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Abstract
We study the black-box attacks on graph neural
networks (GNNs) under a novel and realistic con-
straint: attackers have access to only a subset of
nodes in the network, and they can only attack a
small number of them. A node selection step is
essential under this setup. We demonstrate that
the structural inductive biases of GNN models
can be an effective source for this type of attacks.
Specifically, by exploiting the connection between
the backward propagation of GNNs and random
walks, we show that the common gradient-based
white-box attacks can be generalized to the black-
box setting via the connection between the gradi-
ent and an importance score similar to PageRank.
In practice, we find attacks based on this impor-
tance score indeed increase the classification loss
by a large margin, but they fail to significantly
increase the mis-classification rate. Our further
analyses suggest that there is a discrepancy be-
tween the loss and mis-classification rate, as the
latter presents a diminishing-return pattern when
the number of attacked nodes increases. There-
fore, we propose a greedy procedure to correct
the importance score that takes into account of
the diminishing-return pattern. Experimental re-
sults show that the proposed procedure can sig-
nificantly increase the mis-classification rate of
common GNNs on real-world data without access
to model parameters nor predictions.

1. Introduction
Graph neural networks (GNNs) (Wu et al., 2020), the family
of deep learning models on graphs, have shown promising
empirical performance on various applications of machine
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learning to graph data, such as recommender systems (Ying
et al., 2018), social network analysis (Li et al., 2017), and
drug discovery (Shi et al., 2020). Like other deep learn-
ing models, GNNs have also been shown to be vulnerable
under adversarial attacks (Zügner et al., 2018), which has re-
cently attracted increasing research interest (Jin et al., 2020).
Indeed, adversarial attacks have been an efficient tool to an-
alyze both the theoretical properties as well as the practical
accountability of graph neural networks. As graph data have
more complex structures than image or text data, researchers
have come up with diverse adversarial attack setups.

Despite these research efforts, there is still a considerable
gap between the existing attack setups and the reality. It
is unreasonable to assume that an attacker can alter the
input of a large proportion of nodes, and even if there is
a budget limit, it is unreasonable to assume that they can
attack any node as they wish. For example, in a real-world
social network, the attackers usually only have access to a
few bot accounts, and they are unlikely to be among the top
nodes in the network; it is difficult for the attackers to hack
and alter the properties of celebrity accounts. Moreover, an
attacker usually has limited knowledge about the underling
machine learning model used by the platform (e.g., they
may roughly know what types of models are used but have
no access to the model parameters or model predictions).
Motivated by the real-world scenario of attacks, in this paper
we study a new type of black-box adversarial attack for
node classification tasks, which is more restricted and more
realistic, assuming that the attacker has no access to the
model parameters or predictions. Our setup differs from
existing work with a novel constraint on node access, where
attackers only have access to a subset of nodes in the graph,
and they can only manipulate a small number of them.

The proposed black-box adversarial attack requires a two-
step procedure: 1) selecting a small subset of nodes to
attack under the limits of node access; 2) altering the node
attributes or edges under a per-node budget. In this paper,
we focus on the first step and study the node selection strat-
egy. The key insight of the proposed strategy lies in the
observation that, with no access to the GNN parameters
or predictions, the strong structural inductive biases of the
GNN models can be exploited as an effective information
source of attacks. GNNs have explicit structural inductive
biases due to the graph structure and their heavy weight
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sharing design. Our work demonstrates that such structural
inductive biases turn into security concerns, as the graph
structure is usually exposed to the attackers.

Following this insight, we derive a node selection strategy
with a formal analysis of the proposed black-box attack
setup. By exploiting the connection between the back-
ward propagation of GNNs and random walks, we first
generalize the gradient-norm in a white-box attack into a
model-independent importance score similar to the PageR-
ank. In practice, attacking the nodes with high importance
scores increases the classification loss significantly but does
not generate the same effect on the mis-classification rate.
Our analyses suggest that such discrepancy is due to the
diminishing-return effect of the mis-classification rate. We
further propose a greedy correction procedure for calculat-
ing the importance scores. Experiments on three real-world
benchmark datasets and popular GNN models show that the
proposed attack strategy significantly outperforms baseline
methods. We summarize our main contributions as follows.
1) We propose a novel setup of black-box attacks for GNNs
with a constraint of limited node access, which is by far the
most restricted and realistic compared to existing work. 2)
We demonstrate that effective practical adversarial attacks
are still possible under the restricted setup, due to the struc-
tural inductive biases of GNNs. 3) We empirically verify the
effectiveness of the proposed method on three benchmark
datasets with popular GNN models.

