
Weisfeiler and Leman go sparse: Towards scalable higher-order graph
embeddings

Christopher Morris 1 Gaurav Rattan 2 Petra Mutzel 3

Abstract
The 1-dimensional Weisfeiler-Leman (WL) algo-
rithm has recently emerged as a powerful tool for
analysis and design of kernels and neural architec-
tures for (supervised) learning with graphs. How-
ever, due to the purely local nature of the algo-
rithms, they might miss essential patterns. Here, the
k-dimensional WL accounts for the higher-order
interactions between vertices by defining a suitable
notion of adjacency between k-tuples of vertices.
However, it does not scale and may suffer from
overfitting when used in a machine learning setting.
We circumvent these issues by proposing new local
variants of the k-WL and corresponding neural ar-
chitectures, which consider a subset of the original
neighborhood. The expressive power of (one of)
our algorithms is strictly higher than the original k-
WL with no losses in scalability. In fact, for sparse
graphs, the scalability improves by several orders
of magnitude. The kernel version establishes a new
state-of-the-art for graph classification on a wide
range of benchmark datasets, while the neural ver-
sion shows promising performance on large-scale
molecular regression tasks.

1. Introduction
Graph-structured data is ubiquitous across application do-
mains ranging from chemo- and bioinformatics (Barabasi &
Oltvai, 2004; Stokes et al., 2020) to image (Simonovsky & Ko-
modakis, 2017) and social network analysis (Easley & Klein-
berg, 2010). In recent years, numerous approaches have been
proposed for machine learning with graphs—most notably, ap-
proaches based on graph kernels (Kriege et al., 2020) or using
graph neural networks (GNNs) (Chami et al., 2020; Gilmer

1CERC in Data Science for Real-Time Decision-Making,
Polytechnique Montréal 2Department of Computer Science,
RWTH Aachen University 3Department of Computer Science,
University of Bonn. Correspondence to: Christopher Morris
<christopher.morris@tu-dortmund.de>.

Graph Representation Learning and Beyond (GRL+), ICML 2020
Workshop. Copyright 2020 by the authors.

et al., 2017; Grohe, 2020). Here, graph kernels based on the
1-dimensional Weisfeiler-Leman algorithm (1-WL) (Weis-
feiler & Leman., 1968; Grohe, 2017), and GNNs (Morris
et al., 2019; Xu et al., 2019) have recently advanced the state-
of-the-art in supervised node and graph classification. Since
the 1-WL operates via simple neighborhood aggregation, the
purely local nature of these approaches can miss important
patterns in the given data. Moreover, they are only applicable
to binary structures, and therefore cannot deal with general
t-ary structures, e.g., hypergraphs (Zhou et al., 2006), in a
straight-forward way.

A provably more powerful algorithm (for graph isomorphism
testing) is the k-dimensional Weisfeiler-Leman algorithm
(k-WL) (Cai et al., 1992; Grohe, 2017; Maron et al., 2019a).
The algorithm can capture more global, higher-order patterns
by iteratively computing a coloring (or discrete labeling) for
k-tuples, instead of single vertices, based on an appropriately
defined notion of adjacency between two k-tuples. However,
it fixes the cardinality of this neighborhood to k · n, where
n denotes the number of vertices of a given graph. Hence,
the running time of each iteration does not take the sparsity
of a given graph into account. Further, new neural architec-
tures (Maron et al., 2019a;b) that possess the same power as
the k-WL in terms of separating non-isomorphic graphs suffer
from the same drawbacks, i.e., they have to resort to dense
matrix multiplications. Moreover, when used in a machine
learning setting with real-world graphs, the k-WL may capture
the isomorphism type, which is the complete structural infor-
mation inherent in a graph, after only a couple of iterations,
which may lead to overfitting, see (Morris et al., 2017). Hence,
the task of adapting k-WL for designing practical graph learn-
ing algorithms has obvious significance. See Appendix A for
an expanded discussion on related work.

Present work. We propose a local version of the k-WL,
the local δ-k-dimensional Weisfeiler-Leman algorithm (δ-k-
LWL), which considers a subset of the original neighborhood
(of a vertex tuple) in each iteration. The cardinality of the local
neighborhood depends on the sparsity of the graph, i.e., the
degrees of the vertices of a given k-tuple. On the theoretical
side, we prove that our algorithm is strictly more powerful in
distinguishing non-isomorphic graphs compared to the k-WL.
On the neural side, we devise a higher-order graph neural

Weisfeiler and Leman go sparse

network architecture, the δ-k-LGNN, and show that is has
the same expressive power as the δ-k-LWL. Moreover, recent
advancements in learning theory for GNNs (Garg et al., 2020)
imply that the δ-k-LWL architecture has better generalization
abilities compared to dense architectures based on the k-
WL. Experimentally, we apply the discrete algorithms (or
kernels) and the (local) neural architecture to supervised graph
learning, and verify that both are several orders of magnitude
faster than the global, discrete algorithms or dense, neural
architectures, and prevent overfitting. The discrete algorithms
establish a new state-of-the-art for graph classification on a
wide range of small- and medium-scale classical datasets. The
neural version shows promising performance on large-scale
molecular regression tasks.

2. Weisfeiler-Leman: classic and δ-version
Local/global neighbors. Given a k-tuple v of vertices of a
graph G, let φj(v, w) be the k-tuple obtained by replacing
the jth component of v with the vertex w. That is, φj(v, w) =
(v1, . . . , vj−1, w, vj+1, . . . , vk). If w = φj(v, w) for some
w in V (G), call the tuple w a j-neighbor of the tuple v (and
vice-versa). Furthermore, call w a local j-neighbor of v if w
is adjacent to vj , otherwise call it a global neighbor of v.

The k-WL. Given a graph G and an integer k ≥ 0, the k-
WL computes a stable coloring (a mapping C∞ : V (G)k →
N) for G, via an iterative procedure as follows. The initial
coloring C 0 of V (G)k is specified by the isomorphism types
of the tuples, i.e., two tuples v and w in V (G)k get a common
color iff the mapping vi 7→ wi induces an isomorphism
between the labeled subgraphs G[v] and G[w]. Starting with
C0, successive refinements Ci+1 = Ĉi are computed until
convergence, i.e., Ci+1(v) = (Ci(v),Mi(v)), where,

Mi(v) =
(
{{Ci(φ1(v, w)) | w ∈ V (G)}},

. . . ,{{Ci(φk(v, w)) | w ∈ V (G)}}
)
,

(1)

is called the aggregation map. The k-WL distinguishes two
graphsG andH if running k-WL on their disjoint union yields
disparate colors, hence, certifying their non-isomorphism (see,
e.g., (Grohe, 2017) for a detailed treatment).

The δ-k-WL. The δ-k-dimensional Weisfeiler-Leman algo-
rithm, denoted by δ-k-WL, is a variant of the classic k-WL
which differentiates between the local and the global neighbors
during neighborhood aggregation (Malkin, 2014). Essentially,
δ-k-WL employs the aggregation function M δ,δ

i (·) instead
of Mi(·) above. It replaces a multiset term {{Ci(φj(v, w)) |
w ∈ V (G)}} in Equation (1) above by

{{(Ci(φj(v, w), adj(v, φj(v, w))) | w ∈ V (G)}},

where, the indicator function adj(v,w) evaluates to L or G,
depending on whether w is a local or global neighbor of v.

3. Weisfeiler and Leman go sparse
We propose the new local δ-k-dimensional Weisfeiler-Leman
algorithm (δ-k-LWL). This variant of δ-k-WL considers only
local neighbors during the neighborhood aggregation process,
and discards any information about the global neighbors. The
aggregation function used by the δ-k-WL is

M δ
i (v) =

(
{{Ci(φ1(v, w)) | w ∈ N(v1)}},

. . . ,{{Ci(φk(v, w)) | w ∈ N(vk)}}
)
,

(2)

hence considering only the local j-neighbors of the tuple v in
each iteration.

We also propose the δ-k-LWL+, a minor variation of the
δ-k-LWL above, which preserves certain global informa-
tion in order to achieve strong theoretical guarantees with
asymptotically identical scalability. Essentially, we use a term
(Ci(φ1(v, w)),#

1
i (v, φ1(v, w))) instead of Ci(φj(v, w)),

where the counter

#j
i (v,x) =

∣∣{w : w ∼j v, Ci(w) = Ci(x)}
∣∣,

counts the number of j-neighbors w of v such that w has
the same color as x after i rounds of the δ-k-LWL+. Here,
w ∼j v denotes that w is j-neighbor of v, for j in [k].

Theoretical guarantees. Let A1 and A2 denote two k-WL-
variants. We write A1 v A2 (A1 is as powerful as A2) if
A1 distinguishes between all non-isomorphic pairs A2 does,
and A1 ≡ A2 if both directions hold. The corresponding
strict relation is denoted by @. The following theorem, which
is our main theoretical result, shows that the δ-k-LWL+ is
equivalent in power to the δ-k-WL.

Theorem 1. For the class of connected graphs, the following
holds for all k ≥ 2:

δ-k-LWL+ ≡ δ-k-WL.

We also prove that δ-k-WL @ k-WL, which proves the de-
sired result, i.e., δ-k-LWL+ @ k-WL (for connected graphs).
We remark that, in general, δ-k-LWL+ takes a larger number
of rounds to converge. This possibly slower convergence is
the key to tackling the overfitting problem associated with the
classic k-WL. See Appendix F for a discussion on practicality
and remaining challenges, and Figure 2 for an overview of
the theoretical results.

4. Higher-order graph kernels and neural
networks

Kernels. After running the δ-k-LWL (or δ-k-LWL+), the
concatenation of the histogram of colors in each iteration
can be used as a feature vector in a kernel computation.
Specifically, in the histogram for every color σ in Σ there is

Weisfeiler and Leman go sparse

Table 1: Classification accuracies in percent and standard deviations, OOT— Computation did not finish within one day, OOM—
Out of memory.

