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Abstract
The popularity of graph neural networks has
sparked interest, both in academia and in indus-
try, in developing methods that scale to very large
graphs such as Facebook or Twitter social net-
works. In most of these approaches, the compu-
tational cost is alleviated by a sampling strategy
retaining a subset of node neighbors or subgraphs
at training time. In this paper we propose a new,
efficient and scalable graph deep learning architec-
ture, which sidesteps the need for graph sampling
by using graph convolutional filters of different
size that are amenable to efficient precomputation,
allowing extremely fast training and inference.
Our architecture allows using different local graph
operators (e.g. motif-induced adjacency matrices
or Personalized Page Rank diffusion matrix) to
best suit the task at hand. We conduct extensive
experimental evaluation on various open bench-
marks and show that our approach is competitive
with other state-of-the-art architectures, while re-
quiring a fraction of training and inference time.

1. Introduction
Deep learning on graphs, also known as geometric deep
learning (GDL) (Bronstein et al., 2017) or graph represen-
tation learning (GRL) (Hamilton et al., 2017b; Battaglia
et al., 2018; Zhang et al., 2018), has emerged in a matter
of just a few years from a niche topic to one of the most
prominent fields in machine learning. Graph deep learning
models have recently scored successes in various applica-
tions relying on modeling relational data, see e.g. (Zhang &
Chen, 2018; Qi et al., 2018; Monti et al., 2016; Choma et al.,
2018; Duvenaud et al., 2015; Gilmer et al., 2017; Parisot
et al., 2018; Zitnik et al., 2018; Veselkov et al., 2019; Gainza
et al., 2019; Rossi et al., 2019; Monti et al., 2019). Graph
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neural networks (GNNs) seek to generalize classical convo-
lutional architectures (CNNs) to graph-structured data, with
a wide variety of convolution-like operations available in
the literature (Scarselli et al., 2008; Defferrard et al., 2016;
Atwood & Towsley, 2016; Niepert et al., 2016; Simonovsky
& Komodakis, 2017; Monti et al., 2016; Kipf & Welling,
2017; Wu et al., 2019; Velickovic et al., 2018; Hamilton
et al., 2017a).

Until recently, most of the research in the field has focused
on small-scale datasets, and relatively little effort has been
devoted to scaling these methods to web-scale graphs. Scal-
ing is a major challenge precluding the wide application of
graph deep learning methods in industrial settings. Com-
pared to Euclidean neural networks where the training loss
can be decomposed into individual samples and computed
independently, graph convolutional networks diffuse infor-
mation between nodes along the edges of the graph, making
the loss computation interdependent for different nodes.
Furthermore, in typical graphs the number of nodes grows
exponentially with the increase of the filter receptive field,
incurring significant computational and memory complexity.
So far, various graph sampling approaches (Hamilton et al.,
2017a; Ying et al., 2018; Chen et al., 2018; Huang et al.,
2018; Chen & Zhu, 2018; Chiang et al., 2019; Zeng et al.,
2019; Zou et al., 2019) have been proposed as a way to alle-
viate the cost of training graph neural networks by selecting
a small number of neighbors that reduce the computational
and memory complexity. Such methods can potentially
scale to web-size graphs (Ying et al., 2018).

In this paper, we take a different approach for scalable deep
learning on graphs. We propose SIGN, a simple scalable
graph neural network architecture, inspired by the inception
module (Szegedy et al., 2015; Kazi et al., 2019), which
generalizes several previous methods such as GCN (Kipf &
Welling, 2017), S-GCN (Wu et al., 2019), ChebNet (Deffer-
rard et al., 2016), and MotifNet (Monti et al., 2018). SIGN
combines graph convolutional filters of different types and
sizes that are amenable to efficient precomputation, allow-
ing extremely fast training and inference with complexity
independent on the graph structure.

The most important observation of our paper is that employ-
ing SIGN with only one graph convolutional layer, we are
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Table 1. Theoretical time complexity, where Lc, Lff is the number
of graph convolition and MLP layers, r is the filter size, N the
number of nodes (in training or inference, respectively), |E| the
number of edges, and d the feature dimensionality (assumed fixed
for all layers). For GraphSAGE, k is the number of sampled
neighbors per node. Forward pass complexity corresponds to an
entire epoch where all nodes are seen.