2. Related Work
The study of adversarial attacks on graph neural networks
has surged recently. Following a taxonomy of existing work
given by Jin et al. (2020), our work belongs to untargeted
evasion attacks. For the adversarial perturbation, most exist-
ing works of untargeted attacks apply global constraints on
the proportion of node features or the number of edges to be
altered. Our work sets a novel local constraint on node ac-
cess, which is more realistic in practice: perturbation on top
(e.g., celebrity) nodes is prohibited and only a small num-
ber of nodes can be perturbed. Finally, depending on the
attacker’s knowledge about the GNN model, existing work
can be split into three categories: white-box attacks (Xu
et al., 2019; Chen et al., 2018; Wu et al., 2019) have access
to full information about the model, including model param-
eters, input data, and labels; grey-box attacks (Zügner and
Günnemann, 2019; Zügner et al., 2018; Sun et al., 2019)
have partial information about the model and the exact se-
tups vary in a range; in the most challenging setting, black-
box attacks (Dai et al., 2018; Bojchevski and Günnemann,
2018; Chang et al., 2020) can only access the input data
and sometimes the black-box predictions of the model. In
this work, we consider an even more strict black-box attack,
where model predictions are invisible to the attackers. As far

as we know, the only existing works that conduct untargeted
black-box attacks without access to model predictions are
Bojchevski and Günnemann (2018) and Chang et al. (2020).
However both of them require the access to embeddings of
nodes, which are prohibited as well in our setup.

3. Principled Black-Box Attack Strategies
with Limited Node Access

In this section, we derive principled attack strategies on
GNNs under the novel black-box setup.

3.1. Preliminary Notations

We first introduce necessary notations. We denote a graph
as G = (V,E), where V = {1, 2, . . . , N} is the set of
N nodes, and E ⊆ V × V is the set of edges. For a
node classification problem, the nodes of the graph are
collectively associated with node features X ∈ RN×D and
labels y ∈ {1, 2, . . . ,K}N , where D is the dimensionality
of the feature vectors and K is the number of classes. Each
node i’s local neighborhood including itself is denoted as
Ni = {j ∈ V | (i, j) ∈ E} ∪ {i}, and its degree as di =
|Ni|. To ease the notation, for any matrix A ∈ RD1×D2 in
this paper, we refer Aj to the transpose of the j-th row of
the matrix, i.e., Aj ∈ RD2 .

GNN models. Given the graph G, a GNN model is a
function fG : RN×D → RN×K that maps the node features
X to output logits of each node. We denote the output logits
of all nodes as a matrix H ∈ RN×K and H = fG(X).

Random walks. A random walk (Lovász et al., 1993)
on G is specified by the matrix of transition probabilities,
M ∈ RN×N , where Mij = 1/di if (i, j) ∈ E or j = i,
and Mij = 0 otherwise. Mij represents the probability of
transiting from i to j at each step of random walk. Powering
M by t gives us the t-step transition matrix M t.

3.2. White-Box Attacks with Limited Node Access

Problem formulation. Given a classification loss L :
RN×K × {1, . . . ,K}N → R, the problem of white-box
attack with limited node access can be formulated as an
optimization problem as follows:

max
S⊆V

L(H, y) ,
N∑
j=1

Lj(Hj , yj) (1)

subject to |S| ≤ r, di ≤ m,∀i ∈ S,H = f(τ(X,S)),

where r,m ∈ Z+ respectively specify the maximum num-
ber of nodes and the maximum degree of nodes that can
be attacked. Intuitively, we treat high-degree nodes as a
proxy of celebrity accounts in a social network. For simplic-
ity, we have omitted the subscript G of the learned GNN



Practical Adversarial Attacks on Graph Neural Networks

classifier fG. The function τ : RN×D × 2V → RN×D
perturbs the feature matrix X based on the selected node
set S (i.e., attack set). Under the white-box setup, the-
oretically τ can also be optimized to maximize the loss.
However, as our goal is to study the node selection strategy
under the black-box setup, we set τ as a pre-determined
function. In particular, we define the j-th row of the out-
put of τ as τ(X,S)j = Xj + 1[j ∈ S]ε, where ε ∈ RD
is a small constant noise vector constructed by attackers’
domain knowledge about the features.

Our analysis uses the Carlili-Wagner loss, a close approx-
imation of cross-entropy loss and has been used in ad-
versarial attacks on image classifiers (Carlini and Wagner,
2017):Lj(Hj , yj) , maxk∈{1,...,K}Hjk −Hjyj .

The change of loss under perturbation. Next we in-
vestigate how the overall loss changes when we perturb
different nodes. We define the change of loss when perturb-
ing the node i as a function of the perturbed feature vector
x: ∆i(x) = L(f(X ′), y)−L(f(X), y) where X ′i = x and
X ′j = Xj , ∀j 6= i. To concretize the analysis, we consider
the GCN (Kipf and Welling, 2016) model in our following
derivations. Suppose f is an L-layer GCN. With the con-
nection between GCN and random walk (Xu et al., 2018)
and Assumption 1 on the label distribution, we can show
that, in expectation, the first-order Taylor approximation
∆̃i(x) , ∆i(Xi)+(∇x∆i(Xi))

T (x−Xi) is related to the
sum of the i-th column of the L-step random walk transition
matrix ML. We summarize this finding in Proposition 1.