Method
Dataset

ENZYMES IMDB-BINARY IMDB-MULTI NCI1 NCI109 PTC_FM PROTEINS REDDIT-BINARY
B

as
el

in
e GR 29.8 ±1.0 59.5 ±0.4 40.6 ±0.5 66.3 ±0.2 66.7 ±0.2 62.3 ±0.9 71.6 ±0.2 60.0 ±0.2

SP 42.3 ±1.3 59.2 ±0.3 39.6 ±0.4 74.5 ±0.3 73.4 ±0.1 63.2 ±0.6 76.4 ±0.4 84.7±0.2
1-WL 53.4 ±1.4 72.4 ±0.5 50.6 ±0.6 85.1 ±0.2 85.2 ±0.2 62.9 ±1.6 73.7 ±0.5 75.3 ±0.3
WLOA 59.7 ±1.2 73.1 ±0.7 50.3 ±0.6 85.6 ±0.2 86.0 ±0.3 63.7 ±0.7 73.7 0.5± 88.7 ±0.2

N
eu

ra
l Gin-0 39.6 ±1.3 72.8 ±0.9 50.0 ±0.1 78.5 ±0.5 77.1 ±0.6 58.0 ±1.4 71.7 ±0.9 90.7 ±0.9

Gin-ε 38.7 ±2.1 73.0 ±1.0 49.8 ±0.6 78.8 ±0.3 77.2 ±0.3 58.7 ±1.7 70.4 ±1.2 89.4 ±1.2

G
lo

ba
l

2-WL 38.9 ±0.8 69.2 ±0.6 48.0 ±0.5 67.5 ±0.3 68.3 ±0.2 64.3 ±0.6 75.3 ±0.3 OOM
3-WL 45.9 ±0.8 69.2 ±0.4 47.9 ±0.7 OOT OOT 64.4 ±0.6 OOM OOM

δ-2-WL 39.1 ±1.1 69.4 ±0.7 48.0 ±0.4 67.4 ±0.3 68.3 ±0.3 64.5 ±0.4 75.2 ±0.5 OOM
δ-3-WL 45.9 ±0.9 69.1 ±0.6 47.9 ±0.8 OOT OOT 64.4 ±0.6 OOM OOM

L
oc

al

δ-2-LWL 57.7 ±1.0 73.3 ±0.7 50.9 ±0.6 85.4 ±0.2 84.8 ±0.2 62.7 ±1.3 74.5 ±0.6 90.0 ±0.2
δ-2-LWL+ 57.0 ±0.8 78.9 ±0.6 64.0 ±0.4 91.8 ±0.2 90.8 ±0.2 62.7 ±1.4 82.6 ±0.4 91.5 ±0.2
δ-3-LWL 60.4 ±0.8 73.5 ±0.5 49.6 ±0.7 84.0 ±0.3 83.0 ±0.3 62.6 ±1.2 OOM OOM
δ-3-LWL+ 58.9 ±1.1 80.6 ±0.5 60.3 ±0.4 83.9 ±0.3 82.9 ±0.3 62.4 ±1.2 OOM OOM

an entry containing the number of nodes or k-tuples that are
colored with σ.

Neural architectures. Although the discrete kernels above
are quite powerful, they are limited due to their fixed feature
construction scheme, hence suffering from poor adaption to
the learning task at hand and from the inability to handle
continuous node and edge labels in a meaningful way. This
motivates our definition of a new neural architecture, called
local δ-k-GNN (δ-k-LGNN). Given a node labeled graph G,
let each tuple v in V (G)k be annotated with an initial feature
f (0)(v) determined by its isomorphism type. In each layer
t > 0, we compute a new feature f (t)(v) as

fW1
mrg

(
f (t−1)(v), fW2

agg

(
{{f (t−1)(φ1(v, w)) | w ∈ δ(v1)}},

. . . ,{{f (t−1)(φk(v, w)) | w ∈ δ(vk)}}
))
,

in R1×e for a tuple v, where W (t)
1 and W (t)

2 are learnable pa-
rameter matrices from Rd×e and σ denotes a component-wise
non-linear function, e.g., a sigmoid or a ReLU.1. Moreover,
fW2

mrg and the permutation-invariant fW1
agg can be arbitrary dif-

ferentiable functions, responsible for merging and aggregating
the relevant feature information, respectively. Initially, we set
f (0)(v) to a one-hot encoding of the (labeled) isomorphism
type of G[v]. Note that we can naturally handle discrete node
and edge labels as well as directed graphs. The following
result demonstrates the expressive power of δ-k-GNN, in
terms of distinguishing non-isomorphic graphs.

Theorem 2. For all graphs, and all k ≥ 1:

δ-k-LGNN ≡ δ-k-LWL.

Moreover, δ-k-GNN inherits the main strength of δ-k-LWL,
i.e., it can be implemented using sparse matrix multiplication.
Note that it is not possible to come up with an architecture,
i.e., instantiations of fW1

mrg and fW2
agg , such that it becomes more

1For clarity of presentation we omit biases.

powerful than the δ-k-LWL, see (Morris et al., 2019). However,
all results from the previous section can be lifted to the neural
setting. That is, one can derive neural architectures based
on the δ-k-LWL+, δ-k-WL, and k-WL, called δ-k-LGNN+,
δ-k-GNN, and k-WL-GNN, respectively, and prove results
analogous to Theorem 2. See Appendix E for a discussion on
the generalization capabilities of the (local) neural architecture
and incoperating continuous information.

5. Experimental evaluation
We investigate the benefits of the local, sparse algorithms,
both kernel and neural architectures, compared to the global,
dense algorithms, and standard kernel and GNN baselines,
via the following three questions. See Appendix G for an
expanded experimental evaluation and details on datasets, hy-
perparameters, and evaluation protocols. The source code and
evaluation scripts will be made available at www.github.
com/chrsmrrs/sparsewl.
Q1 Do the local algorithms, both kernel and neural architec-
tures, lead to improved classification and regression scores
on real-world benchmark datasets compared to global, dense
algorithms and standard baselines?
Q2 Does the δ-k-LWL+ lead to improved classification ac-
curacies compared to the δ-k-LWL? Does it lead to higher
computation times?
Q3 How much do the local algorithms speed up the compu-
tation time compared to the non-local algorithms or dense
neural architectures?
Datasets To evaluate kernels, we use the following, well-
known, small-scale ENZYMES, IMDB-BINARY, IMDB-
MULTI, NCI1, NCI109, PTC_FM, PROTEINS, and REDDIT-
BINARY datasets. To show that our kernels also scale to larger
datasets, we additionally used the mid-scale YEAST, YEASTH,
UACC257, UACC257H, OVCAR-8, OVCAR-8H datasets.
For the neural architectures, we used the large-scale molec-
ular regression datasets ZINC and ALCHEMY. To further
compare to the (hierarchical) k-GNN (Morris et al., 2019)

www.github.com/chrsmrrs/sparsewl
www.github.com/chrsmrrs/sparsewl

Weisfeiler and Leman go sparse

Method QM9

B
as

el
in

e

GINE-ε 0.081 ±0.003
MPNN 0.034 ±0.001
1-2-GNN 0.068 ±0.001
1-3-GNN 0.088 ±0.007
1-2-3-GNN 0.062 ±0.001
3-IGN 0.046 ±0.001

δ-2-LGNN 0.029 ±0.001

(a) Mean std. MAE on QM9

0 25 50 75 100 125
Epoch

0.2

0.4

0.6

M
A

E

δ-k-LGNN train

δ-k-LGNN test

δ-k-GNN train

δ-k-GNN test

k-GNN train

k-GNN test

(b) ZINC

0 20 40 60 80 100
Epoch

0.10

0.15

0.20

0.25

M
ea

n
st

d.
M

A
E

δ-k-LGNN train

δ-k-LGNN test

δ-k-GNN train

δ-k-GNN test

k-GNN train

k-GNN test

(c) ALCHEMY

Figure 1: Results for neural architectures.

and k-IGN (Maron et al., 2019a), and show the benefits of
our architecture in presence of continuous features, we used
the QM9 regression dataset.2 All datasets can be obtained
from www.graphlearning.io.

Kernels and Networks We implemented the δ-k-LWL, δ-k-
LWL+, δ-k-WL, and k-WL kernel for k in {2, 3} and compare
them to the standard baselines for graph kernels. We also
implemented the neural architectures of Section 4, δ-k-LGNN,
δ-k-GNN, k-WL-GNN, and used the GIN and GIN-ε archi-
tecture (Xu et al., 2019) as neural baselines. For data with
(continuous) edge features, we used a 2-layer MLP to map
them to the same number of components as the node features
and combined them using summation (GINE and GINE-ε).3

Results and Discussion In the following we answer ques-
tions Q1 to Q3.

A1 Kernels See Table 1 and Table 5 in the appendix. The
local algorithm, for k = 2 and 3, severely improves the
classification accuracy compared to the k-WL and the
δ-k-WL (in some cases, by > 15%).
Neural architectures See Figure 1 and Table 6 in the appendix.
On the ZINC and ALCHEMY datasets, the δ-2-LGNN is on
par or slightly worse than the δ-2-GNN. Hence, this is in
contrast to the kernel variant. We assume that this is due
to the δ-2-GNN being more flexible than its kernel variant
in weighing the importance of global and local neighbors.
This is further highlighted by the worse performance of the
2-WL-GNN, which even performs worse than GINE-ε on
the ZINC dataset. On the QM9 dataset, see Figure 1a, the
δ-2-LGNN performs better than the higher-order methods
from (Maron et al., 2019a; Morris et al., 2019) while being
on par with the MPNN architecture. We note here that the
MPNN was specifically tuned to the QM9 dataset, which is
not the case for the δ-2-LGNN (and the other higher-order
architectures).
A2 See Table 1. The δ-2-LWL+ improves over the δ-2-LWL
on all datasets excluding ENZYMES. For example, on

2We opted for comparing on the QM9 dataset to ensure a fair
comparison concerning hyperparameter selection.

3We opted for not implementing the δ-k-LGNN+ as it would
involve precomputing #, see Appendix E.

Table 2: Average speed up ratios over all epochs (training and
testing)

for local, neural architecure.

Method
Dataset

ZINC (10k) ALCHEMY (10K)

B
as

el
in

e GINE-ε 0.2 0.4
2-WL-GNN 2.2 1.1
δ-2-GNN 2.5 1.7

δ-2-LGNN 1.0 1.0

IMDB-BINARY, IMDB-MULTI, NCI1, NCI109, and
PROTEINS the algorithm achieves an improvement over
of 4%, respectively, achieving a new state-of-the-art. The
computation times are only increased slightly. Similar results
can be observed on the medium-scale datasets, see Table 5 in
the appendix.

A3 Kernels: See Tables 7 and 8 in the appendix. The local al-
gorithm severely speeds up the computation time compared to
the δ-k-WL and the k-WL for k = 2 and 3, demonstrating the
suitability of the local algorithms for practical applications.
Neural architectures: See Table 2. The local algorithm
severely speeds up the computation time of training and
testing. Especially, on the ZINC dataset, which has larger
graphs compared to the ALCHEMY dataset, the δ-2-LGNN
achieves a computation time that is more than two times lower
compared to the δ-2-GNN and the 2-WL-GNN.

