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1. Introduction

Multi-relational graphs specifically allow for representing
different types of relations and are an effective way to model
various types of data including social networks (Balakr-
ishnan & T. V., 2020), knowledge graphs (Vrandeci¢ &
Krotzsch, 2014), and biomedical networks, such as interac-
tions between molecules (Krogan et al., 2006). Link predic-
tion (Zhang & Chen, 2018) in these graphs is an actively
studied problem that is critical for many applications. For
example, drug-drug interaction (DDI) prediction is a task
important for drug development and repurposing: on the
one hand, some diseases are best treated by combinations
of drugs (e.g., antiviral drugs are typically administered as
cocktails), on the other hand, one has to know about critical
side effects between new molecules and existing drugs (in a
stricter sense, side effects are consequences of DDIs).

Graph neural networks gained great success in such applica-
tions recently. However, learning over the entire graphs is
often computationally expensive or even impossible due to
their sheer size. Hence, learning approaches have to apply
batching and/or sampling (i.e., selecting a subset of nodes
and/or relations from the original graph) for being able to
process these graphs (Zitnik et al., 2018; Huang et al., 2019).

However, sampling approaches for GNNs have been stud-
ied only in a general setting, that is, without focusing on
the multi-relational nature of many graphs. Existing works
propose approaches to sample random neighborhoods for
individual nodes (Hamilton et al., 2017), input for entire lay-
ers of the graph neural networks (Chen et al., 2018; Huang
et al., 2018), or subgraphs as batches (Zeng et al., 2020).
While some of these techniques are adaptive in that they
learn to sample based on the problem at hand (vs. randomly)
(Huang et al., 2018; Zeng et al., 2020; Xu et al., 2020), re-
lation types are not regarded specifically. This may lead
to unintended effects in the distribution of relations in the
samples.
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In this paper, we study how to do sampling in multi-
relational graphs. Specifically, we consider a straightfor-
ward extension of the popular relational graph convolutional
network (R-GCN) (Schlichtkrull et al., 2018) architecture
and propose relation-dependent sampling. A REINFORCE-
based (Williams, 1992) approach is used to automatically
learn the sampling probability of each edge. To show the
effectiveness of our model, in experiments we focus on
a typical multi-relational link prediction task, drug-drug-
interaction prediction. The results show that our model can
learn the right balance: relation-type probabilities that re-
flect both frequency and importance, and also offer some
kind of explanation. In addition, our models outperform
state-of-the-art approaches in these prediction tasks.

Lastly, we want to point out a risk of applying standard
Al techniques in the biomedical setting, which relates to
a special type of graph edges: negative edges. In drug-
drug interaction prediction problems (as in general link
prediction), it is common to use random negative sampling
to increase link prediction performance (Zitnik et al., 2018;
Huang et al., 2019; Ma et al., 2019). However, the absence
of interaction information in existing datasets does usually
not mean that there are no such interactions altogether. To
partially overcome this lack of verified negative samples,
we suggest to apply information that is readily available but,
to the best of our knowledge, has not been considered in this
context so far: there are drug mixture products, approved by
FDA or similar organizations, whose molecular compounds
are hence unlikely to interact in a critical way; moreover,
data about drugs that synergize if taken in combination (e.g.,
by improved efficacy and reduced side effects) provides
valuable expert knowledge which can be integrated easily.

Our contributions include: (1) We propose a new approach
to relation-specific sampling for graph neural networks
which yields state-of-the-art performance in DDI prediction.
(2) We show that relation-specific sampling specifically ben-
efits imbalanced data, and show that the learned relation
probabilities support explainability. (3) We point out two
kinds of expert knowledge which can serve as negative sam-
ples for DDI prediction and experimentally show that our
two suggested ways to integrate it improve performance.
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2. Modeling Edge-Type Probabilities

Multi-relational graph neural networks are successful in var-
ious tasks, but the computational complexity of the models
is too high for large graphs. Motivated by solutions in homo-
geneous graphs, we propose to utilize sampling techniques
to enhance model scalability. We consider to incorporate
probabilities for each edge type into the reasoning process
over multi-relational graphs.

