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Abstract
Graph Neural Networks (GNNs) have been re-
cently found to suffer from important limitations
regarding their ability to capture the structure of
the underlying graph. It has been shown that the
expressive power of standard GNNs is bounded by
the Weisfeiler-Lehman (WL) graph isomorphism
test, from which they inherit proven limitations
such as the inability to detect and count graph sub-
structures. On the other hand, there is significant
empirical evidence that substructures are often in-
formative for downstream tasks, suggesting that it
is desirable to design GNNs capable of leveraging
this important source of information. To this end,
we propose a novel topologically-aware message
passing scheme based on subgraph isomorphism
counting. We show that our architecture allows in-
corporating domain-specific inductive biases and
that it is strictly more expressive than the WL
test, while being able to disambiguate even hard
instances of graph isomorphism. In contrast to
recent works, our approach does not attempt to ad-
here to the WL hierarchy and therefore retains the
locality and linear complexity of standard GNNs.

1. Introduction
The field of graph representation learning has undergone
a rapid growth in the past few years. In particular, Graph
Neural Networks (GNNs), a family of neural architectures
designed for irregularly structured data, have been success-
fully applied to problems spanning a plethora of applications
(Ying et al., 2018a; Fout et al., 2017; Duvenaud et al., 2015;
Kipf et al., 2018; Battaglia et al., 2016). Most GNN archi-
tectures are based on message passing (Gilmer et al., 2017),
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where at each layer the nodes update their hidden represen-
tations by aggregating information from their neighbours
via a permutation invariant function (as a consequence they
are invariant to graph isomorphism). This kind of symmetry
is not always desirable, and thus different inductive biases
that disambiguate the neighbours have been proposed, such
as directional biases for geometric graphs (Masci et al.;
Monti et al., 2017; Bouritsas et al., 2019; Klicpera et al.,
2020; de Haan et al., 2020), or positional biases for protein
sequences (Ingraham et al., 2019).

The structure of the graph itself does not usually explicitly
take part in the aggregation function. In fact, most models
rely on multiple message passing steps as a means for each
node to discover the global structure of the graph. However,
this is not generally feasible, since it was proven that GNNs
are at most as powerful as the Weisfeiler Lehman (WL) test,
that limiting their abilities to adequately exploit the graph
structure, e.g. by counting substructures (Arvind et al.,
2019; Chen et al., 2020). This uncovers a crucial limitation
of GNNs, as substructures have been widely recognised as
important in the study of complex networks (e.g. functional
groups and rings in molecules or cliques in Protein-Protein
Interaction networks and social networks).

In this work, we design a topologically-aware graph neu-
ral model by enhancing the message passing scheme with
structural biases; each message is transformed differently
depending on the topological relationship between the end-
point nodes. In order to achieve this, we construct structural
identifiers that are assigned to either the vertices or the edges
of the graph and are extracted by subgraph isomorphism
counting. Intuitively, in this way we partition the nodes
or the edges of each graph in different equivalence classes
reflecting topological characteristics that are shared both be-
tween nodes in each graph individually and across different
graphs. Our approach leverages domain-specific knowledge
by choosing a collection of substructures that are known
to be of importance in the graphs at hand. In this way, we
model the most discriminative structural biases, which at
the same time are amenable to generalisation. We show that
our model is at least as powerful as traditional GNNs, while
being strictly more expressive for the vast of majority of
substructures. In the limit, i.e. when the substructures are
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allowed to be the size of the graph, our model can yield a
unique representation for every isomorphism class and is
thus universal.

2. Preliminaries
Let G = (VG, EG) be a graph with vertex set VG and
undirected edge set EG. A subgraph GS = (VGS

, EGS
)

of G is any graph with VGS
⊆ VG, EGS

⊆ EG. When
EGS

includes all the edges of G with endpoints in VGS
, i.e.

EGS
= {(v, u) ∈ E : v, u ∈ VGS

}, the subgraph is said to
be induced.

Isomorphisms Two graphs G,H are isomorphic (de-
noted H ' G), if there exists an adjacency-preserving
bijective mapping (isomorphism) f : VG :→ VH , i.e.,
(v, u) ∈ EG iff (f(v), f(u)) ∈ EH . Given some small
graph H , the subgraph isomorphism problem amounts to
finding a subgraph GS of G such that GS ' H . An auto-
morphism of H is an isomorphism that maps H onto itself.
The set of all the unique automorphisms form the automor-
phism group of the graph, denoted as Aut(H) containing
all the possible symmetries of the graph. The automorphism
group yields a partition of the vertices into disjoint subsets
of VH called orbits. Intuitively, this concept allows us to
group the vertices based on their structural roles, e.g. the
end vertices of a path, or all the vertices of a cycle (see
Figure 1). Formally, the orbit of a vertex v ∈ VH is the set
of vertices to which it can be mapped via an automorphism:
Orb(v) = {u ∈ VH : ∃g ∈ Aut(H) s.t. g(u) = v}, and
the set of all orbits H \Aut(H) = {Orb(v) : v ∈ VH} is
usually called the quotient of the automorphism when it acts
on the graph H . We are interested in the unique elements
of this set that we will denote as {OVH,1, OVH,2, . . . , OVH,dH},
where dH is the cardinality of the quotient.

Analogously, we define edge structural roles via edge auto-
morphisms, i.e. bijective mappings from the edge set onto
itself, that preserve edge adjacency (two edges are adjacent
if they share a common endpoint). In particular, every vertex
automorphism g induces an edge automorphism by map-
ping each edge {u, v} to {g(u), g(v)}.1 In the same way
as before we construct the edge automorphism group, from
which we deduce the partition of the edge set in edge orbits
{OEH,1, OEH,2, . . . , OEH,dH}.

3. Graph Substructure Networks
Complex networks consist of nodes (or edges) with repeated
structural roles. Thus, it is natural for a neural network to

1Note that the edge automorphism group is larger than that
of induced automorphisms, but strictly larger only for 3 trivial
cases (Whitney, 1932). However, induced automorphisms provide
a more natural way to express structural roles.