6. Conclusion
We verified that our local, sparse algorithms lead to vastly
reduced computation times compared to their global, dense
counterparts while establishing new state-of-the-art results
on a wide range of benchmark datasets. Moreover, we also
showed strong theoretical guarantees on the expressiveness of
these algorithms. Future work includes a more fine-grained
analysis of the proposed algorithm, e.g., moving away from
the restrictive graph isomorphism objective and deriving a
deeper understanding of the neural architecture’s capabilities
when optimized with stochastic gradient descent.

www.graphlearning.io

Weisfeiler and Leman go sparse

References
Abu-El-Haija, S., Perozzi, B., Kapoor, A., Alipourfard, N.,

Lerman, K., Harutyunyan, H., Steeg, G. V., and Galstyan,
A. Mixhop: Higher-order graph convolutional architec-
tures via sparsified neighborhood mixing. In International
Conference on Machine Learning, pp. 21–29, 2019.

Anderson, B. M., Hy, T., and Kondor, R. Cormorant: Covariant
molecular neural networks. In Advances in Neural Infor-
mation Processing Systems 32, pp. 14510–14519, 2019.

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R., and
Wang, R. On exact computation with an infinitely wide
neural net. In Advances in Neural Information Processing
Systems, pp. 8139–8148, 2019.

Arvind, V., Köbler, J., Rattan, G., and Verbitsky, O. On the
power of color refinement. In International Symposium on
Fundamentals of Computation Theory, pp. 339–350, 2015.

Arvind, V., Fuhlbrück, F., Köbler, J., and Verbitsky, O. On
Weisfeiler-Leman invariance: Subgraph counts and related
graph properties. In International Symposium on Funda-
mentals of Computation Theory, pp. 111–125, 2019.

Atserias, A. and Maneva, E. N. Sherali-adams relaxations
and indistinguishability in counting logics. SIAM Journal
on Computing, 42(1):112–137, 2013.

Atserias, A., Mancinska, L., Roberson, D. E., Sámal, R., Sev-
erini, S., and Varvitsiotis, A. Quantum and non-signalling
graph isomorphisms. Journal of Combinatorial Theory,
Series B, 136:289–328, 2019.

Babai, L. Graph isomorphism in quasipolynomial time. In
ACM SIGACT Symposium on Theory of Computing, pp.
684–697, 2016.

Bai, S., Zhang, F., and Torr, P. H. S. Hypergraph convolution
and hypergraph attention. CoRR, abs/1901.08150, 2019.

Barabasi, A.-L. and Oltvai, Z. N. Network biology: Under-
standing the cell’s functional organization. Nature Reviews
Genetics, 5(2):101–113, 2004.

Barceló, P., Kostylev, E. V., Monet, M., Pérez, J., Reutter,
J. L., and Silva, J. P. The logical expressiveness of graph
neural networks. In International Conference on Learning
Representations, 2020.

Berkholz, C., Bonsma, P. S., and Grohe, M. Tight lower
and upper bounds for the complexity of canonical colour
refinement. In Annual European Symposium on Algorithms,
pp. 145–156. Springer, 2013.

Borgwardt, K. M. and Kriegel, H.-P. Shortest-path kernels on
graphs. In IEEE International Conference on Data Mining,
pp. 74–81, 2005.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spectral
networks and deep locally connected networks on graphs.
In International Conference on Learning Representation,
2014.

Cai, J., Fürer, M., and Immerman, N. An optimal lower
bound on the number of variables for graph identifications.
Combinatorica, 12(4):389–410, 1992.

Cangea, C., Velickovic, P., Jovanovic, N., Kipf, T., and Liò,
P. Towards sparse hierarchical graph classifiers. CoRR,
abs/1811.01287, 2018.

Cao, S., Lu, W., and Xu, Q. GraRep: Learning graph rep-
resentations with global structural information. In ACM
International Conference on Information and Knowledge
Management, pp. 891–900, 2015.

Chami, I., Ying, Z., Ré, C., and Leskovec, J. Hyperbolic graph
convolutional neural networks. In Advances in Neural
Information Processing Systems, pp. 4869–4880, 2019.

Chami, I., Abu-El-Haija, S., Perozzi, B., Ré, C., and Murphy, K.
Machine learning on graphs: A model and comprehensive
taxonomy. CoRR, abs/2005.03675, 2020.

Chang, C.-C. and Lin, C.-J. LIBSVM: A library for support
vector machines. ACM Transactions on Intelligent Systems
and Technology, 2:27:1–27:27, 2011.

Chen, G., Chen, P., Hsieh, C., Lee, C., Liao, B., Liao, R., Liu,
W., Qiu, J., Sun, Q., Tang, J., Zemel, R. S., and Zhang, S.
Alchemy: A quantum chemistry dataset for benchmarking
AI models. CoRR, abs/1906.09427, 2019a.

Chen, J., Ma, T., and Xiao, C. Fastgcn: Fast learning with
graph convolutional networks via importance sampling.
In International Conference on Learning Representation,
2018a.

Chen, J., Zhu, J., and Song, L. Stochastic training of graph
convolutional networks with variance reduction. In Inter-
national Conference on Machine Learning, pp. 941–949,
2018b.

Chen, Z., Villar, S., Chen, L., and Bruna, J. On the equivalence
between graph isomorphism testing and function approxi-
mation with GNNs. In Advances in Neural Information
Processing Systems, pp. 15868–15876, 2019b.

Chen, Z., Chen, L., Villar, S., and Bruna, J. Can graph neural
networks count substructures? CoRR, abs/2002.04025,
2020.

Corso, G., Cavalleri, L., Beaini, D., Liò, P., and Velickovic, P.
Principal neighbourhood aggregation for graph nets. CoRR,
abs/2004.05718, 2020.

Weisfeiler and Leman go sparse

Defferrard, M., X., B., and Vandergheynst, P. Convolutional
neural networks on graphs with fast localized spectral
filtering. In Advances in Neural Information Processing
Systems, pp. 3844–3852, 2016.

Dell, H., Grohe, M., and Rattan, G. Lovász meets Weisfeiler
and Leman. In International Colloquium on Automata,
Languages, and Programming, pp. 40:1–40:14, 2018.

Dobson, P. D. and Doig, A. J. Distinguishing enzyme struc-
tures from non-enzymes without alignments. Journal of
Molecular Biology, 330(4):771 – 783, 2003.

Du, S. S., Hou, K., Salakhutdinov, R. R., Poczos, B., Wang,
R., and Xu, K. Graph Neural Tangent Kernel: Fusing graph
neural networks with graph kernels. In Advances in Neural
Information Processing Systems, pp. 5723–5733, 2019.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell,
R., Hirzel, T., Aspuru-Guzik, A., and Adams, R. P. Con-
volutional networks on graphs for learning molecular fin-
gerprints. In Advances in Neural Information Processing
Systems, pp. 2224–2232, 2015.

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., and Bres-
son, X. Benchmarking graph neural networks. CoRR,
abs/2003.00982, 2020.

Easley, D. and Kleinberg, J. Networks, Crowds, and Markets:
Reasoning About a Highly Connected World. Cambridge
University Press, 2010.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin,
C.-J. LIBLINEAR: A library for large linear classification.
Journal of Machine Learning Research, 9:1871–1874, 2008.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with PyTorch Geometric. CoRR, abs/1903.02428, 2019.

Fey, M., Lenssen, J. E., Weichert, F., and Müller, H.
SplineCNN: Fast geometric deep learning with contin-
uous B-spline kernels. In IEEE Conference on Computer
Vision and Pattern Recognition, pp. 869–877, 2018.

Flam-Shepherd, D., Wu, T., Friederich, P., and Aspuru-Guzik,
A. Neural message passing on high order paths. CoRR,
abs/2002.10413, 2020.

Fürer, M. On the combinatorial power of the Weisfeiler-
Lehman algorithm. In International Conference on Algo-
rithms and Complexity, pp. 260–271, 2017.

Gao, H. and Ji, S. Graph U-Nets. In International Conference
on Machine Learning, pp. 2083–2092, 2019.

Garg, V. K., Jegelka, S., and Jaakkola, T. S. Generalization
and representational limits of graph neural networks. CoRR,
abs/2002.06157, 2020.

Gärtner, T., Flach, P., and Wrobel, S. On graph kernels: Hard-
ness results and efficient alternatives. In Learning Theory
and Kernel Machines, pp. 129–143. 2003.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chemistry.
In International Conference on Machine Learning, 2017.

Grohe, M. Descriptive Complexity, Canonisation, and De-
finable Graph Structure Theory. Lecture Notes in Logic.
Cambridge University Press, 2017.

Grohe, M. Word2vec, Node2vec, Graph2vec, X2vec: Towards
a theory of vector embeddings of structured data. CoRR,
abs/2003.12590, 2020.

Grohe, M. and Otto, M. Pebble games and linear equations.
Journal of Symbolic Logic, 80(3):797–844, 2015.

Grohe, M., Kersting, K., Mladenov, M., and Selman, E. Di-
mension reduction via colour refinement. In European
Symposium on Algorithms, pp. 505–516, 2014.

Grohe, M., Schweitzer, P., and D, W. Deep Weisfeiler Leman.
CoRR, abs/2003.10935, 2020.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In Advances in Neural
Information Processing Systems, pp. 1025–1035, 2017.

Heimann, M., Safavi, T., and Koutra, D. Distribution of node
embeddings as multiresolution features for graphs. In IEEE
International Conference on Data Mining, pp. 289–298,
2019.

Huang, W., Zhang, T., Rong, Y., and Huang, J. Adaptive
sampling towards fast graph representation learning. In
Advances in Neural Information Processing Systems, pp.
4563–4572, 2018.

Immerman, N. and Lander, E. Describing Graphs: A
First-Order Approach to Graph Canonization, pp. 59–81.
Springer, 1990.

Jacot, A., Hongler, C., and Gabriel, F. Neural Tangent kernel:
convergence and generalization in neural networks. In
Advances in Neural Information Processing Systems, pp.
8580–8589, 2018.

Jin, W., Barzilay, R., and Jaakkola, T. S. Junction tree vari-
ational autoencoder for molecular graph generation. In
International Conference on Machine Learning, pp. 2328–
2337, 2018.

Jin, Y., Song, G., and Shi, C. GraLSP: Graph neural networks
with local structural patterns. CoRR, abs/1911.07675, 2019.

Weisfeiler and Leman go sparse

Johansson, F. D. and Dubhashi, D. Learning with similarity
functions on graphs using matchings of geometric em-
beddings. In ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 467–476,
2015.

Kashima, H., Tsuda, K., and Inokuchi, A. Marginalized kernels
between labeled graphs. In International Conference on
Machine Learning, pp. 321–328, 2003.