Assumption 1 (Label Distribution). Assume the label dis-
tribution of all nodes follows the same constant categori-
cal distribution, i.e., Pr[yj = k] = qk,∀j = 1, 2, . . . , N,

where 0 < qk < 1 for k = 1, 2, . . . ,K and
∑K
k=1 qk = 1.

Moreover, since the classifier f has been well-trained,
the prediction of f should capture certain relationships
among the K classes. Specifically, we assume the
chance for f predicting any node j as any class k ∈
{1, . . . ,K}, conditioned on the node label yj = l ∈
{1, . . . ,K}, confines to a certain distribution p(k | l), i.e.,

Pr
[(

argmaxc∈{1,...,K}Hjc

)
= k | yj = l

]
= p(k | l).

Proposition 1. For an L-layer GCN model, if Assumption 1
and a technical assumption about the GCN1 hold, then
δi , E

[
∆̃i (x) |x=τ(X,{i})i

]
= C

∑N
j=1[ML]ji, where C

is a constant independent of i.

3.3. Adaptation from White-Box to Black-Box

Now we turn to the black-box setup where we cannot access
to the model parameters or predictions. This means we
are not able to evaluate the objective function L(H, y) of

1This is an assumption made by Xu et al. (2018), which we list
as Assumption 2 in Appendix A.1.

the optimization problem (1). Proposition 1 shows that the
relative ratio of δi/δj between nodes i 6= j only depends
on the transition matrix M , which implies that we can still
optimize the problem (1) in the black-box setup.

Node selection with importance scores. Consider the
change of loss under the perturbation of a set of nodes S. If
we write the change of loss δ as a function of the perturbed
features and take the first order Taylor expansion, we have
δ =

∑
i∈S δi. Therefore δ is maximized by the set of r

nodes with degrees less than m and the largest possible
δi, where m, r are the limits of node access defined in the
problem (1). Therefore, we can define an importance score
for each node i as the sum of the i-th column of ML, i.e.,
Ii =

∑N
j=1[ML]ji, and simply select the nodes with the

highest importance scores to attack. We denote this strategy
as RWCS (Random Walk Column Sum). We note that
RWCS is similar to PageRank. The difference between
RWCS and PageRank is that the latter uses the stationary
transition matrix M∞ for a random walk with restart.

3.4. Diminishing-Return Effect and its Correction

Empirically, We find RWCS significantly increases the clas-
sification loss (See Figure 1 in Appendix A.3). The nonlin-
ear loss actually increases linearly w.r.t. the perturbation
strength (the norm of the perturbation noise ε) for a wide
range, which indicates that ∆̃i is a good approximation of
∆i. Surprisingly, RWCS fails to continue to increase the
mis-classification rate (which matters more in real applica-
tions) when the perturbation strength becomes larger.

Intuitively, the discrepancy between the classification loss
and the mis-classification rate is due to the diminishing-
return effect of the latter: after the prediction of a certain
target node is flipped to a wrong class, further enhancing that
wrong prediction will not contribute to mis-classification
rate. Therefore, we further apply two heuristic correction
steps on top of the RWCS scores, and develop a greedy
iterative node selection procedure.

The first heuristic is that the nodes within a local neighbor-
hood may influence similar target nodes. Following this
heuristic, after each node is selected into the attack set, we
exclude a k-hop neighborhood of the selected node for next
iteration, for a given constant integer k. The second heuris-
tic is that the prediction of a target node will be flipped after
a couple of related nodes are perturbed. According to this
heuristic, we adopt an adaptive version of RWCS scores.
We binarize the L-step random walk transition matrix ML

as M̃ , where [M̃ ]ij = 1 if [ML]ij is among Top-l of [ML]i
and [ML]ij 6= 0. Here, l is a given constant integer. Next,
we define a new adaptive influence score as a function of a
matrix Q: Ĩi(Q) =

∑N
j=1[Q]ji. In the iterative node selec-

tion procedure, we initialize Q as M̃ . We select the node
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Table 1. Summary of the attack performance. The lower the accuracy (in %) the better the attacks. The bold marker denotes the best
performance. The asterisk (*) means the difference between the best strategy and the second-best strategy is statistically significant by a
t-test at significance level 0.05. The error bar (±) denotes the standard error of the mean by 40 independent trials.