Figure 1: Node (left) and edge (right) subgraph counting for
a 3-cycle and a 3-path, w.r.t the blue node and the blue edge,
respectively. Different colors depict orbits.

treat them in a similar manner, akin to weight sharing be-
tween local patches in CNNs for images (LeCun et al., 1989)
or positional encodings in language models for sequential
data (Sukhbaatar et al., 2015; Gehring et al., 2017; Vaswani
et al., 2017).

However, contrary to Euclidean domains, e.g. regular 2D
and 1D grids, the diversity in the topology of such networks
prohibits modelling each structural role independently (that
would require a large amount of training data). To address
this, we suggest a simplification where nodes are described
by vertex invariants, features that are invariant to isomor-
phism but also possibly shared between different roles.

Such invariants are naturally extracted by GNNs themselves,
but it can be argued that they might be oversimplified, as
nodes will be blind to the existence of e.g. triangles or larger
cycles in their neighbourhoods (Chen et al., 2020; Arvind
et al., 2019). Hence, we extend GNNs towards a stronger
invariant that captures richer topological properties. We
observe that the neighborhood of each node can be partially
described by its substructures, thus by counting their appear-
ances, one obtains an approximate characterisation of the
node’s structural role. This information can be subsequently
passed to a GNN and act in a complementary manner.

Structural features Let H = {H1, H2 . . . HK} be a set
of small (connected) graphs, for example cycles of fixed
length or cliques. For each graph H ∈ H, we first find its
isomorphic subgraphs in G; let f be a subgraph isomor-
phism between H and GS . For each node v ∈ VGS

, we
infer its role w.r.t H by obtaining the orbit of its mapping
f(v) in H , OrbH

(
f(v)

)
. By counting all the possible ap-

pearances of OrbH
(
f(v)

)
in v, we obtain the structural

feature xVH(v) of v, defined as follows:

xVH,i(v) =
|{GS'H : v∈VGS

s.t. f(v)∈OV
H,i}|

|Aut(H)| , (1)

where i = 1, . . . , dH . We divide the counts by the num-
ber of the automorphisms of H , since for every matched
subgraph GS there will always be |Aut(H)| different ways
to map it to H , thus these repetitions will be uninforma-
tive. By combining the counts from different substruc-
tures inH and different orbits, we obtain the feature vector
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Figure 2: (Left) Decalin and Bicyclopentyl: non-isomorphic
molecular graphs than can be distinguished by GSN, but not
by 1-WL (Sato, 2020). (Right) Rook’s 4x4 graph and the
Shrikhande graph: the smallest pair of SR non-isomorphic
graphs with the same parameters SR(16,6,2,2). GSN can
distinguish them with 4-clique counts, while 2-FWL fails.

xVv = [xVH1
(v), . . . ,xVHK

(v)] ∈ ND×1 , D =
∑
H∈H dHi

.

Similarly, we define edge structural features xEH,i({u, v})
by counting occurrences of edge automorphism orbits:

xEH,i({u, v}) =
| {GS'H : {u,v}∈EGS

s.t. {f(u),f(v)}∈OE
H,i}|

|Aut(H)| ,

(2)
and the combined edge features
xE{u,v} = [xEH1

({u, v}), . . . ,xEHK
({u, v})]. An exam-

ple of counting features is illustrated in Figure 1.

Structure-aware message passing The key building
block of our architecture is the graph substructure layer,
defined in a general manner as a Message Passing Neural
Network (MPNN) (Gilmer et al., 2017), where now the
messages from the neighbouring nodes also contain the
structural information. In particular, each node v updates
its state htv by combining its previous state with the aggre-
gated messages: ht+1

v = UPt+1(htv,MSGt+1(v)), where
the UPt+1 function is a neural network (MLP) and the mes-
sage aggregation is a summation of features transformed by
an MLP M t+1 as follows:

MSGt+1(v) =
∑

u∈N (v)

M t+1
(
htv,h

t
u,x

V
v ,x

V
u , e{u,v}

)
(3)

MSGt+1(v) =
∑

u∈N (v)

M t+1
(
htv,h

t
u,x

E
{u,v}, e{u,v}

)
, (4)

where the two variants, named GSN-v and GSN-e, corre-
spond to vertex- or edge-counts, respectively, and e{u,v}
denotes edge features.

How powerful are GSNs? We now turn to the expressive
power of GSNs in comparison to the classical WL graph
isomorphism tests (description of the WL hierarchy and
proofs are provided in the supplementary material).
Proposition 3.1. GSNs are at least as powerful as MPNNs
and the 1-WL test.

Furthermore, we can state that GSNs have the capacity to
learn functions that traditional MPNNs cannot learn. The
following observation derives directly from the analysis of
the counting abilities of the 1-WL test (Arvind et al., 2019)
and its extension to MPNNs (Chen et al., 2020).

Proposition 3.2. GSNs are strictly more powerful than
MPNNs and the 1-WL test when H is any induced sub-
graph except from single edges and single nodes, or any not
necessarily induced subgraph except from star graphs of
any size.

Although our method does not attempt to align with the WL
hierarchy, we observe that it has the capacity to distinguish
graphs where the 2-Folklore Weisfeiler-Lehman (2-FWL)
(Maron et al., 2019a) fails, which can be stated as:

Proposition 3.3. 2-FWL is not stronger than GSN.

It is sufficient to find an example of two non-isomorphic
graphs that are distinguishable by GSN but not 2-FWL,
for which purpose we consider the Strongly Regular (SR)
graph family: A SR(n,d,λ,µ)-graph is a regular graph with
n nodes and degree d, where every two adjacent vertices
have always λ mutual neighbours, while every two non-
adjacent vertices have always µ mutual neighbours. The
graphs in Figure 2 (right) are examples of non-isomorphic
strongly regular graphs, on which 2-FWL (and thus 1-WL)
is known to fail (Arvind et al., 2019). On the other hand,
the examples of Figure 2 can be distinguished by a GSN by
e.g. counting 4-cliques: there is at least one in Rook’s 4x4
graph contrary to the Shrikhande graph that has none.

In Section 4, we empirically show that small-sized sub-
structures are usually adequate to tell these graphs apart.
Although it is not clear if there exists a certain substruc-
ture collection that results in GSNs that align with the WL
hierarchy, we stress that this is not a necessary condition
in order to design more powerful GNNs. In particular, the
advantages offered by k-WL might not be able to outweigh
the disadvantage of the larger complexity introduced. For
example, a 2-FWL equivalent GNN will still fail to count
4-cliques or 8-cycles (Fürer, 2017; Arvind et al., 2019).