2.1. Extending the Message Passing

We base our model on R-GCN (Schlichtkrull et al., 2018),
one of the most widely used GNN models for multi-
relational graphs. A very straightforward idea to incorporate
edge-type probabilities in R-GCNs is to assign the probabil-
ity as an importance weight to each edge type based on the
local neighborhood. That is, we consider an additional learn-
able parameter [,. for each edge type r € R. During node
update, we then calculate a softmax distribution based on
the local neighborhood and the new parameters as follows:
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Thus we update the node representation as in (Schlichtkrull
etal., 2018):
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Probabilities integrated in this way during the message pass-
ing stage offer a certain level of explainability, but no solu-
tion in terms of scalability. Therefore we consider incorpo-
rating them during the neighbor sampling stage.

2.2. Sampling based on Learned Probabilities

Learning edge probabilities has been explored in different
contexts. (Huang et al., 2018) brought in a neural network
to learn the optimum probability for importance sampling.
(Franceschi et al., 2019) incorporated a Bernoullie distribu-
tion for latent graph structures and automatically learned
the hyperparameters of the distribution. Following simi-
lar ideas, we propose a sampling method based on learned
probabilities extending GraphSAGE (Hamilton et al., 2017).
The main difference to the latter is that our method learns
sampling probabilities for each relation type during training.
The idea is to learn how to retain a useful neighborhood
around an edge without compromising scalability.

More specifically, our model has latent parameters [ € RIRI
initialized with elements ; ~ N(0,1). For a given target
edge, we sample a fixed-sized k-hop neighborhood around
that edge iteratively (i.e., for £ = 1,2,...) to obtain a

subgraph. In each hop k, we use the edge-type parameters
[ to generate a softmax distribution over all the edges in
that hop and sample ny, = sy - |[Nx_1]| edges from it with
replacement; sy, is the number of edges to sample in hop &
for each node in hop k —1, N}, _1 is the set of nodes sampled
in hop k — 1. The sampling probability for an edge type r
in the k-th hop can be calculated as follows:
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where &, is the set of edges of relation type 7’ in hop
k. As there are difficulties in backpropagating through the
sampled subgraph, we use the score function estimator RE-
INFORCE (Williams, 1992). For a loss function L and
sampled subgraph g, to estimate the gradient of the loss
with respect to the latent parameters [, we compute p;(g),
the probability of sampling g given [:

Vi Eg[L(g)] = E4[L(g)Vilog pi(g)]

In this way, REINFORCE does not require backpropagation
through R-GCN layers or the sampled subgraph if we can
compute V; log p;(g). We observe that this can be achieved
easily by computing log p;(g) as below and backpropagating
the gradient; r; is the edge type of the i*" edge:
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3. Additional Evidence for DDI Prediction:
Drug Mixtures and Synergies

Past research has shown that random negative sampling and
including various types of data (e.g., drug-protein interac-
tions) help to improve DDI prediction (Zitnik et al., 2018).
We propose to apply compound pairs contained in marketed
drug mixture products, available from DRUGBANK (DS
et al., 2017), and knowledge about drugs that synergize,
available from DRUGCOMBDB (Liu et al., 2019). For side
effect prediction, this data can be considered as verified
negative evidence (vs. random, possibly incorrect negative
samples). For general DDI prediction, it can provide signals
towards positive DDI types. To the best of our knowledge,
this has not been studied before. For simplicity, we will
call all this data synergistic evidence in the following (i.e.,
although the compounds from mixtures do not necessarily
yield synergistic effects, which means effects that are higher
than if the drugs are taken individually).

To incorporate that evidence into our model, we propose
two approaches. 1. For side effect prediction, we can use
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Table 1: Overview of datasets

#Nodes # Edge Types # Edges
DRUGBANK 1,861 86 192,284
TWOSIDES100 1,918 100 30,979

the evidence as negative samples during the computation of
the loss function (i.e., during training and validation). While
we thus include a more reliable set of negative samples, the
extra information is not incorporated into the model yet. 2.
Therefore, we also consider the synergistic evidence as a
new edge type in the graph data to allow GNNss to use the
extra information when computing node embeddings.

4. Evaluation

We conduct experiments to evaluate the following questions:

Q1 Does the incorporation of edge-type probabilities im-
prove predictions?

Q2 Do learned probabilities offer improvement beyond
fixed probabilities such as inverse frequencies?

