training procedure for brain age prediction.

is generally unknown; however, since it is conceptually
modelled after typical ageing of a healthy brain, it can be
estimated by fitting a model that predicts the chronological
age for healthy subjects, and applying the same model to
the remaining population. The prediction is then assumed to
correspond to brain age and any discrepancy is attributed to
the brain age gap. Further details explaining the motivation
behind this approach are provided in Appendix B.

In population graph context, the model is fitted to the subset
of nodes representing healthy subjects in the training set.
The graph neural networks are leveraged to generate predic-
tions for the remaining nodes of the graph. The overview of
this process is shown in Figure 1.

2.2. Population graphs

We combine multiple data modalities related to brain age
prediction (see Section 3) using a population graph data
structure, similar to the approach of Parisot et al. (2018).
The nodes of the population graph correspond to individual
subjects and contain features related to neuroimaging data,
while the edges represent pairwise subject similarities based
on non-imaging features. The edges are defined using a
similarity function that computes a similarity score, and can
be used to connect the patients based on the confounding
effects that relate them. For simplicity, we compute the sim-
ilarity scores by taking the average of indicator functions
(one for each non-imaging feature), but alternative combina-
tions (especially those which could incorporate the domain
expertise of neurologists and psychiatrists) are possible. An
edge is added to the graph if the similarity score is above the
predefined similarity threshold. A more formal definition of
population graphs is presented in Appendix A.

2.3. Training procedure

We train two types of graph neural network (GNN) architec-
tures to predict brain age from population graphs, namely
the Graph Convolutional Network (GCN) (Kipf & Welling,
2017), which is based on computing the graph Laplacian,
and the Graph Attention Network (GAT) (Veličković et al.,
2018), which operates in the Euclidean domain.

We use 10% of the dataset of healthy and affected subjects

as a hold-out test set, stratifying by age and sex. The remain-
ing data are split into five stratified cross-validation folds
(with 90% training and 10% validation nodes) for model
selection. In order to learn the brain age using chronological
labels (as discussed in Section 2.1), we hide (or mask) the
nodes of non-healthy subjects. The models are trained in a
semi-supervised manner: while both the training set and the
masked nodes are included in the graph, only the training
node labels are visible, with the goal to learn the labels
for the remaining nodes (Kipf & Welling, 2017). After the
model has converged (minimising MSE loss on validation
sets with early stopping), every node in the population graph
(including the test set and masked nodes) has its brain age
prediction.

3. Dataset
We use the The United Kingdom Biobank (UKB) (Sud-
low et al., 2015), a continuous population-wide study of
over 500,000 participants containing a wide range of mea-
surements. We selected the UKB participants with available
structural and functional magnetic resonance imaging (MRI)
data, a total of 17,550 subjects.

3.1. Neuroimaging features

Structural MRI is used to analyse the anatomy of the brain.
We use cortical thickness, surface area and grey matter vol-
ume, extracted from structural MRI images using the Hu-
man Connectome Project Freesurfer pipeline (see Glasser
et al. (2013) for further discussion). We additionally experi-
mented with the resting state functional MRI data, which ap-
proximates the activity of the brain regions over time; how-
ever, due to high computational cost this modality was ex-
cluded from training. Finally, we use the Euler index (Rosen
et al., 2018) quality control metric in order to correct for
any scan quality-related bias. The neuroimaging data of ev-
ery subject, parcellated1 with Glasser parcellation (Glasser
et al., 2016), were concatenated and used as node features

1A parcellation splits an image of a brain into biologically
meaningful regions for downstream analysis, compressing per-
voxel measurements into per-parcel summaries. A voxel is a dis-
crete volumetric element.
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in the population graphs.

3.2. Non-imaging features

Non-imaging data refers to all subject data that do not come
from structural MRI and fMRI scans. We included such
features as subjects’ binary (biological) sex and brain health-
related diagnoses, as these variables might have a confound-
ing effect on structural and functional connectivity of the
brain (Ruigrok et al., 2014), and consequently affect the
brain age (see Appendix C for further discussion of non-
imaging feature selection). The non-imaging data are used
to compute the inter-subject similarity scores and determine
the edges of the population graph.