Kiefer, S. and McKay, B. D. The iteration number of colour
refinement. CoRR, abs/2005.10182, 2020.

Kiefer, S. and Schweitzer, P. Upper bounds on the quantifier
depth for graph differentiation in first order logic. In
ACM/IEEE Symposium on Logic in Computer Science, pp.
287–296, 2016.

Kiefer, S., Schweitzer, P., and Selman, E. Graphs identified
by logics with counting. In International Symposium on
Mathematical Foundations of Computer Science, pp. 319–
330, 2015.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In International Con-
ference on Learning Representation, 2017.

Kireev, D. B. Chemnet: A novel neural network based method
for graph/property mapping. Journal of Chemical Informa-
tion and Computer Sciences, 35(2):175–180, 1995.

Klicpera, J., Groß, J., and Günnemann, S. Directional message
passing for molecular graphs. In International Conference
on Learning Representations, 2020.

Kondor, R. and Pan, H. The multiscale Laplacian graph kernel.
In Advances in Neural Information Processing Systems, pp.
2982–2990, 2016.

Kriege, N. M., Giscard, P.-L., and Wilson, R. C. On valid
optimal assignment kernels and applications to graph clas-
sification. In Advances in Neural Information Processing
Systems, pp. 1615–1623, 2016.

Kriege, N. M., Morris, C., Rey, A., and Sohler, C. A property
testing framework for the theoretical expressivity of graph
kernels. In International Joint Conference on Artificial
Intelligence, pp. 2348–2354, 2018.

Kriege, N. M., Neumann, M., Morris, C., Kersting, K., and
Mutzel, P. A unifying view of explicit and implicit feature
maps of graph kernels. Data Minining and Knowledge
Discovery, 33(6):1505–1547, 2019.

Kriege, N. M., Johansson, F. D., and Morris, C. A survey on
graph kernels. Applied Network Science, 5(1):6, 2020.

Lee, J. B., Rossi, R. A., Kong, X., Kim, S., Koh, E., and Rao, A.
Graph convolutional networks with motif-based attention.
In 28th ACM International Conference on Information, pp.
499–508, 2019.

Lichter, M., Ponomarenko, I., and Schweitzer, P. Walk refine-
ment, walk logic, and the iteration number of the Weisfeiler-
Leman algorithm. In 34th Annual ACM/IEEE Symposium
on Logic in Computer Science, pp. 1–13, 2019.

Loukas, A. What graph neural networks cannot learn: depth
vs width. In International Conference on Learning Repre-
sentations, 2020.

Maehara, T. and NT, H. A simple proof of the universality
of invariant/equivariant graph neural networks. CoRR,
abs/1910.03802, 2019.

Malkin, P. N. Sherali–adams relaxations of graph isomorphism
polytopes. Discrete Optimization, 12:73 – 97, 2014.

Maron, H., Ben-Hamu, H., Serviansky, H., and Lipman, Y.
Provably powerful graph networks. In Advances in Neural
Information Processing Systems, pp. 2153–2164, 2019a.

Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y. In-
variant and equivariant graph networks. In International
Conference on Learning Representations, 2019b.

Meng, C., Mouli, S. C., Ribeiro, B., and Neville, J. Subgraph
pattern neural networks for high-order graph evolution
prediction. In AAAI Conference on Artificial Intelligence,
pp. 3778–3787, 2018.

Merkwirth, C. and Lengauer, T. Automatic generation of
complementary descriptors with molecular graph networks.
Journal of Chemical Information and Modeling, 45(5):
1159–1168, 2005.

Monti, F., Boscaini, D., Masci, J., Rodolà, E., Svoboda, J., and
Bronstein, M. M. Geometric deep learning on graphs and
manifolds using mixture model CNNs. In IEEE Conference
on Computer Vision and Pattern Recognition, pp. 5425–
5434, 2017.

Morris, C., Kersting, K., and Mutzel, P. Glocalized Weisfeiler-
Lehman kernels: Global-local feature maps of graphs. In
IEEE International Conference on Data Mining, pp. 327–
336. IEEE, 2017.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and Leman
go neural: Higher-order graph neural networks. In AAAI
Conference on Artificial Intelligence, pp. 4602–4609, 2019.

Weisfeiler and Leman go sparse

Murphy, R. L., Srinivasan, B., Rao, V. A., and Ribeiro, B. Re-
lational pooling for graph representations. In International
Conference on Machine Learning, pp. 4663–4673, 2019a.

Murphy, R. L., Srinivasan, B., Rao, V. A., and Ribeiro, B.
Janossy pooling: Learning deep permutation-invariant func-
tions for variable-size inputs. In International Conference
on Learning Representations, 2019b.

Niepert, M., Ahmed, M., and Kutzkov, K. Learning con-
volutional neural networks for graphs. In International
Conference on Machine Learning, pp. 2014–2023, 2016.

Nikolentzos, G., Meladianos, P., and Vazirgiannis, M. Match-
ing node embeddings for graph similarity. In AAAI Confer-
ence on Artificial Intelligence, pp. 2429–2435, 2017.

Nikolentzos, G., Meladianos, P., Limnios, S., and Vazirgiannis,
M. A degeneracy framework for graph similarity. In
International Joint Conference on Artificial Intelligence,
pp. 2595–2601, 2018.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai,
J., and Chintala, S. PyTorch: An imperative style, high-
performance deep learning library. In Advances in Neural
Information Processing Systems, pp. 8024–8035, 2019.

Ramakrishnan, R., Dral, P., O., Rupp, M., and von Lilienfeld,
O. A. Quantum chemistry structures and properties of 134
kilo molecules. Scientific Data, 1, 2014.

Rieck, B., Bock, C., and Borgwardt, K. M. A persistent
Weisfeiler-Lehman procedure for graph classification. In
International Conference on Machine Learning, pp. 5448–
5458, 2019.

Rong, Y., Huang, W., Xu, T., and Huang, J. DropEdge: To-
wards deep graph convolutional networks on node classifi-
cation. In International Conference on Learning Represen-
tations, 2020.

Sato, R., Yamada, M., and Kashima, H. Approximation ratios
of graph neural networks for combinatorial problems. In
Neural Information Processing Systems, pp. 4083–4092,
2019.

Sato, R., Yamada, M., and Kashima, H. Random features
strengthen graph neural networks. CoRR, abs/2002.03155,
2020.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, 2009.

Schomburg, I., Chang, A., Ebeling, C., Gremse, M., Heldt,
C., Huhn, G., and Schomburg, D. BRENDA, the enzyme
database: updates and major new developments. Nucleic
acids research, 32(Database issue):D431—3, January 2004.

Shervashidze, N., Vishwanathan, S. V. N., Petri, T. H.,
Mehlhorn, K., and Borgwardt, K. M. Efficient graphlet
kernels for large graph comparison. In International Confer-
ence on Artificial Intelligence and Statistics, pp. 488–495,
2009.

Shervashidze, N., Schweitzer, P., van Leeuwen, E. J.,
Mehlhorn, K., and Borgwardt, K. M. Weisfeiler-Lehman
graph kernels. Journal of Machine Learning Research, 12:
2539–2561, 2011.

Simonovsky, M. and Komodakis, N. Dynamic edge-
conditioned filters in convolutional neural networks on
graphs. In IEEE Conference on Computer Vision and
Pattern Recognition, pp. 29–38, 2017.

Sperduti, A. and Starita, A. Supervised neural networks for the
classification of structures. IEEE Transactions on Neural
Networks, 8(2):714–35, 1997.

Stokes, J., Yang, K., Swanson, K., Jin, W., Cubillos-Ruiz, A.,
Donghia, N., MacNair, C., French, S., Carfrae, L., Bloom-
Ackerman, Z., Tran, V., Chiappino-Pepe, A., Badran, A.,
Andrews, I., Chory, E., Church, G., Brown, E., Jaakkola, T.,
Barzilay, R., and Collins, J. A deep learning approach to
antibiotic discovery. Cell, 180:688–702.e13, 02 2020.

Togninalli, M., Ghisu, E., Llinares-López, F., Rieck, B., and
Borgwardt, K. M. Wasserstein Weisfeiler-Lehman graph
kernels. In Advances in Neural Information Processing
Systems, pp. 6436–6446, 2019.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P.,
and Bengio, Y. Graph attention networks. In International
Conference on Learning Representations, 2018.

Verma, S. and Zhang, Z. Hunt for the unique, stable, sparse
and fast feature learning on graphs. In Advances in Neural
Information Processing Systems, pp. 88–98, 2017.

Verma, S. and Zhang, Z. Stability and generalization of
graph convolutional neural networks. In ACM SIGKDD
International Conference on Knowledge Discovery & Data
Mining, pp. 1539–1548, 2019.

Vinyals, O., Bengio, S., and Kudlur, M. Order matters: Se-
quence to sequence for sets. In International Conference
on Learning Representations, 2016.

Wale, N., Watson, I. A., and Karypis, G. Comparison of
descriptor spaces for chemical compound retrieval and
classification. Knowledge and Information Systems, 14(3):
347–375, 2008.

Weisfeiler and Leman go sparse

Weisfeiler, B. On Construction and Identification of Graphs.
Lecture Notes in Mathematics, Vol. 558. Springer, 1976.

Weisfeiler, B. and Leman., A. The reduction of a
graph to canonical form and the algebra which ap-
pears therein. Nauchno-Technicheskaya Informatsia, 2
(9):12–16, 1968. English translation by G. Ryabov is
available at https://www.iti.zcu.cz/wl2018/
pdf/wl_paper_translation.pdf.

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Geniesse,
C., Pappu, A. S., Leswing, K., and Pande, V. MoleculeNet:
A benchmark for molecular machine learning. Chemical
Science, 9:513–530, 2018.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P. S.
A comprehensive survey on graph neural networks. CoRR,
abs/1901.00596, 2019.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K., and
Jegelka, S. Representation learning on graphs with jumping
knowledge networks. In International Conference on
Machine Learning, pp. 5453–5462, 2018.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In International Conference on
Learning Representations, 2019.

Yadati, N., Nimishakavi, M., Yadav, P., Nitin, V., Louis, A.,
and Talukdar, P. P. HyperGCN: A new method for training
graph convolutional networks on hypergraphs. In Advances
in Neural Information Processing Systems, pp. 1509–1520,
2019.

Yan, X., Cheng, H., Han, J., and Yu, P. S. Mining significant
graph patterns by leap search. In ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 433–444,
2008.

Yanardag, P. and Vishwanathan, S. V. N. A structural smooth-
ing framework for robust graph comparison. In Advances
in Neural Information Processing Systems, pp. 2125–2133,
2015a.