Q3 Are our two proposals for incorporating drug synergy
data effective?

4.1. Datasets and Baselines

We use the DDI prediction dataset DRUGBANK! (Ryu et al.,
2018) and TWOSIDES100, a subset of the side effect pre-
diction data from (Tatonetti et al., 2012), see Table 1.

For the synergistic evidence experiments, we extract the
mixture products from DRUGBANK (DS et al., 2017) and
create 18,968 pairs in total from their compounds. Of these
pairs, 6,689 drug pairs contain a drug which also occurs
in our DRUGBANK dataset. Furthermore, we use the syn-
ergism data from DRUGCOMBDB (Liu et al., 2019), in
total 1,398 drug pairs. Note that in our experiments on the
DRUGBANK dataset, we use only the data from DRUGBANK
because the DRUGCOMBDB data has poor overlap with that
dataset. For the TWOSIDES 100 experiments we use both.

We apply common link and DDI prediction baselines: Dist-
Mult (Yang et al., 2015), a common tensor factorization
baseline for link prediction in knowledge graphs. Multi-
layer perceptron (MLP), a standard feedforward neural
network as suggested in (Ryu et al., 2018) for the DRUG-
BANK dataset. Message-passing neural network (MPNN)
(Gilmer et al., 2017), a basic GNN architecture that uses
message passing to update the node embeddings. R-GAE
(Schlichtkrull et al., 2018), a relational graph autoencoder

"Not to be confused with the actual DRUGBANK; note that this
name is also used in (Huang et al., 2019).

Table 2: Edge-type prediction results on DRUGBANK and
TwOSIDES100

DRUGBANK TwOSIDES100
Model AUPRC AUROC | AUPRC AUROC
DistMult 61.3 96.5 18.5 50.8
MLP 75.0 98.7 28.6 60.7
MPNN 79.1 99.0 36.5 71.0
R-GAE 80.6 98.9 353 67.1
IFR-GAE 81.5 98.9 37.3 71.3
RM-GCN 82.8 99.2 35.7 68.0
RS-GCN 85.6 99.3 39.8 73.3
RS-GCN|SyEx - - 40.0 73.7
RS-GCN|SyEd 87.1 99.0 39.0 73.3

that has shown to perform well for DDI prediction (Zitnik
et al., 2018). The encoder is an R-GCN which uses edge
types for learning node embeddings, and the decoder is a
tensor factorization model. We additionally use uniform
neighbor sampling similar to (Hamilton et al., 2017) to sam-
ple a subgraph around the target edge for message passing.
IFR-GAE is a baseline in our ablation study. It differs from
R-GAE in that it applies a fixed sampling probability for
each edge type based on the inverse frequency in the train-
ing data. Details about datasets, model configurations, and
training can be found in the supplementary material.

We implemented our proposed approaches on top of R-GAE:
we add edge-type probabilities in the message-passing stage
in the R-GCN encoder (RM-GCN), and similar for the
probabilistic sampling based on REINFORCE (RS-GCN).

4.2. Results and Discussion

We report our results in Table 2. We observe that GNN-
based baselines outperform both MLP and the tensor fac-
torization model. This means that the information about
the local neighborhood the GNNs encode is indeed useful.
The generally lower numbers of TWOSIDES100 can be ex-
plained by the fact that it is less dense that DRUGBANK and
it also has a much larger percentage of parallel edges.

A1 OUR EDGE-TYPE PROBABILITIES IMPROVE
PREDICTION ACCURACY AND EFFICIENCY

From Table 2, we observe that RM-GCN and RS-GCN
perform overall better than all baselines on both datasets.
This shows that giving different importance to different
edge types based on the local neighborhood during mes-
sage passing or neighbor sampling is useful in learning
node representations. RS-GCN has an added advantage
over RM-GCN since it learns to ignore the less informative
neighborhood during the sampling stage only and does not
need to take less important edges during message passing.
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Figure 1: Distribution of edge types vs. learned probabilities for an example neighborhood for TWOSIDES100.

RS-GCN specifically provides an advantage in scalability,
this is confirmed by the runtimes: Compared to standard
R-GAE (i.e., a version without sampling), we obtain an im-
provement during both training (2.47x) and inference at test
time (1.92x); recall that RS-GCN applies sampling during
training and inference. Accuracy is not compromised.