Cora Citeseer Pubmed
Method GCN JKNetConcat JKNetMaxpool GCN JKNetConcat JKNetMaxpool GCN JKNetConcat JKNetMaxpool
No-Attack 85.6 ± 0.3 86.2 ± 0.2 85.8 ± 0.3 75.1 ± 0.2 72.9 ± 0.3 73.2 ± 0.3 85.7 ± 0.1 85.8 ± 0.1 85.7 ± 0.1
Random 82.6 ± 0.4 70.7 ± 1.1 71.8 ± 1.1 72.6 ± 0.3 62.7 ± 0.8 63.9 ± 0.8 82.6 ± 0.2 77.3 ± 0.4 77.4 ± 0.5
Degree 80.7 ± 0.4 64.9 ± 1.4 67.0 ± 1.5 70.4 ± 0.4 56.9 ± 0.8 58.7 ± 0.9 81.5 ± 0.4 72.4 ± 0.7 72.3 ± 0.7
PageRank 82.6 ± 0.3 79.6 ± 0.4 79.7 ± 0.4 72.9 ± 0.2 70.2 ± 0.3 70.3 ± 0.3 83.0 ± 0.2 79.3 ± 0.3 79.6 ± 0.3
Betweenness 81.8 ± 0.4 64.1 ± 1.3 65.9 ± 1.4 70.7 ± 0.3 56.3 ± 0.8 58.3 ± 0.9 81.3 ± 0.3 74.1 ± 0.5 74.6 ± 0.5
RWCS 82.8 ± 0.3 79.3 ± 0.5 79.5 ± 0.4 72.9 ± 0.2 69.8 ± 0.3 70.1 ± 0.3 82.1 ± 0.2 77.8 ± 0.3 78.4 ± 0.3
GC-RWCS 80.7 ± 0.5 59.1 ± 1.6* 61.1 ± 1.6* 67.8 ± 0.5* 49.0 ± 0.9* 50.7 ± 1.1* 80.3 ± 0.5* 69.2 ± 0.7* 70.0 ± 0.7*

with highest score Ĩi(Q) subsequently. After each iteration,
suppose we have selected the node i in this iteration, we will
update Q by setting to zero for all the rows where the ele-
ments of the i-th column are 1. The underlying assumption
is that, adding i to the selected set is likely to mis-classify
all the target nodes corresponding to the aforementioned
rows. We name this iterative procedure as the GC-RWCS
(Greedily Corrected RWCS) strategy, and summarize it in
Algorithm 1 in Appendix A.2.

4. Experiments
4.1. Experiment Setup

We test the proposed attack strategies by attacking three
GNN models on three benchmark datasets, Cora, Citeseer,
and Pubmed (Yang et al., 2016). The three GNN models
include GCN (Kipf and Welling, 2016) and two variants of
JKNet (Xu et al., 2018), JKNetConcat and JKNetMaxpool.

Baseline methods for comparison. As we summarized in
Section 2, our proposed black-box adversarial attack setup is
by far the most restricted, and none of existing attack strate-
gies for GNN can be applied. We compare the proposed
attack strategies with baseline strategies by selecting nodes
with top centrality metrics. We compare with three well-
known network metrics capturing different aspects of node
centrality: Degree, Betweenness, and PageRank and name
the attack strategies correspondingly. In classical network
analysis literature (Newman, 2018), real-world networks are
shown to be fragile under attacks to high-centrality nodes.
Therefore we believe these centrality metrics serve as rea-
sonable baselines under our restricted black-box setup. For
the purpose of sanity check, we also include a trivial baseline
Random, which randomly selects the nodes to be attacked.

Nuisance parameters of the attack procedure. For
each dataset, we fix the maximum number of nodes to
attack, r, as 1% of the graph size. We also fix the node
degree limit, m, as the lowest degree of the top 30%
nodes. After the node selection step, we also need to
specify the perturbation vector ε ∈ RD, ideally with
domain knowledge about the feature semantics and the
task. In our experiments, we have to simulate this idea
as we do not know the semantic meaning of the features

in the benchmark datasets. Formally, we specify ε as fol-
lows. For j = 1, 2, · · · , D, εj = λsign(

∑N
i=1

∂L(H,y)
∂Xij

) if

j ∈ arg top-J
([∣∣∣∑N

i=1
∂L(H,y)
∂Xil

∣∣∣]
l=1,2,...,D

)
, and εj = 0

otherwise, where λ is the magnitude of modification. We fix
J = b0.02Dc and λ = 1 for all datasets. While gradients
of the model are involved, we emphasize that only use ex-
tremely limited information of the gradients, i.e., selecting
a few number of important features and the rough individ-
ual directions to perturb at the global level by averaging
gradients on all nodes. We believe such coarse informa-
tion is usually available from domain knowledge about the
classification task.

4.2. Experiment Results

The results clearly demonstrate the effectiveness of the pro-
posed GC-RWCS strategy. GC-RWCS achieves the best
attack performance on almost all experiment settings, and
the difference to the second-best strategy is significant in
almost all cases. It is also worth noting that the proposed
GC-RWCS achieves a 70% larger decrease of the accuracy
than the Random baseline in most cases (see Table 4 in
Appendix A.4). And this is achieved by merely adding the
same constant perturbation vector to the features of 1% of
the nodes in the graph. This verifies that the explicit struc-
tural inductive biases of GNN models make them vulnerable
even in the extremely restricted black-box attack setup.