4. Results
4.1. Evaluation metrics

We evaluate the predictive power of the models based on
their performance on the healthy subjects in the test set,
for which the labels had been invisible at the training stage.
We use MSE as the loss function to be optimised, and for
evaluation we use Pearson’s correlation r and coefficient of
determination r2 (Niu et al., 2019).

4.2. Test set performance

Considering the large size of the UKB dataset and that
retraining the model using more data but without early stop-
ping might not improve generalisation, we provide all cross-
validation scores for test set evaluation instead of retraining
on the entire training set and deriving a point estimate. Ta-
ble 1 gives the performance metrics on the hold-out set.

Table 1: Test set performance of GCN and GAT models
(over the five early stopping folds of the training set).

Model MSE r r2

GCN1 28.045± 0.595 0.675± 0.008 0.445± 0.010
GAT1 27.543± 0.758 0.670± 0.005 0.477± 0.008

To ensure that any variation is due to the experimental setup
and not the model weights or distributions of subjects across
the folds, in the following sections we consider only one
fold for each graph neural network architecture. The fold
was selected arbitrarily to be the first one returned by the
stratified splitting procedure.

4.3. Robustness to population graph node feature noise

A desirable property for real-world machine learning mod-
els is their robustness to the noise and inconsistency in
input data. For population graphs trained on graph neural
networks, this could be estimated by adding noise to an
increasing proportion of nodes.

Experimental setup An increasing proportion of popula-
tion graph nodes is corrupted by randomly permuting their
features. Then the model is retrained and tested on the
hold-out test set, measuring the change in performance. To
make sure that any effect on the evaluation metrics is due to
added noise and not the changing dataset splits, the model
is trained on a single dataset split while the noise is added
to different subjects. Moreover, to ensure that the effect on
test set performance is due to the interaction with neighbour-
hoods and not due to the individual node features, only the
nodes in the training set are corrupted. For each of the GCN
and GAT models, we repeat the experiment five times.

Results The impact of node feature corruption on the r2

of the GNN models is shown in Figure 2 (the behaviour
for r is similar, see Appendix D). For both architectures
the performance decreased as more training nodes were
corrupted, and dropped drastically when more than half of
the training nodes had their features permuted.
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Figure 2: The effect of permuting node features on r2 of the
test set, with error bars representing one standard deviation.

4.4. GNN dependence on population graph topology

Experimental setup The assumption behind the popula-
tion graph model is that the edge structure helps to control
for confounding effects and provides additional information
for brain age prediction. We test this by removing an increas-
ing proportion of edges from the population graph, repeating
the procedure five times using a different random seed. The
more edges are removed, the less neighbourhood structure
the graph neural network models can exploit, having to rely
on individual node features.

Results The effect of increasing edge sparsity on predic-
tive power of the GNN models is shown in Figure 3. Com-
pared to the results of the previous experiment, where r2

drastically dropped with increased noise, the loss of infor-
mation contained in edges and neighbouring nodes did not
affect the performance of the models. We infer this from the
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wide standard deviation intervals that overlap across almost
all edge loss levels.
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Figure 3: The effect of removing edges on r2 of the test set,
with error bars representing one standard deviation.

5. Discussion
In literature on brain age estimation, many alternative mod-
els perform better than the proposed GNN models, including
an XGBoost model in Kaufmann et al. (2019) with r = 0.93
(female) and r = 0.94 (male), a Gaussian process regression
model in Cole et al. (2018) with r = 0.94, r2 = 0.88, and
similar results in a variety of models using the BrainAGE
technique, summarised in Franke & Gaser (2019). However,
these approaches often eliminate important confounding
(e.g. sex and brain health) effects by fitting separate models,
use very small (i.e. a few hundred people) and consequently
less diverse datasets, and filter out low-quality scans. While
this improves the performance, it might affect the applica-
bility of these models to real clinical settings, where data
quality is less consistent.

The node feature noise experiment shows that high levels of
node corruption in the training set could drastically worsen
the predictions for the uncorrupted test nodes. This result is
expected as not only does the noise propagate to neighbour-
hoods affecting individual predictions, but there is also less
useful training data available for the GNN architectures to
learn from.