A2 LEARNED PROBABILITIES VS. FIXED ONES

To show that it is indeed beneficial to learn edge-type prob-
abilities, we compare RS-GCN to IFR-GAE. As it is shown
in Table 2, on both datasets, IFR-GAE outperforms the base-
lines. This is likely due to the fact that both datasets are
indeed imbalanced regarding the edge types and shows that
edge-type specific sampling is effective for imbalanced data.

Nevertheless, IFR-GAE does not achieve the performance
of our models. One of the reasons behind this is that, even
though IFR-GAE takes class imbalance into account during
sampling, the sampling probabilities are fixed globally and
thus irrespective of the local neighborhoods. The sampling
probabilities assigned to different edge types in RS-GCN
are calculated adaptively based on the distribution of edge
types in the local neighborhood of the target edge. Consider
Figure 2, which compares the edge type distribution to the
assigned probabilities in the 1-hop neighborhood of a spe-
cific edge, whose edge type is to be predicted. For demon-
stration purposes, we chose a neighborhood where all edge
types occur exactly once. We observe that for that particular
neighborhood, our model learns probabilities that are differ-
ent from the ones of IFR-GAE. Apart from capturing and
resolving the imbalance of edge types, our model also learns
to assign high weights to some more commonly occurring
edge types based on their importance for the current task.
Hence, specific learned probabilities generally reflect impor-
tance of edge types better. For DRUGBANK, the probabilities
are similar to IFR-GAE, though, which means that the edge
types are probably of similar importance for this specific
example task. However, since the performance of RS-GCN

on DRUGBANK is better than that of IFR-GAE, the learned
probabilities must capture some edge-type-specific informa-
tion beyond frequency. Note that IFR-GAE shows better
performance than RM-GCN on TWOSIDES 100. Together
with RS-GCN outperforming RM-GCN, this confirms that
dealing with edge-type probabilities in the context of (sam-
pled) neighborhoods during sampling is generally better
than in the model during message passing, where the context
is restricted to the neighborhood of the updated node, which
was sampled randomly. The globally learned probabilities
(i.e., averaged over all sampled neighborhoods) differ from
both the inverse frequencies and the probabilities for our
example neighborhood, details can be found in the supple-
mentary. Overall, we observed that, for DRUGBANK, class
imbalance has most influence on the learned probabilities.
The most frequent DDI is assigned the lowest probability,
and the least frequent is assigned the highest probability. On
the other hand, for the less imbalanced TWOSIDES 100, the
side effect “traumatic haemorrhage” has almost the same fre-
quency as ‘“stress incontinence” but the former is assigned
much higher probability.

A3 DRUG SYNERGY DATA IMPROVES DDI PREDICTION
ACCURACY BOTH IN THE GRAPH AND AS SAMPLES

We finally evaluate our suggestion for considering verified
data about drug synergies to overcome the lack of verified
negative examples. Recall that this is only valid for the
TwoOSIDES100 data since DRUGBANK contains positive
DDIs as well. The second-to-last line in Table 2 (|]SyEx)
confirms that our approach of replacing some of the ran-
dom negative samples (as used in all other experiments) by
synergy data is effective: 1. it decreases the risk attached
to using random possibly incorrect negative samples; 2. it
yields the same performance as the latter; more specifically,
there is even a slight improvement in performance. The last
line in the table further shows that synergy data incorporated
into the graph as additional edges (|]SyEd) may be beneficial
as well, though the difference is not that pronounced.
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A. Negative Evidence

We extract mixture products from DRUGBANK (DS et al.,
2017) and synergism data from DRUGCOMBDB (Liu et al.,
2019). When adding negative evidence to a dataset, we only
include the negative edges that share an endpoint node with
the target dataset. In the experiments on DRUGBANK DDI
dataset, we only use the negative evidence from DRUG-
BANK because the synergism data implies that drug in-
teraction is safe and not that there is no interaction. For
TwoOSIDES100, therefore, we use both the DRUGBANK and
synergism datasets as negative evidence. In order to use the
synergism data, we had to match drugs by name, rather than
ID. This may result in missing some possible data points.