How large should the substructures be? As of today,
we are not aware of any results in graph theory that can
guarantee the reconstruction of a graph from a smaller col-
lection of its subgraphs. In fact, the Reconstruction Con-
jecture (Kelly et al., 1957; Ulam, 1960), states that a graph
with size n ≥ 3 can be reconstructed from its vertex-deleted
subgraphs, which in our case amounts to using all the sub-
structures of size k = n−1. Therefore, if the Reconstruction
Conjecture holds, GSN can distinguish all non-isomorphic
graphs when using substructures of size k = n− 1. How-
ever, the Reconstruction Conjecture has only been proven
for n ≤ 11 (McKay, 1997) and still remains open for larger
graphs, while to the best of our knowledge, there is no sim-
ilar hypothesis for smaller values of k. We hypothesise
that for ML tasks, small structures of size k = O(1) are
practically sufficient. This is validated by the experiments
where strong empirical performance is observed for small
and relatively frequent subgraph structures.
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Table 1: Graph classification accuracy on various social and biological networks from the TUD Datasets collection. The top
three performance scores are highlighted as: First, Second, Third. For GSN, we show the best performing substructure
collection. ∗ denotes Graph Kernel methods.

Dataset MUTAG PTC Proteins NCI1 Collab IMDB-B IMDB-M
GK* (k=3) (Shervashidze et al., 2009) 81.4±1.7 55.7±0.5 71.4±0.31 62.5±0.3 N/A N/A N/A
WL kernel* (Shervashidze et al., 2011) 90.4±5.7 59.9±4.3 75.0±3.1 86.0±1.8 78.9±1.9 73.8±3.9 50.9±3.8
GNTK* (Du et al., 2019a) 90.0±8.5 67.9±6.9 75.6±4.2 84.2±1.5 83.6±1.0 76.9±3.6 52.8±4.6
DGCNN (Zhang et al., 2018) 85.8±1.8 58.6±2.5 75.5±0.9 74.4±0.5 73.8±0.5 70.0±0.9 47.8±0.9
IGN (Maron et al., 2019b) 83.9±13.0 58.5±6.9 76.6±5.5 74.3±2.7 78.3±2.5 72.0±5.5 48.7±3.4
GIN (Xu et al., 2019) 89.4±5.6 64.6±7.0 76.2±2.8 82.7±1.7 80.2±1.9 75.1±5.1 52.3±2.8
PPGNs (Maron et al., 2019a) 90.6±8.7 66.2±6.6 77.2±4.7 83.2±1.1 81.4±1.4 73.0±5.8 50.5±3.6
GSN-e 90.6±7.5 68.2±7.2 76.6±5.0 83.5± 2.3 85.5±1.2 77.8±3.3 54.3±3.3

6 (cycles) 6 (cycles) 4 (cliques) 15 (cycles) 3 (triangles) 5 (cliques) 5 (cliques)
GSN-v 92.2±7.5 67.4±5.7 74.6±5.0 83.5±2.0 82.7±1.5 76.8±2.0 52.6±3.6

12 (cycles) 10 (cycles) 4 (cliques) 3 (triangles) 3 (triangles) 4 (cliques) 3 (triangles)

4. Experimental Evaluation
We evaluate GSN on synthetic and real-world datasets. De-
pending on the dataset domain we experiment with different
substructure families (cycles, paths and cliques) and maxi-
mum substructure size (k). Please refer to the supplementary
materials for additional details on the experimental setup.

Strongly Regular graphs We tested the ability of GSNs
to decide if two graphs are non-isomorphic. We use a col-
lection of Strongly Regular graphs2 with up to 35 nodes and
attempt to disambiguate pairs with same number of nodes
(for different sizes the problem becomes trivial). At this
stage we are only interested in the bias of the architecture
itself, we thus use GSN with random weights to compute
graph representations. Two graphs are deemed isomorphic
if the Euclidean distance of their representations is smaller
than a predefined threshold ε. Figure 3 shows the failure
percentage when using different induced subgraphs (cycles,
paths, and cliques) of varying size k. While 1-WL and
2-FWL equivalent models mark 100% failure (as expected
from theory), the number of failure cases of GSN decreases
rapidly as we increase k; cycles and paths of length 6 are
enough to tell apart all the graphs in the dataset. Note that
the performance of cliques saturates, possibly because the
largest clique in our dataset has 5 nodes. We hypothesise
GSN-e outperforms GSN-v because edge counts allow GSN
to create a finer partition of the nodes in the graph.

TUD Datasets We use seven datasets from the TUD
benchmark3 from the domains of bioinformatics and so-
cial science. Table 1 lists all the methods evaluated with the
split of (Zhang et al., 2018). We compare against various
GNNs and Graph Kernels and our main GNN baselines are
GIN (Xu et al., 2019) and PPGN (Maron et al., 2019a). We
follow the same evaluation protocol of (Xu et al., 2019)

2
http://users.cecs.anu.edu.au/~bdm/data/graphs.html

3
https://chrsmrrs.github.io/datasets/
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Figure 3: SR graphs isomorphism test. Different colours
indicate different substructure sizes.

and perform model selection by tuning architecture and
optimisation hyperparameters, and substructure related pa-
rameters: 1) k, 2) motifs (not necessarily induced subgraphs)
against graphlets (induced subgraphs), following domain
evidence: cycles for molecules, cliques for social networks.
Our model obtains state-of-the art performance and outper-
forms all its GNN counterparts in the vast majority of the
datasets, demonstrating strong generalisation capabilities in
addition to its theoretically proven expressive power.