The edge removal experiment shows that the models rely
more on the features of individual nodes rather than the
graph structure defined by the similarity metrics. One ex-
planation could be that the brain age depends more on the
feature interactions within a single brain rather than the
more universal signs of ageing; however, it seems more
likely that the similarity metrics used (and the simple av-
eraging technique to combine them) were not informative
enough to allow for effective sharing of feature and label
information. For example, the work of Parisot et al. (2018),
which used population graphs to achieve state-of-the-art

results in brain disorder classification, shows that results
can vary significantly based on the selection of similarity
features alone, with up to 20% difference in mean accuracy
scores. At the same time, regression tasks such as brain
age prediction are also more difficult in nature compared to
classification tasks.

6. Conclusion
In this work we have combined several imaging as well as
non-imaging modalities into a population graph in order to
predict the apparent brain age for a large and diverse dataset
of subjects. The population graph representation allows to
control for the confounding effects through pairwise simi-
larities (i.e. the population graph edges) rather than fitting
of separate models, and to train the entire dataset at once
without extensive filtering of the data (i.e. conditions that
are closer to real clinical settings).

Combination of multimodal data might not be as feasible or
practical with alternative brain age prediction approaches
(as it might be harder to logically separate and control the
relative importance of the few non-imaging features among
many more imaging features in the same vector), but might
become more important with future advancements in neu-
roscience, growth of neuroimaging datasets, and growth in
computational resources to support their processing. More-
over, training on more data (while mitigating memory con-
straints relating to both the GNNs and storing the entire
dataset as a single object), incorporating additional (e.g. ge-
netic (Parisot et al., 2018)) modalities, and trying alternative
state-of-the-art graph neural network architectures could
give a much better picture of the potential of this approach.

Consistent and unified processing of the different data
modalities is also important (regardless of the downstream
task or analysis method) as there is a widespread commu-
nity effort to combat the reproducibility crisis in both neu-
roimaging (Gorgolewski & Poldrack, 2016) and machine
learning2 fields caused by, among other factors, the lack of
transparency in preprocessing methods and software errors
due to bad software engineering practices (Poldrack et al.,
2017). While the efforts to improve reproducibility in neu-
roimaging are currently targeted at consistent (yet separate)
processing of functional and structural MRI with libraries
like fMRIPrep (Esteban et al., 2019) or sMRIPrep3, this
work, to the best of our knowledge, is one of the first to ad-
ditionally incorporate non-imaging data modalities. While
this pipeline was designed to prepare the data specifically
for population graphs, it has sufficient flexibility to be ex-
tended to more preprocessing options, and adapted to work
independently of the downstream analysis method.

2https://reproducibility-challenge.github.io/neurips2019/
3https://github.com/poldracklab/smriprep
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A. Population graphs
A set of N subjects S is connected into an undirected population graph G = (V,E), where V is the set of graph nodes (with
one node uniquely representing one subject, |S| = |V |), and E is the set of edges (representing the similarity of subjects).
Each node v ∈ V is a vector containing the individual subject’s neuroimaging data, whether structural, functional, or both.
The edge (v, w) ∈ E connects subjects sv, sw ∈ S based on some similarity metric that uses the non-imaging information
of the subjects to create edges between the nodes.

Defining a good similarity metric is important to account for the confounding effects on the feature vectors (e.g. the subject’s
sex affects the brain volume) as well as to cluster subjects into the most informative neighbourhoods. For example, here the
neighbourhoods that have similar brain age gaps could be useful. If carefully defined, similarity metrics could reflect the
domain expertise of neurologists and psychiatrists.

Similarity metrics are defined using a similarity function sim(·, ·) which takes two subjects and returns the similarity score
between them (the higher the score, the more similar the subjects). In this work, we use the following similarity function
(more sophisticated functions are possible):

sim(sv, sw) =
1

n

n∑
i=1

1[Mi(sv) =Mi(sw)]. (1)

Here {M1, . . . ,Mn} is a set of non-imaging features that are used to compute subject similarity and 1[·] is an indicator
function, in this case returning a non-zero value when the values for a given non-imaging feature Mi match for the two
subjects sv and sw. In practice, if the metric is a real number, “matching” can be defined in terms of non-imaging features
being within some constant ε > 0.