5. Conclusion
In this paper, we propose a novel black-box adversarial at-
tack setup for GNN models with constraint of limited node
access, which we believe is by far the most restricted and
realistic. Nonetheless, through both theoretical analyses and
empirical experiments, we demonstrate that effective prac-
tical adversarial attacks are still possible due to the strong
and explicit structural inductive biases of GNN models.
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A. Appendix
A.1. Proof of Proposition 1

A GNN fG is usually built by stacking a certain number
(L) of layers, with the l-th layer, 1 ≤ l ≤ L, taking the
following form:

H
(l)
i = σ

∑
j∈Ni

αijWlH
(l−1)
j

 , (2)

where H(l) ∈ RN×Dl is the hidden representation of nodes
with Dl dimensions, output by the l-th layer; Wl is a learn-
able linear transformation matrix; σ is an element-wise non-
linear activation function; and different GNNs have different
normalization terms αij . For instance, αij = 1/

√
didj or

αij = 1/di in Graph Convolutional Networks (GCN) (Kipf
and Welling, 2016). We first remind the reader for some
notations, a GCN model is denoted as a function f , the
feature matrix is X ∈ RN×D, and the output logits H =
f(X) ∈ RN×K . The L-step random walk transition matrix
is ML. More details can be found in in Section 3.1

We first give in Lemma 1 the connection between GCN
models and random walks. Lemma 1 relies on a technical
assumption about the GCN model (Assumption 2) and the
proof can be found in Xu et al. (2018).

Assumption 2 (Xu et al. (2018)). All paths in the compu-
tation graph of the given GCN model are independently
activated with the same probability of success ρ.

Lemma 1. (Xu et al. (2018).) Given an L-layer GCN with
averaging as αi,j = 1/di in Eq. 2, assume that all path in
the computation graph of the model are activated with the
same probability of success ρ (Assumption 2). Then, for any
node i, j ∈ V ,

E
[
∂Hj

∂Xi

]
= ρ ·

1∏
l=L

Wl[M
L]ji, (3)

where Wl is the learnable parameter at l-th layer.

Then we are able to prove Proposition 1 below.

Proof. First, we derive the gradient of the loss L(H, y) w.r.t.
the feature Xi of node i,

∇Xi
L(H, y) = ∇Xi

 N∑
j=1

Lj(Hj , yj)


=

N∑
j=1

∇XiLj(Hj , yj)

=

N∑
j=1

(
∂Hj

∂Xi

)T
∂Lj(Hj , yj)

∂Hj
, (4)

where Hj is the jth row of H but being transposed as col-
umn vectors and yj is the true label of node j. Note that
∂Lj(Hj ,yj)

∂Hj
∈ RK , and ∂Hj

∂Xi
∈ RK×D.

Next, we plug Eq. 4 into ∆̃i (τ(X, {i})i). For simplicity,
We write ∆̃i (τ(X, {i})i) as ∆̃i in the rest of the proof.

∆̃i = (∇Xi
L(H, y))

T
ε

=

N∑
j=1

(
∂Lj(Hj , yj)

∂Hj

)T
∂Hj

∂Xi
ε. (5)

Denote aj , ∂Lj(Hj ,yj)
∂Hj

∈ RK . From the definition of loss

Lj(Hj , yj) = max
k∈{1,...,K}

Hjk −Hjyj ,

we have

ajk =


−1, if k = yj and yj 6= argmaxc∈{1,...,K}Hjc,

1, if k 6= yj and k = argmaxc∈{1,...,K}Hjc,

0, otherwise,

for k = 1, 2, . . . ,K. Under Assumption 1, the expectation
of each element of aj is

E[ajk] = −qk(1−p(k | k))+

K∑
w=1,w 6=k

p(k | w)qw, k = 1, . . . ,K

which is a constant independent of Hj and yj . Therefore,
we can write

E[aj ] = c,∀j = 1, 2, . . . , N,

where c ∈ RK is a constant.

Taking expectation of Eq. (5) and plug in the result of
Lemma 1,

E
[
∆̃i

]
≈ E

 N∑
j=1

(
∂Lj(Hj , yj)

∂Hj

)T
∂Hj

∂Xi
ε


=

N∑
j=1

E[aj ]T

(
ρ

1∏
l=L

Wl[M
L]ji

)
ε

=

(
ρcT

1∏
l=L

Wlε

)
N∑
j=1

[ML]ji

= C

N∑
j=1

[ML]ji,

where C = ρcT
∏1
l=LWlε is a constant scalar independent

of i.
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A.2. Algorithm Details of GC-RWCS

Algorithm 1 The GC-RWCS Strategy for Node Selection.
Input: number of nodes limit r; maximum degree limit
m; neighbor hops k; binarized transition matrix M̃ ; the
adaptive influence score function Ĩi,∀i ∈ V .
Output: the attack set S.