Preproc. Forward Pass
GraphSAGE O(kLcN) O(kLcNd2)
ClusterGCN O(|E|) O(Lc|E|d+ LffNd

2)
GraphSAINT O(kN) O(Lc|E|d+ LffNd

2)
SIGN-r O(r|E|d) O(rLffNd

2)

Figure 1. The SIGN architecture for r generic graph filtering oper-
ators. Θk represents the k-th dense layer transforming node-wise
features downstream the application of operator k, | is the concate-
nation operation and Ω refers to the dense layer used to compute
final predictions.

able to achieve results on par with the state-of-the-art, while
being faster in training and, especially, inference (even one
order of magnitude speedup). We provide extensive experi-
mental validation of this claim on large-scale graph learning
datasets. This result raises the important question on when
deep graph neural network architectures are useful, espe-
cially when scalability is required. Significant effort has
recently been devoted to methods allowing to design deep
graph neural networks with many graph convolutional lay-
ers (Xu et al., 2018; Gong et al., 2020; Li et al., 2019; Zhao
& Akoglu, 2020; Rong et al., 2020), which otherwise ap-
pear difficult to train (Li et al., 2018; Klicpera et al., 2018;
Wu et al., 2020). We conjecture, on the contrary, that deep
graph learning architectures are not useful for general ir-
regular graphs and argue that future research in the field
should focus on designing local more expressive operators
(Barbarossa & Sardellitti, 2019; Monti et al., 2018; Flam-
Shepherd et al., 2020) rather than going deeper.

2. Scalable Inception Graph Neural Networks
In this work we propose SIGN, an alternative method to
scale graph neural networks to very large graphs. The key
building block of our architecture is a set of linear diffusion
operators represented as n×n matrices A1, . . . ,Ar, whose

application to the node-wise features can be pre-computed.

Let G = (V = {1, . . . , n}, E ,W) be an undirected
weighted graph, represented by the symmetric n × n ad-
jacency matrix W, where wij > 0 if (i, j) ∈ E and zero
otherwise. Let also D = diag(

∑n
j=1 w1j , . . . ,

∑n
j=1 wnj)

be the degree matrix. We denote by A = D−1/2WD−1/2

the normalized adjacency matrix. We further assume that
each node is endowed with a d-dimensional feature vector
and arrange all the node features as rows of the n×d matrix
X. For node-wise classification tasks, our architecture has
the form (Figure 1):

Z = σ ([XΘ0,A1XΘ1, . . . ,ArXΘr])

Y = ξ (ZΩ) , (1)

where Θ0, . . . ,Θr and Ω are learnable matrices respec-
tively of dimensions d× d′ and d′(r + 1)× c for c classes,
and σ, ξ are non-linearities, the second one computing class
probabilities. We denote a model with r operators by SIGN-
r.

A key observation is that matrix products A1X, . . . ,ArX,
in equation (1) do not depend on the learnable model pa-
rameters and can be easily precomputed. For large graphs,
distributed computing infrastructures such as Apache Spark
can speed up computation. This effectively reduces the
computational complexity of the overall model to that of
a multi-layer perceptron (MLP), i.e. O(rLffNd

2), where
d is the number of features, N the number of nodes in
the training/testing graph and Lff is the overall number of
feed-forward layers in the model. Table 1 compares the com-
plexity of our SIGN model to other scalable architectures
GraphSAGE, ClusterGCN, and GraphSAINT. Importantly,
the forward and backward pass complexity of our model
does not depend on the graph structure, in contrast to graph
sampling-based methods such as ClusterGCN and Graph-
SAINT that can potentially be significantly slowed down
by ‘unfriendly’ graphs. Unlike the aforementioned meth-
ods, SIGN is not based on sampling nodes or subgraphs,
operations potentially introducing bias in training.

Choice of the operators. Generally speaking, the choice
of the diffusion operators jointly depends on the task, graph
structure, and the features. In social networks, operators
induced by triangles or cliques might help distinguishing
edges representing weak or strong ties (Granovetter, 1982).
In graphs with noisy connectivity, it was shown diffusion op-
erators based on personalized PageRank (PPR) or heat ker-
nel can boost performance (Klicpera et al., 2019). In our ex-
periments, we choose three specific types of operators: sim-
ple (normalized) adjacency, personalized PageRank-based
adjacency, and triangle-based adjacency matrices, as well as
their powers. We denote by SIGN(p,s,t) with r = p+ s+ t
the configuration using p, s, and t powers of simple, PPR-
based, and triangle-based adjacency matrices, respectively.
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Table 2. Micro-averaged F1 score average and standard deviation over 10 runs with the same train/val/test split but different random
model initialization. For SIGN, we show the best performing configurations. The top three performance scores are highlighted as: First,
Second, Third. † Requires a GPU with 33GB of memory.