TwOSIDES100 To create TWOSIDES100, we take a sub-
set of medium-occuring 100 side effects from the original
dataset (Tatonetti et al., 2012). We first sort the side effects
by their frequency. We start from the 4,000th least common
side effect and then consider every 60th side effect up to the
10,000th least common side effect.

B. Model Architectures

When experimenting on DRUGBANK dataset, we always
use a hidden dimension of 128. For TWOSIDES100, we
use a hidden dimension of 200. The specific architectures
were the same for both datasets. For the MLP, we use three
layers and apply batch normalization after each layer. For
each of the GNN models, we use two graph layers followed
by a classifier. For the MPNN, we use an MLP classifier
and for the relational models, we use a tensor factorization
method called Dedicom, similar to (Zitnik et al., 2018).
Additionally for relational graph models, we use 30 bases
for basis-decomposition (Schlichtkrull et al., 2018). We use
a binary cross entropy loss function for all models. We use
ReLU activation function after each layer. Finally, we apply
the sigmoid function to each model’s output.

C. Training Details

We use a 60/20/20 train/validation/test split for both DRUG-
BANK and TWOSIDES100. For DRUGBANK, we use the
initial node features from (Ryu et al., 2018), where the struc-
tural similarity profile (SSP) of each drug is reduced in its
dimension (to 50) using PCA and then taken as node embed-
ding. For TWOSIDES100, we generate input features using
one-hot encodings. We additionally perform batching on tar-
get edges: we create batches of edges in the input graph and
sample a subgraph surrounding each of the target edges. We
then use the sampled subgraph to make predictions for DDI
types of the target edges. The batch size for DRUGBANK is
2000 and is 100 for TWOSIDES100. We train each model
for up to 300 epochs and use a patience of 100 epochs: we
stop training when the PR-AUC has not increased for 100

non-sampling R-GAE | RS-GCN
Train (per epoch) 245.61 99.05
Test 21.98 11.44

Table 3: Runtime Comparison (in s)

epochs. All experiments use the ADAM optimizer with no
weight decay and betas of 0.99 and 0.999. We use a learning
rate of 0.001 in each experiment.

Experiments were run on a single Xeon Gold 6240 CPU
with 72 hyper-threaded cores and use versions 1.5.0 of both
PyTorch and PyTorch Geometric.

D. Sampling

Our sampling method is based on GraphSage and extracts a
subgraph from the k-hop neighborhood surrounding target
edges (Hamilton et al., 2017). As our experiments are re-
stricted to networks with two GNN layers, we only sample
from the two-hop neighborhood of the target edges. For
each method of sampling, we set an upper limit on the num-
ber of edges sampled in each hop. The upper limit in the
first hop was set to be seven times the batch size. The limit
for the second hop was three time the batch size.

We compute logits for each edge based on its attributes. We
then apply a softmax function to each neighborhood to get
probabilities for sampling the edges. For random sampling,
these logits are set to zero; each edge in a neighborhood
has the same probability of being sampled. For the inverse
frequency sampling, we set the logit to be the log of the
inverse of how many times the edge occurs. For the pro-
posed learned sampling method, we have parameters for
each edge type that are summed depending on the input
edge’s types. Each sampling method uses the same underly-
ing implementation. The only difference between them is
how we compute the probabilities.

E. Additional Results

Table 3 listed the detailed runtime of our method (RS-GCN)
and its non-sampling counterpart, R-GAE. From the table,
we can clearly see the speedup of both training and testing
from RS-GCN, which demonstrates the efficiency of our
sampling method.

In order to show the insights of the learned edge probabili-
ties, we also include additional visualization results of edge
frequencies and learned sampling probabilities in Figure 2.
As we explained in Section 4.2, different datasets have dif-
ferent distributions for edge probabilities. On DRUGBANK,
the learned edge probability is closely proportional to the
inverse of the edge frequency; while in TWOSIDES 100, the
learned edge probability distribution is more complicated.
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Figure 2: Top: For DRUGBANK, (a) frequency distribution of edge types and (b) probabilities learned for an example
neighborhood. Middle: Frequency scaled by the learned probabilities (c) for DRUGBANK and (d) for TWOSIDES100.
Bottom: Average fraction of each edge type sampled in the final evaluation (e) for DRUGBANK and (f) TWOSIDES100; the
order of edge types (x-axis) in all pictures for a dataset is the same, according to frequency in training data.