5. Conclusion
In this paper, we propose a novel way to design structure-
aware graph neural networks. Motivated by the limitations
of traditional GNNs to grasp important topological proper-
ties of the graph, we formulate a message passing scheme
enhanced with structural features that are extracted by count-
ing the appearances of substructures. We show both theoreti-
cally and empirically that our construction leads to improved
expressive power and attains state-of-the-art performance in
real-world scenarios.

http://users.cecs.anu.edu.au/~bdm/data/graphs.html
https://chrsmrrs.github.io/datasets/
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Appendix

A. Background
Weisfeiler-Lehman tests The Weisfeiler-Lehman (WL) graph-isomorphism test, or naive vertex refinement (we will refer
to it as 1-WL or just WL), is a fast heuristic used to decide if two graphs are isomorphic. The WL-test proceeds as follows:
every vertex v is initially assigned a colour c0(v) that is later iteratively refined by aggregating neighbouring information:

ct+1(v) = HASH
(
ct(v), Hct(u)Iu∈N (v)

)
, (5)

where H·I denotes a multiset (a set that allows element repetitions) andN (v) is the neigborhood of v. Note that the neighbour
aggregation in WL-test is a form of message passing, and GNNs are the learnable analogue.

Most of the research in improving GNN expressivity has focused on models that mimic the generalisations of WL, known
as the WL hierarchy. Briefly, here we describe the so-called Folklore WL family (k-FWL), as referred to by Maron et al.
(Maron et al., 2019a).4 The k-FWL operates on k-tuples of nodes v = (v1, v2, . . . , vk) to which an initial colour c0(v) is
assigned based on their isomorphism types, which can loosely be thought of as a generalisation of isomorphism that also
preserves the ordering of the nodes in the tuple (see section B.3). Then, at each iteration the colour is refined as follows:

ct+1(v) = HASH
(
ct(v), H

(
ct(vu,1), c

t(vu,2), . . . , c
t(vu,k)

)
Iu∈V

)
(6)

where vu,j = (v1, v2, . . . , vj−1, u, vj+1 . . . , vk). The multiset H
(
ct(vu,1), c

t(vu,2), . . . , c
t(vu,k)

)
Iu∈V can be perceived

as a form of generalised neighborhood. Note here, that information is saved in all possible tuples in the graph, thus each
k-tuple receives information from the entire graph, contrary to the local nature of the 1-WL test.

B. Proofs
B.1. Proof of Proposition 3.1

Proof. The first part of the proof is trivial since the GSN model class contains MPNNs and is thus at least as expressive.
For the 1-WL test, one can repurpose the proof of Theorem 3 in (Xu et al., 2019) and demand the injectivity of the update
function (w.r.t. both the hidden state htv and the message aggregation MSGt+1(v)), and the injectivity of the message
aggregation w.r.t. the multiset of the hidden states of the neighbours HhtuIu∈N (v). It suffices then to show that if injectivity
is preserved then GSNs are at least as powerful as the 1-WL.

In more detail, we will show that GSN is at least as powerful as 1-WL for node-labelled graphs, since traditionally the 1-WL
test does not take into account edge labels.5 We can rephrase the statement as follows: If GSN deems two graphs G1, G2 as
isomorphic, then also 1-WL deems them isomorphic. Given that the graph-level representation is extracted by a readout
function that receives the multiset of the node colours in its input (i.e. the graph-level representation is the node colour
histogram at some iteration t), then it suffices to show that if for the two graphs the multiset of the node colours that GSN
infers is the same, then also 1-WL will infer the same multiset for the two graphs.

Consider the case where the two multisets that GSN extracts are the same: i.e. HhtvIv∈VG1
= HhtuIu∈VG2

. Then both
multisets contain the same distinct colour/hidden representations with the exact same multiplicity. Thus, it further suffices to
show that if two nodes v, u (that may belong to the same or to different graphs) have the same GSN hidden representations
htv = htu at any iteration t, then they will also have the same colours ct(v) = ct(u), extracted by 1-WL. Intuitively, this
means that GSN creates a partition of the nodes of each graph that is at least as fine-grained as the one created by 1-WL. We
prove by induction (similarly to (Xu et al., 2019)) that GSN model class contains a model where this holds (w.l.o.g. we
show that for GSN-v; same proof applies to GSN-e).

For t = 0 the statement holds since the initial node features are the same for both GSN and 1-WL, i.e. h0
v = c0(v), ∀v ∈

4In the majority of papers on GNN expressivity (Morris et al., 2019; Maron et al., 2019a; Chen et al., 2020), another family of WL
tests is discussed, under the terminology k-WL with expressive power equal to (k − 1)-FWL. In contrast, in most graph theory papers on
graph isomorphism (Cai et al., 1992; Fürer, 2017; Arvind et al., 2019) the k-WL term is used to describe the algorithms referred to as
k-FWL in GNN papers. Here, we follow the k-FWL convention to align with the work mostly related to ours.

5if one considers a simple 1-WL extension that concatenates edge labels to neighbour colours, then the same proof applies.
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VG1
∪ VG2

. Suppose the statement holds for t − 1, i.e. ht−1v = ht−1u ⇒ ct−1(v) = ct−1(u). Then we show that it also
holds for t.

Every node hidden representation at step t is updated as follows: htv = UPt
(
ht−1v ,MSGt(v)

)
. Assuming that the update

function UPt is injective, we have the following: if htv = htu, then:

1. ht−1v = ht−1u , which from the induction hypothesis implies that ct−1(v) = ct−1(u).

2. MSGt(v) = MSGt(u), where the message function is defined as in Eq. 3 of the main paper:
MSGt(v) =

∑
w∈N (v)M

t
(
ht−1v ,ht−1w ,xVv ,x

V
w

)
. Additionally here we require MSGt to be injective w.r.t. the mul-

tiset of the hidden representations of the neighbours. In fact, using Lemma 5 from (Xu et al., 2019) we know that there
always exists a function M t, such that MSGt(v) is unique for each multiset H

(
ht−1v ,ht−1w ,xVv ,x

V
w

)
Iw∈Nv , assuming that

the domain from where the elements of the multiset originate is countable. Thus,

MSGt(v) =MSGt(u)⇒
H
(
ht−1v ,ht−1w ,xVv ,x

V
w

)
Iw∈Nv = H

(
ht−1u ,ht−1z ,xVu ,x

V
z

)
Iz∈Nu ⇒

Hht−1w Iw∈Nv
= Hht−1z Iz∈Nu

From the induction hypothesis we know that ht−1w = ht−1z implies that ct−1(w) = ct−1(z) for any w ∈ Nv, z ∈ Nu, thus
Hct−1(w)Iw∈Nv

= Hct−1(z)Iz∈Nu
.