1: Initialize the candidate set P = {i ∈ V | di ≤ m}, and
the score matrix Q = M̃

2: Initialize S = ∅
3: for t = 1, 2, . . . , r do
4: z ← argmaxi∈P Ĩi(Q);
5: S ← S ∪ {z};
6: P ← P \ {i ∈ P | shortest-path(i, z) ≤ k};
7: q ← Q·,z;
8: for i ∈ V do
9: if qi is 1 then

10: Qi ← 0;
11: end if
12: end for
13: end for
14: return S;

A.3. Experiment Details

GNN models. We evaluate the proposed attack strategies
on two common GNN models, GCN (Kipf and Welling,
2016) and JK-Net (Xu et al., 2018). For JK-Net, we test on
its two variants, JKNetConcat and JKNetMaxpool, which
apply concatenation and element-wise max at last layer
respectively. We set the number of layers for GCN as 2 and
the number of layers for both JK-Concat and JK-Maxpool
as 7. The hidden size of each layer is 32. For the training,
we closely follow the hyper-parameter setup in Xu et al.
(2018).

Datasets. We adopt three citation networks, Citeseer, Cora,
and Pubmed, which are standard node classification bench-
mark datasets (Yang et al., 2016). We load those dataset
from DGL library (Wang et al., 2019) in our experiments2.
Statistics of three dataset are summarized in Table 2.

Table 2. Dataset statistics
Dataset Nodes Edges Classes Features
Citeseer 3,327 4,552 6 3,703

Cora 2,708 5,278 7 1,433
Pubmed 19,717 44,324 3 500

Following the setup of JK-Net (Xu et al., 2018), we ran-
domly split each dataset by 60%, 20%, and 20% for training,

2The statistic of edges in table 2 is listed after eliminating
self-loops.

validation, and testing. And we draw 40 random splits.

Hyper-parameters for GC-RWCS. For the proposed GC-
RWCS strategy, we fix the number of step L = 4, the
neighbor-hop parameter k = 1 and the parameter l = 30

for the binarized M̃ for all models on all datasets. Note that
L = 4 is different from the number of layers of both GCN
and JK-Nets in our experiments. But we achieve effective
attack performance. We also conduct a sensitivity analysis
in Appendix A.4 and demonstrate the proposed method is
not sensitive w.r.t. L.

A.4. Additional Results

Verifying the discrepancy between the loss and the mis-
classification rate. We first provide empirical evidence for
the discrepancy between classification loss (cross-entropy)
and mis-classification rate. We compare the RWCS strategy
with baseline strategies with varying perturbation strength
as measured by λ. The results shown in Figure 1 are ob-
tained by attacking GCN on Citeseer. First, we observe
that RWCS increases the classification loss almost linearly
as λ increases, indicating our approximation of the loss by
first-order Taylor expansion actually works pretty well in
practice. Not surprisingly, RWCS performs very similarly
as PageRank. And RWCS performs much better than other
centrality metrics in increasing the classification loss, show-
ing the effectiveness of Proposition 1. However, we see the
decrease of classification accuracy when attacked by RWCS
(and PageRank) quickly saturates as λ increases. The GC-
RWCS strategy that is proposed to correct the importance
scores is able to decreases the classification accuracy the
most as λ becomes larger, although it increases the classifi-
cation loss the least.
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Table 3. Summary of the accuracy (in %) when L = {3, 4, 5, 6, 7}. The bold number and the asterisk (*) denotes the same meaning as
Table 1. The underline marker denotes the values of GC-RWCS outperforms all the baseline.

Cora Citeseer Pubmed
Method GCN JKNetConcat JKNetMaxpool GCN JKNetConcat JKNetMaxpool GCN JKNetConcat JKNetMaxpool
None 85.6 ± 0.3 86.2 ± 0.2 85.8 ± 0.3 75.1 ± 0.2 72.9 ± 0.3 73.2 ± 0.3 85.7 ± 0.1 85.8 ± 0.1 85.7 ± 0.1