Yanardag, P. and Vishwanathan, S. V. N. Deep graph kernels.
In ACM SIGKDD International Conference on Knowledge
Discovery and Data, pp. 1365–1374. ACM, 2015b.

Ying, R., You, J., Morris, C., Ren, X., Hamilton, W. L., and
Leskovec, J. Hierarchical graph representation learning
with differentiable pooling. In Advances in Neural Infor-
mation Processing Systems, pp. 4800–4810, 2018.

You, J., Ying, R., and Leskovec, J. Position-aware graph
neural networks. In International Conference on Machine
Learning, pp. 7134–7143, 2019.

Zhang, M., Cui, Z., Neumann, M., and Yixin, C. An end-to-
end deep learning architecture for graph classification. In
AAAI Conference on Artificial Intelligence, pp. 4428–4435,
2018.

Zhang, R., Zou, Y., and Ma, J. Hyper-SAGNN: A self-attention
based graph neural network for hypergraphs. In Interna-
tional Conference on Learning Representations, 2020.

Zhou, D., Huang, J., and Schölkopf, B. Learning with hy-
pergraphs: Clustering, classification, and embedding. In
Advances in Neural Information Processing Systems, pp.
1601–1608, 2006.

Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C.,
and Sun, M. Graph neural networks: A review of methods
and applications. CoRR, abs/1812.08434, 2018.

https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf

Weisfeiler and Leman go sparse

Appendix

A. Expanded related work
In the following, we review related work from graph kernels, GNNs, and theory.

Graph kernels. Historically, kernel methods—which implicitly or explicitly map graphs to elements of a Hilbert space—have
been the dominant approach for supervised learning on graphs. Important early work in this area includes random-walk based
kernels (Gärtner et al., 2003; Kashima et al., 2003; Kriege et al., 2019) and kernels based on shortest paths (Borgwardt &
Kriegel, 2005). More recently, graph kernels’ developments have emphasized scalability, focusing on techniques that bypass
expensive Gram matrix computations by using explicit feature maps, see, e.g., (Shervashidze et al., 2011). Morris et al. (Morris
et al., 2017) devised a local, set-based variant of the k-WL. However, the approach is (provably) weaker than the tuple-based
algorithm, and they do not prove convergence to the original algorithm. Yanardag & Vishwanathan successfully employed
Graphlet (Shervashidze et al., 2009), and Weisfeiler-Leman kernels within frameworks for smoothed (Yanardag & Vishwanathan,
2015a) and deep graph kernels (Yanardag & Vishwanathan, 2015b). Other recent works focus on assignment-based (Johansson
& Dubhashi, 2015; Kriege et al., 2016; Nikolentzos et al., 2017), spectral (Kondor & Pan, 2016; Verma & Zhang, 2017), graph
decomposition (Nikolentzos et al., 2018), randomized binning approaches (Heimann et al., 2019), and the extension of kernels
based on the 1-WL (Togninalli et al., 2019; Rieck et al., 2019). For a theoretical investigation of graph kernels, see (Kriege et al.,
2018), for a thorough survey of graph kernels, see (Kriege et al., 2020).

GNNs. Recently, graph neural networks (GNNs) (Gilmer et al., 2017; Scarselli et al., 2009) emerged as an alternative to graph
kernels. Notable instances of this architecture include, e.g., (Duvenaud et al., 2015; Fey et al., 2018; Hamilton et al., 2017;
Velickovic et al., 2018), and the spectral approaches proposed in, e.g., (Bruna et al., 2014; Defferrard et al., 2016; Kipf &
Welling, 2017; Monti et al., 2017)—all of which descend from early work in (Kireev, 1995; Merkwirth & Lengauer, 2005;
Sperduti & Starita, 1997; Scarselli et al., 2009). Recent extensions and improvements to the GNN framework include approaches
to incorporate different local structures (around subgraphs), e.g., (Abu-El-Haija et al., 2019; Flam-Shepherd et al., 2020;
Jin et al., 2019; Niepert et al., 2016; Xu et al., 2018), novel techniques for pooling node representations in order perform
graph classification, e.g., (Cangea et al., 2018; Gao & Ji, 2019; Ying et al., 2018; Zhang et al., 2018), incorporating distance
information (You et al., 2019), and non-euclidian geometry approaches (Chami et al., 2019). Moreover, recently empirical
studies on neighborhood aggregation functions for continuous vertex features (Corso et al., 2020), edge-based GNNs leveraging
physical knowledge (Anderson et al., 2019; Klicpera et al., 2020), and sparsification methods (Rong et al., 2020) emerged.
Loukas (Loukas, 2020) and Sato et al. studied the limits of GNNs when applied to combinatorial problems. A survey of recent
advancements in GNN techniques can be found, e.g., in (Chami et al., 2020; Wu et al., 2019; Zhou et al., 2018). Garg et al. (Garg
et al., 2020) and Verma & Zhang (Verma & Zhang, 2019) studied the generalization abilities of GNNs, and (Du et al., 2019)
related wide GNNs to a variant of the neural tangent kernel (Arora et al., 2019; Jacot et al., 2018). Murphy et al. (Murphy et al.,
2019b;a) and Sato et al. (Sato et al., 2020) extended the expressivity of GNNs by considering all possible permutations of a
graph’s adjacency matrix, or adding random node features, respectivley.

Recently, connections to Weisfeiler-Leman type algorithms have been shown (Barceló et al., 2020; Chen et al., 2019b; Maehara
& NT, 2019; Maron et al., 2019a; Morris et al., 2019; Xu et al., 2019). Specifically, (Morris et al., 2019; Xu et al., 2019) showed
that the expressive power of any possible GNN architecture is limited by the 1-WL in terms of distinguishing non-isomorphic
graphs. Morris et al. (Morris et al., 2019) also introduced k-dimensional GNNs (k-GNN) which rely on a message-passing
scheme between subgraphs of cardinality k. Similar to (Morris et al., 2017), the paper employed a local, set-based (neural)
variant of the k-WL, which is (provably) weaker than the variant considered here. Later, this was refined in (Maron et al., 2019a)
by introducing k-order invariant graph networks (k-IGN), based on Maron et al. (Maron et al., 2019b), and references therein,
which are equivalent to the folklore variant of the k-WL (Grohe, 2017) in terms of distinguishing non-isomorphic graphs.
However, k-IGN may not scale since they rely on dense linear algebra routines. Chen et al. (Chen et al., 2019b) connect the
theory of universal approximation of permutation-invariant functions and the graph isomorphism viewpoint and introduce a
variation of the 2-WL, which is more powerful than the former. Our comprehensive treatment of higher-order, sparse, neural
networks for arbitrary k subsumes all of the algorithms and neural architectures mentioned above.

Finally, there exists a new line of work focusing on extending GNNs to hypergraphs, see, e.g., (Bai et al., 2019; Yadati et al.,
2019; Zhang et al., 2020), and a line of work in the data mining community incorporating global or higher-order information
into graph or node embeddings, see, e.g., (Cao et al., 2015; Lee et al., 2019; Meng et al., 2018).

Weisfeiler and Leman go sparse

Theory. The Weisfeiler-Leman algorithm constitutes one of the earliest approaches to isomorphism testing (Weisfeiler, 1976;
Weisfeiler & Leman., 1968), having been heavily investigated by the theory community over the last few decades (Grohe et al.,
2014). Moreover, the fundamental nature of the k-WL is evident from a variety of connections to other fields such as logic,
optimization, counting complexity, and quantum computing. The power and limitations of k-WL can be neatly characterized in
terms of logic and descriptive complexity (Immerman & Lander, 1990), Sherali-Adams relaxations of the natural integer linear
program for the graph isomorphism problem (Atserias & Maneva, 2013; Grohe & Otto, 2015; Malkin, 2014), homomorphism
counts (Dell et al., 2018), and quantum isomorphism games (Atserias et al., 2019). In their seminal paper (Immerman &
Lander, 1990), Cai et al. showed that for each k there exists a pair of non-isomorphic graphs of size O(k) each that cannot
be distinguished by the k-WL. Grohe et al. (Grohe et al., 2014) gives a thorough overview of these results. For k = 1, the
power of the algorithm has been completely characterized (Arvind et al., 2015; Kiefer et al., 2015). Moreover, upper bounds
on the running time for k = 1 (Berkholz et al., 2013; Kiefer & McKay, 2020), and the number of iterations for the folklore
k = 2 (Kiefer & Schweitzer, 2016; Lichter et al., 2019) have been shown. For k = 1 and 2, Arvind et al. (Arvind et al., 2019)
studied the abilities of the (folklore) k-WL to detect and count fixed subgraphs, extending the work of Fürer (Fürer, 2017). The
former was refined in (Chen et al., 2020). The algorithm (for logarithmic k) plays a prominent role in the recent result of
Babai (Babai, 2016) improving the best-known running time for the graph isomorphism problem. Recently, Grohe et al. (Grohe
et al., 2020) introduced the framework of Deep Weisfeiler Leman algorithms, which allow the design of a more powerful graph
isomorphism test than Weisfeiler-Leman type algorithms. Finally, the emerging connections between the Weisfeiler-Leman
paradigm and graph learning are described in a recent survey of Grohe (Grohe, 2020).

B. Expanded preliminaries
We briefly describe the Weisfeiler-Leman algorithm and, along the way, introduce our notation. We also state a variant of the
algorithm, introduced in (Malkin, 2014). As usual, let [n] = {1, . . . , n} ⊂ N for n ≥ 1, and let {{. . .}} denote a multiset.

Graphs. A graph G is a pair (V,E) with a finite set of vertices V and a set of edges E ⊆ {{u, v} ⊆ V | u 6= v}. We denote
the set of vertices and the set of edges of G by V (G) and E(G), respectively. For ease of notation, we denote the edge {u, v}
in E(G) by (u, v) or (v, u). In the case of directed graphs E ⊆ {(u, v) ∈ V × V | u 6= v}. A labeled graph G is a triple
(V,E, l) with a label function l : V (G) ∪ E(G) → Σ, where Σ is some finite alphabet. Then l(v) is a label of v for v in
V (G) ∪ E(G). The neighborhood of v in V (G) is denoted by δ(v) = N(v) = {u ∈ V (G) | (v, u) ∈ E(G)}. Moreover, its
complement δ(v) = {u ∈ V (G) | (v, u) /∈ E(G)}. Let S ⊆ V (G) then G[S] = (S,ES) is the subgraph induced by S with
ES = {(u, v) ∈ E(G) | u, v ∈ S}. A tree is a connected graph without cycles. A rooted tree is a tree with a designated vertex
called root in which the edges are directed in such a way that they point away from the root. Let p be a vertex in a directed tree
then we call its out-neighbors children with parent p.