Concluding, given the update rule of 1-WL: ct(v) = HASH
(
ct−1(v), Hct−1(w)Iw∈Nv

)
, it holds that ct(v) = ct(u).

B.2. Proof of Proposition 3.2

Proof. Arvind et al. (Arvind et al., 2019) showed that 1-WL, and consequently MPNNs, can count only forests of stars.
Thus, if the subgraphs are required to be connected, then they can only be star graphs of any size (note that this contains
single nodes and single edges). In addition, Chen et al. (Chen et al., 2020), showed that 1-WL, and consequently MPNNs,
cannot count any connected induced subgraph with 3 or more nodes, i.e. any connected subgraph apart from single nodes
and single edges.

Given proposition 3.1, in order to show that GSNs are strictly more expressive than MPNNs and the 1-WL test, it suffices to
show that GSN can distinguish a pair of graphs that MPNNs and the 1-WL test deem isomorphic. If H is a substructure
that MPNNs cannot learn to count, i.e. the ones mentioned above, then there is at least one pair of graphs with different
number of counts of H , that MPNNs deem isomorphic. Thus, by assigning counting features to the nodes/edges of the two
graphs based on appearances of H , a GSN can obtain different representations for G1 and G2 by summing up the features.
Hence, G1, G2 are deemed non-isomorphic. An example is depicted in Figure 2 (left) in the main paper, where the two
non-isomorphic graphs are distinguishable by GSN via e.g. cycle counting, but not by 1-WL.

B.3. Proposition 3.3: Why does 2-FWL fail on strongly regular graphs?

Proof. Below we provide a proof for this known statement in order to give further intuition in the limitations of the 2-FWL.
We first rigorously describe what an isomorphism type is. Two k-tuples va = {va1 , va2 , . . . , vak}, vb = {vb1, vb2, . . . , vbk} will
have the same isomorphism type iff:

• ∀ i, j ∈ {0, 1, . . . , k}, vai = vaj ⇔ vbi = vbj

• ∀ i, j ∈ {0, 1, . . . , k}, vai ∼ vaj ⇔ vbi ∼ vbj , where ∼ means that the vertices are adjacent.

Note that this is a stronger condition than isomorphism, since the mapping between the vertices of the two tuples needs to
preserve order. In case the graph is employed with edge and vertex features, they need to be preserved as well (see (Chen
et al., 2020)) for the extended case).
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For the 2-FWL test, when working with simple undirected graphs without self-loops, we have the following 2-tuple
isomorphism types:

• v = {v1, v1}: vertex type. Mapped to the color c0(v) = cα

• v = {v1, v2} and v1 6∼ v2: non-edge type. Mapped to the color c0(v) = cβ

• v = {v1, v2} and v1 ∼ v2: edge type. Mapped to the color c0(v) = cγ

For each 2-tuple v = {v1, v2}, a generalised “neighbour” is the following tuple: (vu,1,vu,2) =
(
(u, v2), (v1, u)

)
, where u

is an arbitrary vertex in the graph.

Now, let us consider a strongly regular graph SR(n,d,λ,µ). We have the following cases:

• generalised neighbour of a vertex type tuple: (vu,1,vu,2) =
(
(u, v1), (v1, u)

)
. The corresponding neighbor colour

tuples are:

– (cα, cα) if v1 = u,
– (cβ , cβ) if v1 6∼ u ,
– (cγ , cγ) if v1 ∼ u.

The update of the 2-FWL is: c1(v) = HASH
(
(cα, H(cα, cα)︸ ︷︷ ︸

1 time

, (cβ , cβ)︸ ︷︷ ︸
n− 1− d times

, (cγ , cγ)︸ ︷︷ ︸
d times

I
)

same for all vertex type 2-tuples.

• generalised neighbour of a non-edge type tuple: (vu,1,vu,2) =
(
(u, v2), (v1, u)

)
. The corresponding neighbor colour

tuples are:

– (cα, cβ) if v2 = u,
– (cβ , cα) if v1 = u,
– (cγ , cβ) if v2 ∼ u and v1 6∼ u,
– (cβ , cγ) if v1 ∼ u and v2 6∼ u,
– (cβ , cβ) if v1 6∼ u and v2 6∼ u,
– (cγ , cγ) if v1 ∼ u and v2 ∼ u.

The update of the 2-FWL is:
c1(v) = HASH

(
(cβ , H(cα, cβ)︸ ︷︷ ︸

1 time

, (cβ , cα)︸ ︷︷ ︸
1 time

, (cγ , cβ)︸ ︷︷ ︸
d− µ times

, (cβ , cγ)︸ ︷︷ ︸
d− µ times

, (cβ , cβ)︸ ︷︷ ︸
n− 2− (2d− µ) times

, (cγ , cγ)︸ ︷︷ ︸
µ times

I
)

same for all non-edge type 2-tuples.

• generalised neighbour of an edge type tuple:

– (cα, cγ) if v2 = u,
– (cγ , cα) if v1 = u,
– (cγ , cβ) if v2 ∼ u and v1 6∼ u,
– (cβ , cγ) if v1 ∼ u and v2 6∼ u,
– (cβ , cβ) if v1 6∼ u and v2 6∼ u,
– (cγ , cγ) if v1 ∼ u and v2 ∼ u.

The update of the 2-FWL is:
c1(v) = HASH

(
(cγ , H(cα, cγ)︸ ︷︷ ︸

1 time

, (cγ , cα)︸ ︷︷ ︸
1 time

, (cγ , cβ)︸ ︷︷ ︸
d− λ times

, (cβ , cγ)︸ ︷︷ ︸
d− λ times

, (cβ , cβ)︸ ︷︷ ︸
n− 2− (2d− λ) times

, (cγ , cγ)︸ ︷︷ ︸
λ times

I

same for all edge type 2-tuples.