OGBN-Products
Reddit Flickr PPI Yelp Train Val Test

GCN 0.933±0.000 0.492±0.003 0.515±0.006 0.378±0.001 0.929±0.001 0.917±0.001 0.757±0.002†
FastGCN 0.924±0.001 0.504±0.001 0.513±0.032 0.265±0.053 — — —
Stoch.-GCN 0.964±0.001 0.482±0.003 0.963±0.010 0.640±0.002 — — —
AS-GCN 0.958±0.001 0.504±0.002 0.687±0.012 — — — —
GraphSAGE 0.953±0.001 0.501±0.013 0.637±0.006 0.634±0.006 0.930±0.002 0.916±0.001 0.780±0.002†
ClusterGCN 0.954±0.001 0.481±0.005 0.875±0.004 0.609±0.005 0.928±0.004 0.904±0.003 0.752±0.004
GraphSAINT 0.966±0.001 0.511±0.001 0.981±0.004 0.653±0.003 0.933±0.001 0.918±0.001 0.773±0.002
SIGN 0.968±0.000 0.514±0.001 0.970±0.003 0.625±0.003 0.970±0.005 0.931±0.001 0.776±0.001
(p, s, t) (4, 2, 0) (4, 0, 1) (2, 0, 1) (2, 0, 1) (5, 3, 0)

Inception-like module. In the configuration SIGN(r,0,0),
we use the GCN-normalized adjacency matrix B =
D̃−1/2W̃D̃−1/2 and define Ak = Bk for k = 1, . . . , r.
This model is analogous to the popular Inception module
(Szegedy et al., 2015) for classic CNN architectures: it con-
sists of convolutional filters of different sizes determined
by the parameter r, where r = 0 corresponds to 1 × 1
convolutions in the inception module (amounting to linear
transformations of the features in each node without diffu-
sion across nodes). Owing to this analogy, we refer to our
model as the Scalable Inception Graph Network (SIGN). It
is also easy to observe that various graph convolutional lay-
ers can be obtained as particular settings of (1). In particular,
by setting the σ non-linearity to PReLU (He et al., 2015),
ChebNet, GCN, and S-GCN can be automatically learnt if
suitable diffusion operator B and activation ξ are used (see
Supplementary Materials).

3. Experiments
Datasets. We evaluated SIGN on node-wise classification
tasks, both in transductive and inductive settings. Induc-
tive experiments were performed on four datasets: Reddit
(Hamilton et al., 2017a), Flickr, Yelp (Zeng et al., 2019),
and PPI (Zitnik & Leskovec, 2017). To date, these are the
largest graph learning inductive node classification bench-
marks available in the public domain. Transductive experi-
ments were performed on the new OGBN-Products dataset
(Hu et al., 2020), the largest semi-supervised node classi-
fication instance from the Open Graph Benchmark at the
time of writing. Furthermore, we tested the scalability of
our method on Wikipedia links (Kon, 2017), a large-scale
network of links between articles in the English version
of Wikipedia. Statistics for all the datasets are reported in
Supplementary Materials.

Setup. We experimented with several SIGN(p, s, t) configu-
rations, with p the maximum power of the GCN-normalized
adjacency matrix, s that of a random-walk normalized PPR
diffusion operator (Klicpera et al., 2019), and t that of a

row-normalized triangle-induced adjacency matrix (Monti
et al., 2018), with weights proportional to edge occurrences
in closed triads. PPR-based operators are computed from a
symmetrically normalized adjacency transition matrix in an
approximated form, with a restart probability of α = 0.01
for inductive datasets and α = 0.05 in the transductive case.
The Wikipedia dataset, due to the lack of node attributes
and labels, is only used to assess scalability: we randomly
generate 100-dimensional node feature vectors and scalar
targets and consider the whole network for both training and
inference. We refer the reader to the Supplementary Mate-
rials for specifics on the hyperparameter tuning procedure
and further implementation details.