We say that two graphs G and H are isomorphic if there exists an edge preserving bijection ϕ : V (G)→ V (H), i.e., (u, v) is in
E(G) if and only if (ϕ(u), ϕ(v)) is in E(H). If G and H are isomorphic, we write G ' H and call ϕ an isomorphism between
G and H . Moreover, we call the equivalence classes induced by ' isomorphism types, and denote the isomorphism type of G by
τG. In the case of labeled graphs, we additionally require that l(v) = l(ϕ(v)) for v in V (G) and l((u, v)) = l((ϕ(u), ϕ(v)))
for (u, v) in E(G). Let v be a tuple in V (G)k for k > 0, then G[v] is the subgraph induced by the components of v, where the
vertices are labeled with integers from {1, . . . , k} corresponding to indices of v.

Kernels. A kernel on a non-empty set X is a positive semidefinite function k : X × X → R. Equivalently, a function k is a
kernel if there is a feature map φ : X → H to a Hilbert spaceH with inner product 〈·, ·〉, such that k(x, y) = 〈φ(x), φ(y)〉 for
all x and y in X . Let G be the set of all graphs, then a (positive semidefinite) function G × G → R is called a graph kernel.

C. Vertex refinement algorithms (expanded)
Let k be a fixed positive integer. As usual, let V (G)k denote the set of k-tuples of vertices of G.

A coloring of V (G)k is a mapping C : V (G)k → N, i.e., we assign a number (color) to every tuple in V (G)k. The initial
coloring C 0 of V (G)k is specified by the isomorphism types of the tuples, i.e., two tuples v and w in V (G)k get a common
color iff the mapping vi → wi induces an isomorphism between the labeled subgraphs G[v] and G[w]. A color class
corresponding to a color c is the set of all tuples colored c, i.e., the set C−1(c).

The neighborhood of a vertex tuple v in V (G)k is defined as follows. For j in [k], let φj(v, w) be the k-tuple obtained by

Weisfeiler and Leman go sparse

δ-k-LWL+

δ-k-WL

k-WL

@
Prop. 1

≡
Thm. 2

δ-k-LWL

v†
δ-k-LGNN+

δ-k-GNN

k-WL-GNN (k-1)-IGN

δ-k-LGNN
≡

Thm. 6

≡∗

≡∗

≡∗ w
Po

w
er

Figure 2: Overview of the power of proposed algorithms and neural architectures. The green and dark red nodes represent
algorithms proposed in the present work. The grey region groups dense algorithms and neural architectures.
∗—Follows directly from the proof of Theorem 2. A v B (A @ B, A ≡ B): algorithm A is more powerful (strictly more
powerful, equally powerful) than B, †—Follows by definition, strictness open.

replacing the jth component of v with the vertex w. That is, φj(v, w) = (v1, . . . , vj−1, w, vj+1, . . . , vk). If w = φj(v, w)
for some w in V (G), call v a j-neighbor of w. The neighborhood of v is thus defined as the set of all tuples w such that
w = φj(v, w) for some j in [k] and w in V (G).

The refinement of a coloring C : V (G)k → N, denoted by Ĉ, is a coloring Ĉ : V (G)k → N defined as follows. For each j in
[k], collect the colors of the j-neighbors of v as a multiset Sj = {{C(φj(v, w)) | w ∈ V (G)}}. Then, for a tuple v, define

Ĉ(v) = (C(v),M(v)),

where M(v) is the k-tuple (S1, . . . , Sk). For consistency, the strings Ĉ(v) thus obtained are lexicographically sorted and
renamed as integers. Observe that the new color Ĉ(v) of v is solely dictated by the color histogram of its neighborhood. In
general, a different mapping M(·) could be used, depending on the neighborhood information that we would like to aggregate.
We will refer to a mapping M(·) as an aggregation map.

k-dimensional Weisfeiler-Leman. For k ≥ 2, the k-WL computes a coloring C∞ : V (G)k → N of a given graph G, as
follows.4 To begin with, the initial coloring C0 is computed. Then, starting with C0, successive refinements Ci+1 = Ĉi are
computed until convergence. That is,

Ci+1(v) = (Ci(v),Mi(v)),

where
Mi(v) =

(
{{Ci(φ1(v, w)) | w ∈ V (G)}}, . . . , {{Ci(φk(v, w)) | w ∈ V (G)}}

)
. (3)

The successive refinement steps are also called rounds or iterations. Since the disjoint union of the color classes form a partition
of V (G)k, there must exist a finite ` ≤ |V (G)|k such that C` = Ĉ`. In the end, the k-WL outputs C` as the stable coloring
C∞.

The k-WL distinguishes two graphs G and H if, upon running the k-WL on their disjoint union G ∪̇H , there exists a color c in
N in the stable coloring such that the corresponding color class Sc satisfies

|V (G)k ∩ Sc| 6= |V (H)k ∩ Sc|,

i.e., there exist an unequal number of c-colored tuples in V (G)k and V (H)k. Hence, two graphs distinguished by the k-WL
must be non-isomorphic.

In fact, there exist several variants of the above defined k-WL. These variants result from the application of different aggregation
maps M(·). For example, setting M(·) to be

MF (v) = {{
(
C(φ1(v, w)), . . . , C(φk(v, w))

)
| w ∈ V (G)}},

yields a well-studied variant of the k-WL (see, e.g., (Cai et al., 1992)), commonly known as “folklore” k-WL in machine
learning literature. It holds that the k-WL using Equation (3) is as powerful as the folklore (k−1)-WL (Grohe & Otto, 2015).

4We define the 1-WL in the next subsection.

Weisfeiler and Leman go sparse

wv x

u

(a) Underlying graph G, with tuple
(u, v, w)

wv x

u

(b) (u, v, x) is a local 3-neighbor of
(u, v, w)

wv x

u

(c) (x, v, w) is a global 1-neighbor of
(u, v, w)

Figure 3: Illustration of the local and global neighborhood of the 3-tuple (u, v, w).

C.1. δ-Weisfeiler-Leman algorithm

Let w = φj(v, w) be a j-neighbor of w. Call v a local j-neighbor of w if w is adjacent to the replaced vertex vj . Otherwise,
call v a global j-neighbor of w. Figure 3 illustrates this definition for a 3-tuple (u, v, w). For tuples v and w in V (G)k, the
function

adj((v,w)) =

{
L if w is a local neighbor of u
G if w is a global neighbor of u

indicates whether w is a local or global neighbor of u.

The δ-Weisfeiler-Leman algorithm, denoted by δ-k-WL, is a variant of the classic k-WL which differentiates between the local
and the global neighbors during neighborhood aggregation (Malkin, 2014). Formally, the δ-k-WL algorithm refines a coloring
Ci (obtained after i rounds) via the aggregation function

Mδ,δ
i (v) =

(
{{(Ci(φ1(v, w), adj(v, φ1(v, w))) | w ∈ V (G)}}, . . . ,
{{(Ci(φk(v, w), adj(v, φk(v, w))) | w ∈ V (G)}}

)
,

(4)

instead of the k-WL aggregation specified by Equation (3). We define the 1-WL to be the δ-1-WL, which is commonly known as
color refinement or naive vertex classification.

Comparing k-WL variants. Given that there exist several variants of k-WL, corresponding to different aggregation maps
M(·), it is natural to ask whether they are equivalent in power, vis-a-vis distinguishing non-isomorphic graphs. Let A1 and A2

denote two vertex refinement algorithms, we write A1 v A2 if A1 distinguishes between all non-isomorphic pairs A2 does, and
A1 ≡ A2 if both directions hold. The corresponding strict relation is denoted by @.

The following result relates the power of k-WL and δ-k-WL. Since for a graph G = (V,E), Mδ,δ
i (v) =Mδ,δ

i (w) implies
Mi(v) =Mi(w) for all v and w in V (G)k and i ≥ 0, it immediately follows that δ-k-WL v k-WL. For k = 1, these two
algorithms are equivalent by definition. For k ≥ 2, this relation can be shown to be strict (the proof is deferred to the appendix).

Proposition 3. For all graphs and k ≥ 2, the following holds:

δ-k-WL @ k-WL.

D. Local δ-k-dimensional Weisfeiler-Leman algorithm (Expanded)
In this section, we define the new local δ-k-dimensional Weisfeiler-Leman algorithm (δ-k-LWL). This variant of δ-k-WL
considers only local neighbors during the neighborhood aggregation process, and discards any information about the global
neighbors. Formally, the δ-k-LWL algorithm refines a coloring Ci (obtained after i rounds) via the aggregation function,

M δ
i (v) =

(
{{Ci(φ1(v, w)) | w ∈ N(v1)}}, . . . , {{Ci(φk(v, w)) | w ∈ N(vk)}}

)
, (5)

instead of Equation (4). That is, the algorithm only considers the local j-neighbors of the vertex v in each iteration. Therefore,
the indicator function adj used in Equation (4) is trivially equal to L here, and is hence omitted. The coloring function for the
δ-k-LWL is defined by

Ck,δi+1(v) = (Ck,δi (v),Mδ
i (v)).

Weisfeiler and Leman go sparse

We also define δ-k-LWL+, a minor variation of δ-k-LWL. Later, we will show that δ-k-LWL+ is equivalent in power to δ-k-WL
(Theorem 4). Formally, the δ-k-LWL+ algorithm refines a coloring Ci (obtained after i rounds) via the aggregation function,

M δ,+(v) =
(
{{(Ci(φ1(v, w)),#1

i (v, φ1(v, w))) | w ∈ N(v1)}}, . . . ,
{{(Ci(φk(v, w)),#k

i (v, φk(v, w))) | w ∈ N(vk)}}
)
,

(6)

instead of δ-k-LWL aggregation defined in Equation (5). Here, the function

#j
i (v,x) =

∣∣{w : w ∼j v, Ci(w) = Ci(x)}
∣∣,

where w ∼j v denotes that w is j-neighbor of v, for j in [k]. Essentially, #j
i (v,x) counts the number of j-neighbors (local or

global) of v which have the same color as x under the coloring Ci (i.e., after i rounds). For a fixed v, the function #j
i (v, ·) is

uniform over the set S ∩Nj , where S is a color class obtained after i iterations of the δ-k-LWL+ and Nj denotes the set of
j-neighbors of v. Note that after the stable partition has been reached #j

i (v) will not change anymore. Observe that each
iteration of the δ-k-LWL+ has the same asymptotic running time as an iteration of the δ-k-LWL.