From the analysis above, it is clear that all 2-tuples in the graph of the same initial type are assigned the same colour in the
1st iteration of 2-FWL. In other words, the vertices cannot be furthered partition, so the algorithm terminates. Therefore, if
two SR graphs have the same parameters n,d,λ,µ then 2-FWL will yield the same colour distribution and thus the graphs
will be deemed isomorphic.
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C. Complexity Analysis of GSNs
In the general case, subgraph isomorphism is a NP-complete problem, while its counting version is #P -Complete (Valiant,
1979). However, for fixed k values, the setting we are interested in, the problem can be solved in O(nk) by examining all
the possible k-tuples in the graph. For specific types of subgraphs, such as paths and cycles, the problem can be solved
even faster (see e.g. (Giscard et al., 2019)). Moreover, the computationally expensive part of the algorithm is done as a
pre-processing step and thus does not affect network training and inference that remain linear w.r.t the number of edges,
O(|E|). This is opposed to k-WL equivalents (Maron et al., 2019a; Morris et al., 2019) with O(nk) training complexity and
relational pooling (Murphy et al., 2019) with O(n!) training complexity in absence of approximations.

D. Experiments
In the following appendix we give the implementation details of the experimental section. All experiments were performed
on a server equipped with 8 Tesla V100 16 gb GPUs, except for the Collab dataset where a Tesla V100 32 gb GPU was
used due to larger memory requirements (a large percentage of Collab graphs are dense or even nearly complete in some
cases). Experimental tracking and hyper-parameter optimisation were done via the Weights & Biases platform (wandb)
(Biewald, 2020). Our implementation is based on native PyTorch sparse operations (Paszke et al., 2019) in order to ensure
complete reproducibility of the results. PyTorch Geometric (Fey & Lenssen, 2019) was used for additional operations (such
as preprocessing and data loading).

Throughout the experimental evaluation the structural identifiers xVu and xE{u,v} are one-hot encoded, by taking into account
the unique count values present in the dataset. Other more sophisticated methods can be used, e.g. transformation to
continuous features via some normalisation scheme, binning etc. We found that the unique values in our datasets were
usually of small or of average cardinality, which is a good indication of recurrent structural roles, thus such methods were
not necessary.

D.1. Synthetic Experiment

For the Strongly Regular graphs dataset we use all the available families of graphs with size of at most 35 nodes. These are
the following:

• SR(16,6,2,2): 2 graphs

• SR(25,12,5,6): 15 graphs

• SR(26,10,3,4): 10 graphs

• SR(28,12,6,4): 4 graphs

• SR(29,14,6,7): 41 graphs

• SR(35,16,6,8: 3854 graphs

• SR(35,18,9,9): 227 graphs

The total number of non-isomorphic pairs of the same size is ≈ 7 ∗ 107. We used a simple 2-layer architecture with width 64.
The message aggregation was performed as in the general formulation of Eq. 3 and 4 of the main paper, where the update
and the message functions are MLPs. The prediction is inferred by applying a sum readout function in in the last layer (i.e. a
graph-level representation is obtained by summing the node-level representations) and then passing the output through a
MLP.

Regarding the substructures, we use graphlet counting, as certain motifs (e.g. cycles of length up to 7) are known to be
unable to distinguish strongly regular graphs (since they can be counted by the 2-FWL (Fürer, 2017; Arvind et al., 2019)).

D.2. Graph Classification Benchmarks (TUD Benchmarks)

For this family of experiments, due to the usually small size of the datasets, we choose a parameter effective architecture, in
order to reduce the risk of overfitting. Note that we aim to show that structural identifiers can be used off-the-shelf and
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Table 2: Graph Classification accuracy on various social and biological networks from the TUD Datasets collection
https://chrsmrrs.github.io/datasets/. Graph Kernel methods are denoted with an *. For completeness we
also include methods that were evaluated on potentially different splits. The top three performance scores are highlighted as:
First, Second, Third.

Dataset MUTAG PTC PROTEINS NCI1 COLLAB IMDB-B IMDB-M
size 188 344 1113 4110 5000 1000 1500
classes 2 2 2 2 3 2 3
avg num. nodes 17.9 25.5 39.1 29.8 74.4 19.7 13

di
ff

er
en

ts
pl

its

DGK* (best) (Yanardag & Vishwanathan, 2015) 87.4 ±2.7 60.1±2.6 75.7±0.5 80.3 ±0.5 73.1 ±0.3 67.0±0.6 44.6±0.5
FSGD* (Verma & Zhang, 2017) 92.1± 62.8± 73.4± 79.8± 80.0± 73.6± 52.4±
AWE-FB*(Ivanov & Burnaev, 2018) 87.9±9.8 N/A N/A N/A 71.0±1.5 73.1±3.3 51.6±4.7
AWE-DD*(Ivanov & Burnaev, 2018) N/A N/A N/A N/A 73.9±1.9 74.5±5.8 51.5±3.6
ECC (Simonovsky & Komodakis, 2017) 76.1± N/A N/A 76.8± N/A N/A N/A
PSCN k=10E (Niepert et al., 2016) 92.6±4.2 60.0±4.8 75.9±2.8 78.6±1.9 72.6±2.2 71.0±2.3 45.2±2.8
DiffPool (Ying et al., 2018b) N/A N/A 76.2± N/A 75.5 ± N/A N/A
CCN (Kondor et al., 2018) 91.6±7.2 70.6±7.0 N/A 76.3±4.1 N/A NA N/A
1-2-3 GNN (Morris et al., 2019) 86.1± 60.9± 75.5± 76.2± N/A 74.2± 49.5±