Baselines. On the inductive datasets, we compare our
method to GCN (Kipf & Welling, 2017), FastGCN (Chen
et al., 2018), Stochastic-GCN (Chen & Zhu, 2018), AS-
GCN (Huang et al., 2018), GraphSAGE (Hamilton et al.,
2017a), ClusterGCN (Chiang et al., 2019), and Graph-
SAINT (Zeng et al., 2019), which constitute the current
state-of-the-art. On OGBN-Products we compare our per-
formance against the scalable ClusterGCN (Chiang et al.,
2019), and GraphSAINT (Zeng et al., 2019). We addition-
ally report the results attained by GCN (Kipf & Welling,
2017) and GraphSAGE (Hamilton et al., 2017a), although
they exhibit an intractable memory footprint on this dataset
(Hu et al., 2020).

Performance. Table 2 presents the results on all the in-
ductive datasets, as well as the transductive OGBN-Products.
We report the best performing SIGN configuration; results
for other configurations and further ablations are in Sup-
plementary Materials. For the inductive datasets we re-
port, in line with (Zeng et al., 2019), the micro-averaged
F1 score means and standard deviations computed over 10
runs. SIGN outperforms other methods on Reddit and Flickr,
and performs competitively to state-of-the-art on PPI. Our
performance on Yelp is worse than in the other datasets;
we hypothesize that a more tailored operators choice is re-
quired to better suit the characteristics of this dataset. As
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Table 3. Mean and standard deviation of preprocessing, training (one epoch) and inference times, in seconds, on Wikipedia, computed over
10 runs. SIGN-r denotes architecture with r precomputed operators. Preprocessing and training times for ClusterGCN are not reported
due to the clustering algorithm failing to complete.

OGBN-Products Wikipedia
Preprocessing Training Inference Preprocessing Training Inference

ClusterGCN 36.93 ± 0.52 13.34 ± 0.16 93.00 ± 0.68 — — 183.76 ± 3.01
GraphSAINT 52.06 ± 0.54 2.89 ± 0.05 94.76 ± 0.81 123.60 ± 1.60 135.73 ± 0.06 209.86 ± 4.73
SIGN-2 88.21 ± 1.33 1.04 ± 0.10 2.86 ± 0.10 192.88 ± 0.12 62.37 ± 0.17 13.40 ± 0.15
SIGN-4 160.16 ± 1.20 1.54 ± 0.04 3.79 ± 0.08 326.21 ± 1.14 93.84 ± 0.08 18.15 ± 0.05
SIGN-6 226.48 ± 1.43 2.05 ± 0.00 4.84 ± 0.08 459.24 ± 0.14 125.24 ± 0.03 22.94 ± 0.02
SIGN-8 297.92 ± 2.92 2.53 ± 0.04 5.88 ± 0.09 598.67 ± 0.82 154.73 ± 0.12 27.69 ± 0.11

for OGBN-Products, in accordance to (Hu et al., 2020), we
report performance on training, validation, and test sets.
Our proposed model attains state-of-the-art results using the
(5, 3, 0) configuration by outperforming other methods on
all these sets, demonstrating the ability of SIGN to general-
ize over the out-of-distribution evaluation sets proposed in
OGB (Hu et al., 2020).

Operator combination. We notice that best performance
is obtained on each benchmark by a specific combination
of operators, remarking the fact that each dataset features
particular topological and content characteristics requiring
suitable filters. Interestingly, we also observe that, while
the PPR operators do not bring significant improvements in
the inductive setting, they are beneficial on the transductive
OGBN-Products. This is in accordance with (Klicpera et al.,
2019), where the effectiveness of PPR diffusion operators
in transductive settings has been extensively studied.

Runtime. While performing on par or better than state-of-
the-art methods on most benchmarks in terms of accuracy,
our method has the advantage of being significantly faster
than other methods for large graphs. Average training, in-
ference, and preprocessing times for our largest datasets,
i.e. Wikipedia and OGBN-Products, are reported in Table 3.
Our model is of comparable speed w.r.t. GraphSAINT in
training1, while being by far the fastest approach in infer-
ence: all SIGN architectures are always at least one order of
magnitude faster than other methods. SIGN’s preprocessing
is slightly longer than other methods, but we notice that
most of the calculations can be cast as sparse matrix multi-
plications and are easily parallelized with frameworks for
distributed computing. We envision to engineer faster and
even more scalable SIGN preprocessing implementations in
future developments of this work.

4. Conclusion and Future Work
Our architecture achieves a good trade off between sim-
plicity, allowing efficient and scalable applications to very

1Training time is measured as forward-backward time to com-
plete one epoch.

large graphs and very fast training and inference, and ex-
pressiveness, with competitive performances on a variety of
applications on common graph learning benchmarks. For
this reason, SIGN is well suited for industrial large-scale
systems. Remarkably, we use only one graph convolutional
layer and hence a shallow architecture.