The following theorem shows that the local variant δ-k-LWL+ is at least as powerful as δ-k-WL when restricted to the class of
connected graphs. In other words, given two connected graphs G and H , if these graphs are distinguished by δ-k-WL, then they
must also be distinguished by δ-k-LWL+. On the other hand, it is important to note that, in general, the δ-k-LWL+ might need a
larger number of iterations to distinguish two graphs, as compared to δ-k-WL. However, this leads to advantages in a machine
learning setting, see Section 5.

Theorem 4. For the class of connected graphs, the following holds for all k ≥ 1:

δ-k-LWL+ ≡ δ-k-WL.

Along with Proposition 3, we obtain the following corollary relating the power of k-WL and δ-k-LWL+.

Corollary 5. For the class of connected graphs, the following holds for all k ≥ 2:

δ-k-LWL+ @ k-WL.

In fact, the proof of Proposition 3 shows that the infinite family of graphs Gk, Hk witnessing the strictness condition can even
be distinguished by δ-k-LWL, for each corresponding k ≥ 2. We note here that the restriction to connected graphs can easily be
circumvented by adding a specially marked vertex, which is connected to every other vertex in the graph.

D.1. Kernels based on vertex refinement algorithms

The idea for a kernel based on the δ-k-LWL (and the other vertex refinements algorithms) is to compute it for h ≥ 0 iterations
resulting in a coloring function Ck,δ : V (G)→ Σi for each iteration i. Now, after each iteration, we compute a feature vector
φi(G) in R|Σi| for each graph G. Each component φi(G)c counts the number of occurrences of k-tuples labeled by c in Σi.
The overall feature vector φLWL(G) is defined as the concatenation of the feature vectors of all h iterations, i.e., φLWL(G) =[
φ0(G), . . . , φh(G)

]
. The corresponding kernel for h iterations then is computed as kLWL(G,H) = 〈φLWL(G), φLWL(H)〉,

where 〈·, ·〉 denotes the standard inner product.

D.2. Local converges to global: Proof of Theorem 1

The main technique behind the proof is to encode the colors assigned by k-WL (or its variants) as rooted directed trees, called
unrolling trees. The exact construction of the unrolling tree depends on the aggregation map M(·) used by the k-WL variant
under consideration. We illustrate this construction for the k-WL. For other variants such as the δ-k-WL, δ-k-LWL, and
δ-k-LWL+, we will specify analogous constructions.

Unrollings (“Rolling in the deep”). Given a graph G, tuple v in V (G)k, and an integer ` ≥ 0, the unrolling UNR [G, s, `]
is a rooted, directed tree with vertex and edge labels, defined recursively as follows.

- For ` = 0, UNR [G, v, 0] is defined to be a single vertex, labeled with the isomorphism type τ(s). This lone vertex is also
the root vertex.

Weisfeiler and Leman go sparse

(u, v, w)

1 2

3

(u, u, w)

2

1

2
3

(u, v, w)

2

1 2

3

(u,w,w)

2

1
2

3

(u, x, w)

2

1 2

3
(∗, v, w)

1-nbrs

(u, v, ∗)

3-nbrs

Figure 4: Unrolling at the tuple (u, v, w) of depth one.

- For ` > 0, UNR [G, v, `] is defined as follows. First, introduce a root vertex r, labeled with the isomorphism type τ(v).
Next, for each j ∈ [k] and for each j-neighbor w of v, append the rooted subtree UNR [G,w, `− 1] below the root r.
Moreover, the directed edge e from r to the root of UNR [G,w, `− 1] is labeled j iff w is a j-neighbor of v.

We refer to UNR [G,v, `] as the unrolling of the graph G at v of depth `. Figure 4 partially illustrates the recursive construction
of unrolling trees: it describes the unrolling tree for the graph in Figure 3 at the tuple (u, v, w), of depth 1. Each node w in the
unrolling tree is associated with some k-tuple w, indicated alongside the node in the figure. We call w the tuple corresponding
to the node w.

Analogously, we can define unrolling trees δ-UNR , L-UNR , and L+-UNR for the k-WL-variants δ-k-WL, δ-k-LWL, and
δ-k-LWL+ respectively. The minor differences lie in the recursive step above, since the unrolling construction needs to faithfully
represent the aggregation process.

- For δ-UNR , we additionally label the directed edge e with (j, L) or (j,G) instead of just j, depending on whether the
neighborhood is local or global.

- For L-UNR , we consider only the subtrees L-UNR [G,w, `− 1] for local j-neighbors w.
- For L+-UNR , we again consider only the subtrees L+-UNR [G,w, `− 1] for local j-neighbors w. However, the directed

edge e to this subtree is also labeled with the # counter value #j
`−1(v,w).

Encoding Colors as Trees. The following Lemma shows that the computation of k-WL can be faithfully encoded by the
unrolling trees. Formally, let s and t be two k-vertex-tuples in V (G)k.

Lemma 6. The colors of s and t after ` rounds of k-WL are identical if and only if the unrolling tree UNR [G, s, `] is
isomorphic to the unrolling tree UNR [G, t, `].

Proof. By induction on `. For the base case ` = 0, observe that the initial colors of s and t are equal to the respective
isomorphism types τ(s) and τ(t). On the other hand, the vertex labels for the single-vertex graphs UNR [G, s, 0] and
UNR [G, t, 0] are also the respective isomorphism types τ(s) and τ(t). Hence, the statement holds for ` = 0.

For the inductive case, we proceed with the forward direction. Suppose that k-WL assigns the same color to s and t after `
rounds. For each j in [k], the j-neighbors of s form a partition C1, . . . ,Cp corresponding to their colors after `− 1 rounds of
k-WL. Similarly, the j-neighbors of t form a partition D1, . . . ,Dp corresponding to their colors after `− 1 rounds of k-WL,
where for i in [p], Ci and Di have the same size and correspond to the same color. By inductive hypothesis, the corresponding
depth `− 1 unrollings UNR [G, c, `− 1] and UNR [G,d, `− 1] are isomorphic, for every c in Ci and d in Di. Since we
have a bijective correspondence between the depth `− 1 unrollings of the j-neighbors of s and t, respectively, there exists an
isomorphism between UNR [G, s, `] and UNR [G, t, `]. Moreover, this isomorphism preserves vertex labels (corresponding to
isomorphism types) and edges labels (corresponding to j-neighbors).

For the backward direction, suppose that UNR [G, s, `] is isomorphic to UNR [G, t, `]. Then, we have a bijective correspondence
between the depth `− 1 unrollings of the j-neighbors of s and of t, respectively. For each j in [k], the j-neighbors of s form a
partition C1, . . . ,Cp corresponding to their unrolling trees after `− 1 rounds of k-WL. Similarly, the j-neighbors of t form a

Weisfeiler and Leman go sparse

ss

ww

xx

(j,#)

j

t t

z z

y y

(j,#)

j

θ

θ

θ

> r∗

Figure 5: Unrollings L1 = L+-UNR [G, s, q] and L2 = L+-UNR [G, t, q] of sufficiently large depth.

partition D1, . . . ,Dp corresponding to their unrolling trees after `− 1 rounds of k-WL, where for i in [p], Ci, and Di have the
same size and correspond to the same isomorphism type of the unrolling tree. By induction hypothesis, the j-neighborhoods
of s and t have an identical color profile after ` − 1 rounds. Finally, since the depth ` − 1 trees UNR [G, s, ` − 1] and
UNR [G, t, `− 1] are trivially isomorphic, the tuples s and t have the same color after `− 1 rounds. Therefore, k-WL must
assign the same color to s and t after ` rounds.

Using identical arguments, we can state the analogue of Lemma 6 for the algorithms δ-k-WL, δ-k-LWL, δ-k-LWL+, and their
corresponding unrolling constructions δ-UNR , L-UNR and L+-UNR . The proof is identical and is hence omitted.

Lemma 7. The following statements hold.

1. The colors of s and t after ` rounds of δ-k-WL are identical if and only if the unrolling tree δ-UNR [G, s, `] is isomorphic
to the unrolling tree δ-UNR [G, t, `].

2. The colors of s and t after ` rounds of δ-k-LWL are identical if and only if the unrolling tree L-UNR [G, s, `] is isomorphic
to the unrolling tree L-UNR [G, t, `].

3. The colors of s and t after ` rounds of δ-k-LWL+ are identical if and only if the unrolling tree L+-UNR [G, s, `] is
isomorphic to the unrolling tree L+-UNR [G, t, `].

Equivalence. The following Lemma establishes that the local algorithm δ-k-LWL+ is at least as powerful as the global
δ-k-WL, for connected graphs, i.e., δ-k-LWL+ v δ-k-WL.

Lemma 8. Let G be a connected graph, and let s, t ∈ V (G)k. If the stable colorings of s and t under δ-k-LWL+ are identical,
then the stable colorings of s and t under δ-k-WL are also identical.

Proof. Let r∗ denote the number of rounds needed to attain the stable coloring under δ-k-LWL+. Consider unrollings
L1 = L+-UNR [G, s, q] and L2 = L+-UNR [G, t, q] of sufficiently large depth q = r∗ + |V (G)|+ 1. Since s and t have the
same stable coloring under δ-k-LWL+, the trees L1 and L2 are isomorphic (by Lemma 7). Let θ be an isomorphism from L1 to
L2.

We prove the following equivalent statement. IfL1 andL2 are isomorphic, then for all i ≥ 0, δ-UNR [G, s, i] = δ-UNR [G, t, i].
The proof is by induction on i. The base case i = 0 follows trivially by comparing the isomorphism types of s and t.

For the inductive case, let j ∈ [k]. Let Xj be the set of j-neighbors of s. Similarily, let Yj be the set of j-neighbors of t. Our
goal is to construct, for every j ∈ [k], a corresponding bijection σj between Xj and Yj satisfying the following conditions.

1. For all x in Xj , x is a local j-neighbor of s if and only if σj(x) is a local j-neighbor of t.

Weisfeiler and Leman go sparse

2. For all x in Xj , δ-UNR [G,x, i− 1] = δ-UNR [G, σj(x), i− 1], i.e., x and σj(x) are identically colored after i − 1
rounds of δ-k-WL.

From the definition of δ-UNR trees, the existence of such σ1, . . . , σk immediately implies the desired claim δ-UNR [G, s, i] =
δ-UNR [G, t, i]. First, we show the following claim.

Claim 9. Let C be a color class in the stable coloring of G under δ-k-LWL+. Let j ∈ [k]. Then, |C ∩Xj | = |C ∩Yj |.