sa
m

e
sp

lit
s

RWK* (Gärtner et al., 2003) 79.2±2.1 55.9±0.3 59.6±0.1 >3 days N/A N/A N/A
GK* (k=3) (Shervashidze et al., 2009) 81.4±1.7 55.7±0.5 71.4±0.31 62.5±0.3 N/A N/A N/A
PK* (Neumann et al., 2016) 76.0±2.7 59.5±2.4 73.7±0.7 82.5±0.5 N/A N/A N/A
WL kernel* (Shervashidze et al., 2011) 90.4±5.7 59.9±4.3 75.0±3.1 86.0±1.8 78.9±1.9 73.8±3.9 50.9±3.8
GNTK* (Du et al., 2019a) 90.0±8.5 67.9±6.9 75.6±4.2 84.2±1.5 83.6±1.0 76.9±3.6 52.8±4.6
DCNN (Atwood & Towsley, 2016) N/A N/A 61.3±1.6 56.6±1.0 52.1±0.7 49.1±1.4 33.5±1.4
DGCNN (Zhang et al., 2018) 85.8±1.8 58.6±2.5 75.5±0.9 74.4±0.5 73.8±0.5 70.0±0.9 47.8±0.9
IGN (Maron et al., 2019b) 83.9±13. 58.5±6.9 76.6±5.5 74.3±2.7 78.3±2.5 72.0±5.5 48.7±3.4
GIN (Xu et al., 2019) 89.4±5.6 64.6±7.0 76.2±2.8 82.7±1.7 80.2±1.9 75.1±5.1 52.3±2.8
PPGNs (Maron et al., 2019a) 90.6±8.7 66.2±6.6 77.2±4.7 83.2±1.1 81.4±1.4 73.0±5.8 50.5±3.6
GSN-e (Ours) 90.6±7.5 68.2±7.2 76.6±5.0 83.5± 2.3 85.5±1.2 77.8±3.3 54.3±3.3

6 (cycles) 6 (cycles) 4 (cliques) 15 (cycles) 3 (triangles) 5 (cliques) 5 (cliques)
GSN-v (Ours) 92.2±7.5 67.4±5.7 74.6±5.0 83.5±2.0 82.7±1.5 76.8±2.0 52.6±3.6

12 (cycles) 10 (cycles) 4 (cliques) 3 (triangles) 3 (triangles) 4 (cliques) 3 (cliques)

are independent of the architecture used. At the same time we aim to suppress the effect of other confounding factors in
the model performance, thus we build our model on top of an existing baseline architecture. In particular, we follow the
simple GIN architecture and we concatenate structural identifiers to node or edge features depending on the variant. Then
the hidden representation is updated as follows:

ht+1
v = UPt+1

(
[htv;x

V
v ] +

∑
u∈Nv

[htu;x
V
u ]
)
, (7)

for GSN-v, and
ht+1
v = UPt+1

(
[htv;x

E
{v,v}] +

∑
u∈Nv

[htu;x
E
{u,v}]

)
, (8)

for GSN-e, where xE{v,v} is a dummy variable used to distinguish self-loops from edges. We didn’t find training the ε
parameter used in GIN to make a difference. Note that this architecture, is less expressive than our general formulation.
However, we found it to work well in practice for the TUD datasets, possibly due to its simplicity and small number of
parameters.

We implement an architecture similar to GIN (Xu et al., 2019), i.e. 4 message passing layers, jumping knowledge from
all the layers (Xu et al., 2018) (including the input), transformation of each intermediate graph-level representation by a
linear layer, sum readout for biological and mean readout for social networks. Node features are one-hot encodings of the
categorical node labels. Similarly to the baseline, the hyperparameters search space is the following: batch size in {32, 128}
(except for Collab where only 32 was searched due to GPU memory limits), dropout in {0,0.5}, network width in {16,32}
for biological networks, 64 for social networks, learning rate in {0.01, 0.001}, decay rate in {0.5,0.9} and decay steps in
{10,50} (number of epochs after which the learning rate is reduced by multiplying with the decay rate). For social networks,
since they are not attributed graphs, we also experimented with using the degree as a node feature, but in most cases the
structural identifiers were sufficient.

Model selection is done in two stages. First, we choose a substructure that we perceive as promising based on indications
from the specific domain: triangles for social networks and Proteins, and 6-cycles (motifs) for molecules. Under this
setting we tune model hyperparameters for a GSN-e model. Then, we extend our search to the parameters related to the

https://chrsmrrs.github.io/datasets/
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Table 3: Chosen hyperparameters for each the two GSN variants for each dataset

Dataset MUTAG PTC PROTEINS NCI1 COLLAB IMDB-B IMDB-M

GSN-e

batch size 32 128 32 32 32 32 32
width 32 16 32 32 64 64 64
decay rate 0.9 0.5 0.5 0.9 0.5 0.5 0.5
decay steps 50 50 10 10 50 10 10
dropout 0.5 0 0/5 0 0 0 0
lr 10−3 10−3 10−2 10−3 10−2 10−3 10−3

degree No No No No No No Yes
substructure type graphlets motifs same graphlets same same same
substrucure family cycles cycles cliques cycles clique clique cliques
k 6 6 4 15 3 5 5

GSN-v

batch size 32 128 32 32 32 32 32
width 32 16 32 32 64 64 64
decay rate 0.9 0.5 0.5 0.9 0.5 0.5 0.5
decay steps 50 50 10 10 50 10 10
dropout 0.5 0 0.5 0 0 0 0
lr 10−3 10−3 10−2 10−3 10−2 10−3 10−3

degree No No No No No Yes Yes
substructure type graphlets graphlets same same same same same
substrucure family cycles cycles cliques cycles cliques clique cliques
k 12 10 4 3 3 4 3

substructure collection: i.e. the maximum size k and motifs against graphlets. In all the molecular datasets we search
cycles with k = 3, . . . , 12, except for NCI1, where we also consider larger sizes due to the presence of large rings in the
dataset (macrocycles (Liu et al., 2017)). For social networks, we searched cliques with k = 3, 4, 5. In Table 3 we report the
hyperparameters chosen by our model selection procedure, including the best performing substructures.

The seven datasets6 we chose are the intersection of the datasets used by the authors of our main baselines: the Graph
Isomorphism Network (GIN) (Xu et al., 2019), a simple, yet powerful GNN with expressive power equal to the 1-WL test,
and the Provably Powerful Graph Network (PPGN) (Maron et al., 2019a), a polynomial alternative to the Invariant Graph
Network (Maron et al., 2019b), that increases its expressive power to match the 2-FWL. We also compare our results to other
GNNs as well as Graph Kernel approaches. Our main baseline from the GK family is the Graph Neural Tangent Kernel
(GNTK) (Du et al., 2019a), which is a kernel obtained from a GNN of infinite width. This operates in the Neural Tangent
Kernel regime (Jacot et al., 2018; Allen-Zhu et al., 2019; Du et al., 2019b).