In light of our results, the most important question is when
(or whether at all) one should apply deep architectures to
graphs, where by ‘depth’ we refer to the number of stacked
graph convolutional layers. We conjecture that going deep
with graph neural networks on irregular graphs is of little
use and believe that a promising direction for future research
is, rather than ‘going deep’, to ‘go wide’, in the sense of ex-
ploring more expressive local operators. In our experiments,
triangle-based operators showed promising results. Possible
extensions can employ operators that account for higher-
order structures such as simplicial complexes (Barbarossa
& Sardellitti, 2019), paths (Flam-Shepherd et al., 2020), or
motifs (Monti et al., 2018) that can be tailored to the spe-
cific problem. Furthermore, temporal information can be
integrated e.g. in the form of temporal motifs (Paranjape
et al., 2017).
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Supplementary Materials
Generalization of other graph convolutional layers

By setting the σ non-linearity to PReLU (He et al., 2015), SIGN can automatically learn ChebNet, GCN, and S-GCN if
suitable diffusion operator B and activation ξ are used (see Table 4).

Table 4. SIGN can replicate some popular graph convolutional layers (α represents the learnable parameter of a PReLU activation).

B1, . . . ,Br α r Θ0, . . . ,Θr Ω

CHEBNET ∆, . . . ,∆r 1 r Θ0, . . . ,Θr [I, . . . , I]>

GCN r = 1, Ã 1 1 0,Θ [0, I]>

S-GCN r = 1, Ã 1 L 0, . . . ,0,Θ [0, . . . ,0, I]>

Datasets

Reddit and Flickr are multiclass classification problems, Yelp and PPI are multilabel classification instances. In Reddit, the
task is to predict communities of online posts based on user comments. In Flickr the task is image categorization based on
the description and common properties of online images. In Yelp the objective is to predict business attributes based on
customer reviews; the task of PPI consists in predicting protein functions from the interactions of human tissue proteins.
OGBN-Products represents an Amazon product co-purchasing network (Bhatia et al., 2016) where the task is to predict the
category of a product in a multi-class classification setup. Wikipedia links is a large-scale directed network of links between
articles in the English version of Wikipedia; for the sake of our experiments, edge directions have been discarded. Statistics
for all datasets are reported in Table 5.

Table 5. Summary of (s)ingle and (m)ulti-label dataset statistics. Wikipedia is used, with random features, for timing purposes only.

n |E| Avg. Deg. d CLASSES TRAIN / VAL / TEST
Wikipedia 12,150,976 378,142,420 62 100 2 100% / — / 100%

OGBN-Products 2,449,029 61,859,140 51 100 47 10% / 2% / 88%
Reddit 232,965 11,606,919 50 602 41(S) 66% / 10% / 24%

Yelp 716,847 6,977,410 10 300 100(M) 75% / 10% / 15%
Flickr 89,250 899,756 10 500 7(S) 50% / 25% / 25%

PPI 14,755 225,270 15 50 121(M) 66% / 12% / 22%

Triangle-based Operators

The triangle operator encodes the concept of homophily with a stronger acceptation with respect to the adjacency matrix:
two nodes are connected by an edge only if they are both part of the same closed triad, i.e. if they are connected together
and are both connected to the same node. Edge weights are proportional to the amount of triangles an edge belongs to, and
they are normalised row-wise so to represent, for each node in a neighbourhood, its relative importance with respect to all
the other neighbors.

This brings us to two considerations: first of all, the triangle operator is not carrying information related to nodes which
were not already in the neighborhood. Secondly, it emphasizes the connections with those neighbors which are more related
to our source node in virtue of the relationship described above. We can thus envision this operator being more useful in
those graphs where this kind of relationship can be more discriminative within a neigborhood.

In Figure 2 we plot the normalized frequency distribution of intra-neighborhood standard deviation for the weights of
triangle operators. It is interesting to notice the significantly different trends characterizing Flickr and Reddit, the two
datasets where we experimentally observed triangle operators to bring, respectively, the largest and the smallest performance
improvement.2 Flickr tends to exhibit larger weight variations than other datasets, while, on the contrary, Reddit is the
dataset where the smallest intra-neighborhood variation is observed. This suggests how, in Flickr, the triangle operator is

2Flickr – best without triangles is (4, 0, 0): 0.508 ± 0.001, best with triangles is (4, 0, 1): 0.514 ± 0.001. Reddit – best without
triangles is (4, 2, 0): 0.968± 0.000, best with triangles is (4, 0, 1): 0.967± 0.000.
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Figure 2. Normalized frequency distributions for row-wise variations on the diffusion weights of triangle operators over inductive datasets.
Variations are measured as the standard deviation on the weight value over original neighborhoods from the test graph.

able to restrict feature aggregation to a subset of the original neighbors –those co-occurring in the larger number of triangles–
while in Reddit it mostly boils down to uniform averaging, making this operator not much more expressive than a simple
adjacency matrix.