To avoid memory issues when |E| ∼ O(N2) and minimise the size of the neighbourhood to only highly similar subjects, a
similarity threshold µ is used such that

(v, w) ∈ E ⇐⇒ sim(sv, sw) ≥ µ. (2)

B. Brain age estimation
Formally, the brain age yb can be expressed as the sum of the known chronological age yc and the unknown brain age gap
εg that is defined as the discrepancy between the chronological and the brain age (Niu et al., 2019):

yb = yc + εg. (3)

It is generally assumed (Franke & Gaser, 2019) that a typical healthy person has a normally ageing brain, so the brain age
corresponds to chronological age:

yb ≈ yc. (4)

Our goal is to estimate brain age yb as a function f(·) of brain imaging feature vector x:

yb = f(x) + εe, (5)

where εe is the prediction error, while the estimate of chronological age is instead (from Equations (3) and (5))

yc = f(x) + ε, (6)

where ε := εe − εg is the error term consisting of both the brain age gap and the model prediction error.
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Since the brain age yb is unknown, any (semi-)supervised machine learning model can only use chronological age as a
predicted variable, following Equation (6). However, if the model is trained on healthy subjects only, f(·) can explain both
the apparent brain age and the chronological age with x, since for healthy subjects yb ≈ yc (Equation (4)) and any variance
in ε is assumed to contain just the prediction error εe. When the same model is applied to non-healthy subjects, f(·) explains
the chronological age assuming the brain is healthy, and any additional unexplained variance in ε is assumed to be the brain
age gap. On the other hand, if the model is trained on both healthy and non-healthy subjects at the same time, it might learn
the combined confounding effects of both normal (chronological) and disease-related (brain) ageing, thus hiding the brain
age gaps (Dukart et al., 2011).

An alternative method that does not restrict training data only to healthy subjects is proposed in Niu et al. (2019). However, it
requires experimentally verifying (e.g. through subjects’ performance in cognitive behaviour tests) that ε depends primarily
on the brain age gap εg and not the brain age prediction error εe, which is out of the scope of this paper.

C. Hyperparameter selection
This Appendix contains the hyperparameter search configuration and the hyperparameters for the best performing models,
selected by the following procedure (applied separately to the GCN and GAT model families):

1. Models were ranked by ascending average MSE loss. The model with the lowest average MSE was chosen as the
reference model.

2. Models whose one standard deviation interval from their MSE did not overlap with the one standard deviation interval
of the reference model MSE were excluded from ranking.

Cross-validation performances of the best-scoring models selected are shown in Figure 4. The hyperparameters for each of
the short-listed models are listed in supplementary material, Appendix C.
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Figure 4: Highest scoring population graph and GNN parameter combinations for GCN (left) and GAT (right). The models
are named according to their convolution type and ranked by ascending average MSE loss (indicated by the green triangle).

The best-ranked GCN1 and GAT1 models seemed to be the most promising and therefore have been selected for evaluation.

C.1. Non-imaging feature selection

Table 2 presents the non-imaging features used in this work.

C.2. Hyperparameter tuning configuration

The hyperparameters were searched using Bayesian optimisation strategy, and are presented in Listing 1.

4https://icd.who.int/browse10/2019/en

https://icd.who.int/browse10/2019/en
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Listing 1 Hyperparameter search configuration for the GCN and GAT model families. Similarity metrics are encoded as list
of non-imaging features used along with similarity thresholds. Non-imaging encodings are presented in 2.

metric:
goal: minimize
name: cv_validation_average_mse

parameters:
dropout:

distribution: uniform
max: 0.5
min: 0

epochs:
value: 10000

layer_sizes:
distribution: categorical
values:
- [1024, 512, 512, 256, 256, 1]
- [2048, 1024, 512, 256, 128, 1]
- [1024, 512, 512, 512, 256, 256, 1]
- [1024, 512, 512, 256, 256, 128, 128, 1]
- [512, 512, 512, 256, 128, 1]
- [1024, 512, 256, 128, 128, 1]

learning_rate:
distribution: log_uniform
max: -2.995
min: -9.904

n_conv_layers:
distribution: int_uniform
max: 5
min: 1

similarity:
distribution: categorical
values:
- (['SEX', 'ICD10', 'FI', 'FTE', 'MEM'], 0.8)
- (['SEX', 'ICD10', 'FI', 'FTE', 'MEM'], 0.9)
- (['SEX', 'FTE', 'FI', 'MEM'], 0.8)
- (['SEX', 'ICD10', 'MEM', 'FTE'], 0.8)
- (['SEX', 'ICD10', 'MEM', 'FI'], 0.8)

weight_decay:
distribution: log_uniform
max: -2.995
min: -9.904
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Table 2: Summary of the non-imaging features used in this paper.