Table 2 is an extended version of Table 1 of the main paper, where the most prominent methods are reported, regardless of
the splits they were evaluated on. For DGK (best variant) (Yanardag & Vishwanathan, 2015), FSGD (Verma & Zhang, 2017),
AWE (Ivanov & Burnaev, 2018), ECC (Simonovsky & Komodakis, 2017), PSCN (Niepert et al., 2016), DiffPool (Ying
et al., 2018b), CCN (Kondor et al., 2018) (slightly different setting since they perform a train, validation, test split), 1-2-3
GNN (Morris et al., 2019) and GNTK (Du et al., 2019a), we obtain the results from the original papers. For RWK (Gärtner
et al., 2003), GK (Shervashidze et al., 2009), PK (Neumann et al., 2016), DCNN (Atwood & Towsley, 2016) and DGCNN
(Zhang et al., 2018), we obtain the results from the DGCNN paper, where the authors reimplemented these methods and
evaluated them with the same split. Similarly, we obtain the WLK (Shervashidze et al., 2011) and GIN (Xu et al., 2019)
results from the GIN paper, and IGN (Maron et al., 2019b) and PPGN (Maron et al., 2019a) results from the PPGN paper.

E. Related Work
Expressive power of GNNs and the WL hierarchy The seminal results in the theoretical analysis of the expressivity of
GNNs (Xu et al., 2019) and k-GNNs (Morris et al., 2019) established that traditional message passing based GNNs are at
most as powerful as the 1-WL test. Chen et al. (Chen et al., 2019) showed that graph isomorphism is equivalent to universal
invariant function approximation. Maron et al. (Maron et al., 2019b) studied Invariant Graph Networks (IGN) constructed to
be invariant to symmetry groups, which were later shown that in order to be universal they must involve tensors of order no
less than linear w.r.t the graph size n (Maron et al., 2019c; Keriven & Peyré, 2019). Similarly to (Morris et al., 2019), IGNs

6more details on the description of the datasets and the corresponding tasks can be found at (Xu et al., 2019).
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were studied in the context of the WL hierarchy (Maron et al., 2019a); it was shown that k-order IGNs are as expressive as
k-WL and a 3-WL equivalent variant based on matrix multiplication, instead of linear layers, has been also proposed. A
similar construction is Ring-GNN, proposed in (Chen et al., 2019). The main drawback of these methods is the complexity
and memory requirements of O(nk), and the number of parameters for linear IGNs of O(Bk), making them impractical.

From a different perspective, Sato et al. (Sato et al., 2019) and Loukas (Loukas, 2020) showed the connections between
GNNs and distributed local algorithms (Angluin, 1980; Linial, 1992; Naor & Stockmeyer) and suggested alternative models
that employ either local orderings, making GNNs more powerful than the WL test, or unique global identifiers, making
GNNs universal. It was later shown that random features (Sato et al., 2020) can serve this role and allow node disambiguation
in GNNs. However, these methods lack a principled way to choose orderings/identifiers to be shared across graphs (that
would require a graph canonisation procedure). Other proposed methods (Murphy et al., 2019; Dasoulas et al., 2020) take
into account all possible node permutations and can therefore be intractable; required approximations are at the cost of
compromising expressivity.

Solely quantifying the power of GNNs in terms of their ability to distinguish non-isomorphic graphs does not provide the
necessary granularity: even the 1-WL test can distinguish almost all (in the probabilistic sense) non-isomorphic graphs
(Babai et al., 1980). Chen et al. (Chen et al., 2020) approached GNN and IGN expressivity by studying their limitations in
counting substructures, and showing that GNNs can count only nodes, edges and star-shaped graphs, while k-IGNs can
count any substructure of size k at initialisation. Similarly, for the k-WL tests, there have been efforts to analyse their
power as graph invariants (Fürer, 2010; 2017; Arvind et al., 2019; Dell et al., 2018). It was established, for example, that
the 3-WL test is more powerful than spectral invariants, can count (not necessarily induced) cycles and paths of length
up to 7, but not 4-cliques, while the k-WL test can count the number of subgraph homomorphisms of treewidth up to k.
These characterizations of expressivity are more intuitive and informative and serve as our motivation for the design of more
powerful architectures.

Substructures in Complex Networks The idea of analysing complex networks based on small-scale topological charac-
teristics dates back to the 1970’s and the notion of triad census (Holland & Leinhardt, 1976). The seminal paper of Milo et
al. (Milo et al., 2002) coined the term network motifs as over-represented subgraph patterns shown to characterise certain
functional properties of complex networks, and this idea was later used to explain higher order organisational patterns in
many systems (Benson et al., 2016; Paranjape et al., 2017; Kuramochi & Karypis, 2001; Kramer et al., 2001; Deshpande
et al., 2005). The closely related concept of graphlets (Pržulj et al., 2004; Pržulj, 2007; Milenković & Pržulj, 2008; Sarajlić
et al., 2016), different from motifs in being induced subgraphs, has been successfully used as a topological signature for
network similarity. Our work is similar in spirit with the graphlet degree vector (GDV) (Pržulj, 2007), a node descriptor
based on graphlet counting. In our work, we endeavour to combine these ideas with message passing, so as to learn richer
representations by diffusing structural descriptors along with node and edge features through the graph.

Substructures have been also used in ML. In particular, subgraph patterns have been used to define Graph Kernels (GKs)
(Horváth et al., 2004; Shervashidze et al., 2009; Costa & De Grave, 2010; Kriege & Mutzel, 2012), with the most prominent
being the graphlet kernel (Shervashidze et al., 2009), also based on counting subgraph occurrences. In comparison to GNNs,
these methods usually only extract graph-level representations and not node-level. Motif-based node embeddings (Dareddy
et al., 2019; Rossi et al., 2018) and diffusion operators (Monti et al., 2018; Sankar et al., 2019; Lee et al., 2019) that employ
adjacency matrices weighted according to motif occurrences, have recently been proposed for graph representation learning;
these can be expressed by our general formulation. Finally, GNNs that operate in larger induced neighbourhoods (Li et al.,
2019; Kim et al., 2019) or higher-order paths (Flam-Shepherd et al., 2020) have prohibitive complexity since the size of
these neighbourhoods grows exponentially. Remotely related to our work is also the suggestion to approximate the subgraph
isomoprhism counting problem with neural networks trained specfically for this task (Liu et al., 2019).