Threshold 10%
Random 81.3 ± 0.3 68.8 ± 0.8 68.8 ± 1.3 71.3 ± 0.3 60.8 ± 0.8 61.7 ± 0.9 82.0 ± 0.3 75.9 ± 0.7 75.2 ± 0.7
Degree 78.2 ± 0.4 60.7 ± 1.0 59.9 ± 1.5 67.5 ± 0.4 52.5 ± 0.8 53.7 ± 1.0 78.9 ± 0.5 63.4 ± 1.0 63.2 ± 1.2
PageRank 79.4 ± 0.4 71.6 ± 0.6 70.0 ± 1.0 70.1 ± 0.3 61.5 ± 0.5 62.6 ± 0.6 80.3 ± 0.3 71.3 ± 0.8 71.2 ± 0.8
Betweenness 79.7 ± 0.4 60.5 ± 0.9 60.3 ± 1.6 68.9 ± 0.3 53.5 ± 0.8 55.1 ± 1.0 78.5 ± 0.6 67.1 ± 1.1 66.1 ± 1.1
RWCS 79.4 ± 0.4 71.7 ± 0.5 70.3 ± 0.9 69.9 ± 0.3 62.4 ± 0.4 63.1 ± 0.6 79.8 ± 0.3 70.7 ± 0.8 70.7 ± 0.8
GC-RWCS-3 78.6 ± 0.5 52.1 ± 1.1* 53.0 ± 1.9* 64.8 ± 0.5* 46.4 ± 0.8* 48.2 ± 1.0* 78.1 ± 0.6 62.3 ± 1.2 61.6 ± 1.5
GC-RWCS-4 78.5 ± 0.5 52.7 ± 1.0* 53.3 ± 1.9* 65.1 ± 0.5* 46.6 ± 0.8* 48.2 ± 1.1* 77.3 ± 0.7 62.1 ± 1.2 60.6 ± 1.4*
GC-RWCS-5 78.9 ± 0.5 53.5 ± 1.1* 54.2 ± 1.9* 65.3 ± 0.5* 46.6 ± 0.8* 48.4 ± 1.0* 78.4 ± 0.5 64.2 ± 1.2 62.5 ± 1.4
GC-RWCS-6 78.5 ± 0.5 54.3 ± 1.1* 54.9 ± 1.9* 65.5 ± 0.5* 47.1 ± 0.8 48.9 ± 1.1* 78.0 ± 0.6 63.7 ± 1.1 62.6 ± 1.4
GC-RWCS-7 78.1 ± 0.5 54.2 ± 1.1* 54.8 ± 1.9* 66.1 ± 0.4* 47.5 ± 0.8 49.3 ± 1.1* 78.7 ± 0.5 64.9 ± 1.2 63.3 ± 1.3

Threshold 20%
Random 82.3 ± 0.3 71.7 ± 1.1 69.8 ± 1.1 72.1 ± 0.3 62.1 ± 0.7 62.6 ± 0.9 82.6 ± 0.2 77.9 ± 0.5 77.5 ± 0.5
Degree 79.3 ± 0.4 64.2 ± 1.2 61.6 ± 1.3 69.2 ± 0.4 56.0 ± 0.8 56.4 ± 1.0 80.6 ± 0.4 69.5 ± 0.8 69.4 ± 1.0
PageRank 80.8 ± 0.3 74.5 ± 0.8 73.0 ± 0.8 72.1 ± 0.3 68.3 ± 0.3 68.2 ± 0.4 82.2 ± 0.2 77.7 ± 0.4 77.8 ± 0.4
Betweenness 80.7 ± 0.4 62.2 ± 1.4 60.1 ± 1.4 70.1 ± 0.4 54.8 ± 0.8 55.8 ± 1.1 80.2 ± 0.4 72.4 ± 0.8 72.0 ± 0.7
RWCS 81.4 ± 0.3 76.8 ± 0.6 76.0 ± 0.6 72.4 ± 0.3 68.9 ± 0.3 69.0 ± 0.4 81.3 ± 0.2 76.0 ± 0.4 76.5 ± 0.4
GC-RWCS-3 79.4 ± 0.5 57.5 ± 1.6* 53.1 ± 1.5* 67.1 ± 0.4* 48.4 ± 0.9* 49.3 ± 1.2* 79.0 ± 0.5* 67.4 ± 0.9* 66.3 ± 1.0*
GC-RWCS-4 79.4 ± 0.5 57.5 ± 1.7* 53.2 ± 1.4* 67.3 ± 0.5* 47.9 ± 0.9* 48.8 ± 1.3* 79.0 ± 0.5* 67.4 ± 1.0* 66.3 ± 1.0*
GC-RWCS-5 79.4 ± 0.5 59.0 ± 1.7* 54.5 ± 1.4* 67.3 ± 0.4* 48.4 ± 0.9* 49.4 ± 1.3* 79.2 ± 0.5* 68.5 ± 0.9 68.1 ± 0.9
GC-RWCS-6 79.5 ± 0.5 59.3 ± 1.7 54.9 ± 1.5* 68.1 ± 0.4* 49.2 ± 0.9* 50.2 ± 1.3* 79.1 ± 0.5* 68.4 ± 0.9 68.5 ± 1.0
GC-RWCS-7 79.4 ± 0.5 59.3 ± 1.6 55.3 ± 1.5* 68.1 ± 0.4* 50.0 ± 0.9* 50.8 ± 1.3* 79.2 ± 0.5* 68.7 ± 0.9 68.2 ± 0.8