Code Non-imaging feature Explanation
AGE Chronological age Used as the training label.
FI Fluid intelligence score Measures cognitive performance. Related to increased brain

activity (Gray et al., 2003).
FTE Years of full-time education Associated with brain age gaps (Steffener et al., 2016) and other

brain health conditions (Brayne et al., 2010).
ICD10 Mental and brain health (from

ICD10 diagnosis code data)
Subject mental health and nervous system disease diagnoses that
might affect the structure and function of the brain (Kaufmann
et al., 2019). Diagnoses were grouped by categories following
the ICD10 system4.

MEM Prospective memory result Memory generally declines with age, and is related to changing
brain activity patterns (Grady & Craik, 2000; Kliegel & Jager,
2006).

SEX Binary sex (male or female) Highly affects the size and volume of the brain (Ruigrok et al.,
2014).

C.3. Hyperparameters of shortlisted models

Tables 5 and 6 use encodings given in Tables 3 and 4 for similarity feature sets and layer sizes respectively.

Table 3: Similarity feature set encoding.

Feature FI FTE ICD10 MEM SEX
SF1 Yes Yes Yes Yes Yes
SF2 Yes No Yes Yes Yes
SF3 No Yes Yes Yes Yes
SF4 Yes Yes No Yes Yes

Table 4: Layer size encoding.

Encoding Layer sizes
LS1 [1024, 512, 512, 256, 256, 1]
LS2 [1024, 512, 512, 512, 256, 256, 1]
LS3 [1024, 512, 256, 128, 128, 1]
LS4 [2048, 1024, 512, 256, 128, 1]
LS5 [512, 512, 512, 256, 128, 1]

Table 5: Shortlisted population graph and GCN model parameter combinations during the model selection process.

Hyperparameter GCN1 GCN2 GCN3 GCN4 GCN5 GCN6 GCN9
Similarity feature set SF1 SF3 SF3 SF2 SF2 SF2 SF2
Similarity threshold 0.9 0.8 0.8 0.8 0.8 0.8 0.8
Layer sizes LS1 LS2 LS3 LS5 LS3 LS3 LS4
# convolutional layers 5 3 1 2 5 3 4
Dropout 0.321941 0.042080 0.048596 0.237940 0.375442 0.386998 0.426491
Learning rate 0.006984 0.006187 0.005095 0.004731 0.015796 0.010273 0.003504
Weight decay 0.013118 0.002084 0.016171 0.002517 0.003114 0.005341 0.018943

D. Full results
The results of node permutation and edge removal experiments are shown in Figures 5 and 6 respectively.
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Table 6: Shortlisted population graph and GAT model parameter combinations during the model selection process.

Hyperparameter GAT1 GAT2 GAT3 GAT4 GAT5 GAT6 GAT7 GAT8 GAT9
Similarity feature set SF2 SF1 SF2 SF1 SF1 SF1 SF1 SF2 SF2
Similarity threshold 0.8 0.9 0.8 0.9 0.9 0.9 0.9 0.8 0.8
Layer sizes LS4 LS3 LS3 LS5 LS3 LS3 LS3 LS5 LS5
# convolutional layers 2 2 3 2 3 2 3 3 3
Dropout 0.003142 0.306806 0.104624 0.327091 0.407471 0.323481 0.291117 0.455777 0.381829
Learning rate 0.013365 0.001679 0.003412 0.002482 0.003246 0.001462 0.006769 0.006813 0.003820
Weight decay 0.000605 0.002071 0.036676 0.001549 0.006715 0.002475 0.000844 0.001483 0.003226
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Figure 5: The effect of permuting node features on r (left) and r2 (right) performance metrics, with error bars representing
one standard deviation.
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Figure 6: The effect of removing edges on r (left) and r2 (right) performance metrics, with error bars representing one
standard deviation.