For replicability we report that, in the computation of triangle operators for PPI and Yelp, we retained the self-loops already
present in the original datasets. Investigations on how the presence of these edges affects the expressiveness of the triangle
operator are left for future work.

Model Selection and Hyperparameter Tuning

Architectural and optimization hyperparameters (weight decay, dropout rate, batch size, learning rate, number of feedforward
layers and units in inception and classification modules) were estimated using Bayesian optimization with a tree Parzen
estimator surrogate function (Bergstra et al., 2011) over all inductive datasets. For each experiment we chose the set
of hyperparameters matching the best average validation loss calculated over 5 runs. For the the transductive setting,
we employed standard exhaustive search on a predefined hyperparameter grid, keeping the set of hyperparameters with
minimum validation loss over a single run. The hyperparameter search space for the inductive setting and grid for the
transductive one are described in Table 6. The estimated hyperparameters for each best SIGN configuration are reported in
Table 7 for the inductive datasets and Table 8 for OGBN-Products.

Model convergence

In Figure 3 we plot the validation performance on OGBN-Products from the start of the training as a function of run time for
ClusterGCN, GraphSaint and several SIGN configurations. SIGN converges to a better accuracy than other methods. It also
exhibits much faster convergence than ClusterGCN and comparable speed than to GraphSAINT.

Implementation

All experiments, including timings, were run on an AWS p2.8xlarge instance, with 8 NVIDIA K80 GPUs, 32 vCPUs, a
processor Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz and 488GiB of RAM. SIGN is implemented using Pytorch (Paszke
et al., 2019).
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Table 6. Hyperparameter search space/grid. Ranges in the form [low, high] and sampling distributions. Inception Layers and Classification
Layers are the number of feedforward layers in, respectively, the representation part of the model (replacing Θ) and the classification part
of the model (replacing Ω). The only exception is represented by Yelp: the Ω module was kept shallow (no hidden layers) to allow for
lighter training and the left bound on the dropout interval was lowered to 0.0 as even mild values for this hyperparameter showed to be
particularly detrimental in early experiments.

TRANSDUCTIVE INDUCTIVE
HYPERPARAMETER VALUES SPACE DISTRIBUTION

Learning Rate 0.0001, 0.001 [0.0001, 0.0025] UNIFORM
Batch Size 4096, 8192, 16384 [128, 2048] QUANTIZED UNIFORM

Dropout 0.5 [0.2, 0.8] UNIFORM
Weight Decay 0.0, 0.00001 [0, 0.0001] UNIFORM

Inception Layers 1 1, 2 —
Inception Units 256, 512 [128, 512] QUANTIZED UNIFORM

Classification Layers 1 1, 2 —
Classification Units 256, 512 [512, 1024] QUANTIZED UNIFORM

Activation PRELU RELU, PRELU —

Table 7. Hyperparameters chosen for the best configuration of SIGN on inductive datasets.

HYPERPARAMETER REDDIT FLICKR PPI YELP
Learning Rate 0.00012278578238312588 0.0017230142114465549 0.0014386686616183625 0.0007758652074111595

Dropout 0.707328910934901 0.7608352140584778 0.3085607444207686 0.01
Weight Decay 9.176773905054599E-05 9.419820474221673E-05 3.2571631135664696E-06 4.452466189193362E-07

Batch Size 830 330 210 90
Inception Layers 1 2 2 2

Inception Units 460 465 315 320
Classification Layers 1 1 2 0

Classification Units 675 925 870 —
Activation RELU PRELU RELU RELU

Table 8. Hyperparameters chosen for the best configuration of SIGN on OGBN-Product dataset.

HYPERPARAMETER OGBN-PRODUCTS
Learning Rate 0.0001

Dropout 0.5
Weight Decay 0.0001

Batch Size 4096
Inception Layers 1

Inception Units 512
Classification Layers 1

Classification Units 512
Activation PRELU
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Figure 3. Convergence of different methods on OGBN-Products.