Threshold 30%
Random 82.6 ± 0.4 70.7 ± 1.1 71.8 ± 1.1 72.6 ± 0.3 62.7 ± 0.8 63.9 ± 0.8 82.6 ± 0.2 77.3 ± 0.4 77.3 ± 0.5
Degree 80.7 ± 0.4 64.9 ± 1.4 67.0 ± 1.5 70.4 ± 0.4 56.9 ± 0.8 58.7 ± 0.9 81.5 ± 0.4 72.4 ± 0.7 72.1 ± 0.8
PageRank 82.6 ± 0.3 79.6 ± 0.4 79.7 ± 0.4 72.9 ± 0.2 70.2 ± 0.3 70.3 ± 0.3 83.0 ± 0.2 79.3 ± 0.3 79.5 ± 0.3
Betweenness 81.8 ± 0.4 64.1 ± 1.3 65.9 ± 1.4 70.7 ± 0.3 56.3 ± 0.8 58.3 ± 0.9 81.3 ± 0.3 74.1 ± 0.5 74.5 ± 0.5
RWCS 82.9 ± 0.3 79.7 ± 0.4 80.0 ± 0.4 72.9 ± 0.2 70.2 ± 0.3 70.4 ± 0.3 82.1 ± 0.2 77.8 ± 0.3 78.4 ± 0.3
GC-RWCS-3 80.2 ± 0.6 57.3 ± 1.7* 59.0 ± 1.6* 67.9 ± 0.5* 49.1 ± 0.9* 50.8 ± 1.1* 80.3 ± 0.5* 69.0 ± 0.7* 69.8 ± 0.7*
GC-RWCS-4 80.7 ± 0.5 59.1 ± 1.6* 61.1 ± 1.6* 67.8 ± 0.5* 49.0 ± 0.9* 50.7 ± 1.1* 80.3 ± 0.5* 69.2 ± 0.7* 70.0 ± 0.7*
GC-RWCS-5 80.8 ± 0.5 59.8 ± 1.6* 61.5 ± 1.6* 68.4 ± 0.5* 49.2 ± 0.9* 51.2 ± 1.1* 80.2 ± 0.5* 70.4 ± 0.6* 71.5 ± 0.6
GC-RWCS-6 80.7 ± 0.5 59.8 ± 1.5* 61.4 ± 1.5* 68.5 ± 0.5* 50.5 ± 0.9* 52.2 ± 1.1* 80.2 ± 0.5* 70.5 ± 0.5* 71.6 ± 0.6
GC-RWCS-7 80.7 ± 0.5 60.2 ± 1.5* 61.9 ± 1.5* 68.7 ± 0.5* 50.7 ± 0.9* 52.6 ± 1.1* 80.3 ± 0.4* 70.9 ± 0.5* 71.9 ± 0.6

(a) Loss on Test Set

(b) Accuracy on Test Set

Figure 1. Experiments of attacking GCN on Citeseer with increas-
ing perturbation strength λ. Results are averaged over 40 random
trials and error bars indicate standard error of mean.

More experiment setups and sensitivity analysis the
hyper-parameter L. We provide more experiment setups
with varying max degree limits m and test the sensitivity of
the parameter L. We show the results in table 3. Thresholds
10%, 20%, and 30% respectively indicate m equals to the
lowest degree of the top 10%, 20%, and 30% nodes. We
also show the results of GC-RWCS with L = 3, 4, 5, 6, 7.
In conclusion, it can be seen that our strategy is not sensitive
w.r.t. the choice of L in a wide range.

Further, we also compare the relative decrease of accuracy
between the proposed GC-RWCS strategy (L = 4) and
the Random strategy in Table 4. GC-RWCS is able to de-
crease the node classification accuracy by up to 33.5%, and
achieves a 70% larger decrease of the accuracy than the Ran-
dom baseline in most cases. As the GC-RWCS and Random
use exactly the same feature perturbation and the node se-
lection step of Random does not include any information of
the graph structure, this relative comparison can be roughly
viewed as an indicator of the attack effectiveness attributed
to the structural inductive biases of the GNN models.
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Table 4. Accuracy decrease (in %) comparison with clean dataset
Cora Citeseer Pubmed

Method GCN JKNetConcat JKNetMaxpool GCN JKNetConcat JKNetMaxpool GCN JKNetConcat JKNetMaxpool
Random 3.0 15.5 14 2.5 10.2 9.3 3.1 8.5 8.3
GC-RWCS 4.9 27.1 24.7 7.3 23.9 22.5 5.4 16.6 15.7
GC-RWCS/Random 163.33% 174.84% 176.43% 292.00% 234.31% 241.94% 174.19% 195.29% 189.16%