Proof. Either |C ∩Xj | = |C ∩Yj | = 0, in which case we are done. Otherwise, assume without loss of generality that
|C ∩Xj | 6= 0. Let x in C ∩Xj . Since G is connected, we can start from the root s of L1, go down along j-labeled edges, and
reach a vertex x such that x corresponds to the tuple x. Let w be the parent of x, and let w be the tuple corresponding to w.
Note that x is a local j-neighbor of w. Moreover, the depth of w is at most n− 1. Hence, the height of the subtree of L1 rooted
at w is at least q − (n− 1) > r∗.

Consider the tuple z corresponding to the vertex z = θ(w) in L2. Observe that the path from the root t of L2 to the vertex
z = θ(w) consists of j-labeled edges. Therefore, z is j-neighbor of t, and hence z in Yj . The stable colorings of w and z
under δ-k-LWL+ are identical, because the subtrees rooted at w and z are of depth more than r∗. Let C denote the common
color class of w and z, in the stable coloring of G under δ-k-LWL+.

Since x is a local neighbor of w, the agreement of the # function values ensures that the number of j-neighbors (local or
global) of w in C is equal to the number of j-neighbors (local or global) of z in C. Finally, the set of j-neighbors of w is equal
to the set of j-neighbors of s, which is Xj . Similarily, the set of j-neighbors of z is equal to the set of j-neighbors of t, which is
Yj . Hence, |C ∩Xj | = |C ∩Yj |.

Moreover, for each j ∈ [k], the number of local j-neighbors of s in C ∩Xj is equal to the number of local j-neighbors of t in
C ∩Yj . Otherwise, we could perform one more round of δ-k-LWL+ and derive different colors for s and t, a contradiction.

Hence, we can devise the required bijection σj = σLj ∪̇σGj as follows. We pick an arbitrary bijection σLj between the set of
local j-neighbors of s inside C and the set of local j-neighbors of t inside C. We also pick an arbitrary bijection σGj between
the set of global j-neighbors of s inside C and the set of global j-neighbors of t inside C. Clearly, σj satisfies the first stipulated
condition. By induction hypothesis, the second condition is also satisifed. Hence, we can obtain a desired bijection σj satisfying
the two stipulated conditions. Since we obtain the desired bijections σ1, . . . , σk, this finishes the proof of the lemma.

Finally, since for a graph G = (V,E), Mδ,δ
i (v) =Mδ,δ

i (w) implies Mδ,+
i (v) =Mδ,+

i (w) for all v and w in V (G)k and
i ≥ 0, it holds that δ-k-WL v δ-k-LWL+. Together with Lemma 8 above, this finishes the proof of Theorem 4.

E. Higher-order neural architectures (Expanded)
Although the discrete kernels defined in the previous section are quite powerful, they are limited due to their fixed feature
construction scheme, hence suffering from (a) poor adaptation to the learning task at hand and (b) suffer from the inability to
handle continuous node and edge labels in a meaningful way. Moreover, they often result in high-dimensional embeddings
forcing one to resort to non-scalable, kernelized optimization procedures. To address this, we derive a neural architecture,
called local δ-k-GNNs (δ-k-LGNN). We show that it has the same power as the δ-k-LWL, can naturally handle continuous
information, and learn fixed dimensional graph embeddings straightforwardly. Moreover, it uses the same number of parameters
as a corresponding (1-dimensional) GNN.

Let (G, l) be a labeled graph, following (Morris et al., 2019), we assume an initial node coloring f (0) : V (G)k → R1×d such
that each tuple v is annotated with a feature f (0)(v) in R1×d where f (0)(v) = f (0)(u) if and only if the labeled isomorphism
types G[v] and G[w] match. See the paragraph at the end of this section on how to deal with continous information. In each
layer t > 0, we compute a new feature

f (t)(v) = fW1
merge

(
f (t−1)(v), fW2

aggr

(
{{f (t−1)(φ1(v, w)) | w ∈ δ(v1)}}, . . . ,

{{f (t−1)(φk(v, w)) | w ∈ δ(vk)}}
))
,

(7)

Weisfeiler and Leman go sparse

in R1×e for a tuple v, where W (t)
1 and W (t)

2 are parameter matrices from Rd×e and σ denotes a component-wise non-linear
function, e.g., a sigmoid or a ReLU.5 Here, fW1

aggr aggregates over the set of local neighbors and fW2
merge merges the tuple’s

representations from step (t− 1) with the computed neighborhood features. Both fW1
aggr and fW2

merge may be arbitrary differentiable,
(permutation-invariant, in the case of the former) functions. Initially, we set f (0)(v) to a one-hot encoding of the (labeled)
isomorphism type of G[v]. Note that we can naturally handle discrete node and edge labels as well as directed graphs. In order
to adapt the parameters W1 and W2 of Equation (7), to a given data distribution, we optimize them in an end-to-end fashion
together with the parameters of the neural network used for the learning task.

Following (Morris et al., 2019), let W(t) =
(
W

(t′)
1 ,W

(t′)
2

)
t′≤t denote parameters given by Equation (7) up to iteration t.

The following result shows that there is a sequence of parameter matrices such that the δ-k-GNN has the same power as
the δ-k-LWL in terms of distinguishing non-isomorphic graphs. Moreover, it inherits the strengths of the later, i.e., it can be
implemented using sparse matrix multiplication.

Theorem 10. Let (G, l) be a labeled graph. Then for all t ≥ 0 there exists a sequence of weights W(t) such that

Ck,δt (v) = Ck,δt (w) ⇐⇒ f (t)(v) = f (t)(w).

Hence, for all graphs, the following holds for all k ≥ 1:

δ-k-LGNN ≡ δ-k-LWL.

Proof sketch. First, observe that the δ-k-LGNN can be simulated on an appropriate node- and edge-labeled graph on nk

vertices. Secondly, following the proof of Theorem 2 in (Morris et al., 2019), there exists a parameter matrix W (t)
2 such that we

can injectively map each multiset in Equation (7), representing the local j-neighbors for j in [k], to a d-dimensional vector.
Moreover, we concatenate j to each such vector to distinguish between different neighborhoods. Again, by the proof of Theorem
2 in (Morris et al., 2019), there exists a parameter matrix W (t)

1 such that we can injectively map the set of resulting k vectors to
a unique vector representation. Alternatively, one can concatenate the resulting k vectors and use a multi-layer perceptron to
learn a joint lower-dimensional representation.

Note that it is not possible to come up with an architecture, i.e., instantiations of fW1
aggr and fW2

merge, such that it becomes more
powerful than the k-δ-LWL, see (Morris et al., 2019). However, all results from the previous section can be lifted to the neural
setting.

That is, in the same spirit as Equation (7), one can derive neural architectures based on the δ-k-WL and k-WL, called δ-k-GNN
and k-WL-GNN, respectively, and prove results analogous to Theorem 10. For example, we can express δ-k-GNN in a similar
fashion to Equation (7) by learning separate embeddings for local and global neighbors. We can then learn a joint representation,
e.g., using a multi-layer perceptron, to weight the importance of local and global information in a data-driven way. We further
explore this in the experimental section. In principle, it is also possible to devise an architecture (δ-k-GNN+) with the same
power as the δ-k-LWL+. However, due to the discrete nature of the # labeling function, it has to be precomputed in advance
and encoded as additional node features.

Generalization abilites of the neural architecture. Garg et al. (Garg et al., 2020), studied the generalization abilities of a
standard GNN architecture for binary classification using a margin loss. Under certain mild conditions, they bounded the
empirical Rademacher complexity as Õ(rdL/√mγ), where d is the maximum degree of the employed graphs, r is the number of
components of the node features, L is the number of layers, and γ is a parameter of the loss function. It is straightforward to
transfer the above bound to the higher-order (local) layer from above. Hence, this shows that local, sparsity-aware, higher-order
variants, e.g., δ-k-LGNN, exhibit a smaller generalization error compared to dense, global variants like the k-WL-GNN.

Incorporating continous information. Since many real-world graphs, e.g., molecules, have continuous features (real-valued
vectors) attached to vertices and edges, using a one-hot encoding of the (labeled) isomorphism type is not a sensible choice. Let
a : V (G)→ R1×d be a function such that each vertex v is annotated with a feature a(v) in R1×d, and let v = (v1, . . . , vk) be
a k-tuple of vertices. Then we can compute an inital feature

f (0)(v) = fW3
enc

(
(a(v1), . . . , a(vk))

)
, (8)

5For clarity of presentation we omit biases.

Weisfeiler and Leman go sparse

for the tuple v. Here, fenc :
(
R1×d)k → R1×e is a arbitrary differentiable, parameterized function, e.g., a multi-layer perceptron

or a standard GNN aggregation function, that computes of joint representation of the k node features a(v1), . . . , a(vk).
Moreover, it also straightforward to incorporate the labeled isomorphism type and continuous edge label information. We further
explore this in the experimental section.

F. Practicality, barriers ahead, and possible road maps
As Theorem 4 shows, the δ-k-LWL+ and its corresponding neural architecture, the δ-k-LGNN+, have the same power in
distinguishing non-isomorphic graphs as δ-k-WL. Although for dense graphs, the local algorithms will have the same running
time, for sparse graphs, the running time for each iteration can be upper-bounded by |nk| · kd, where d denotes the maximum or
average degree of the graph. Hence, the local algorithm takes the sparsity of the underlying graph into account, resulting in
improved computation times compared to the non-local δ-k-WL and the k-WL (for the same number of iterations). These
observations also translate into practice, see Appendix G. The same arguments can be used in favor of the δ-k-LWL and
δ-k-LGNN, which lead to even sparser algorithms.

Obstacles. The biggest obstacle in applying the algorithms to truly large graphs is the fact that the algorithm considers all
possible k-tuples leading to a lower bound on the running of Ω(nk). Lifting the results to the folklore k-WL, e.g., (Maron
et al., 2019a), only “shaves off one dimension”. Moreover, applying higher-order algorithms for large k might lead to severe
overfitting issues, see also Appendix G.

Possible solutions. Recent sampling-based approaches for graph kernels or GNNs, see, e.g., (Chen et al., 2018a;b; Hamilton
et al., 2017; Huang et al., 2018; Morris et al., 2017) address the dependence on nk, while appropriate pooling methods along the
lines of Equation (8) address the overfitting issue. Finally, new directions from the theory community, e.g., (Grohe et al., 2020)
paint further directions, which might result in more scalable algorithms.

G. Expanded experimental evaluation
Our intention here is to investigate the benefits of the local, sparse algorithms, both kernel and neural architectures, compared to
the global, dense algorithms, and standard kernel and GNN baselines. More precisely, we address the following questions:

Q1 Do the local algorithms, both kernel and neural architectures, lead to improved classification and regression scores on
real-world benchmark datasets compared to global, dense algorithms and standard baselines?

Q2 Does the δ-k-LWL+ lead to improved classification accuracies compared to the δ-k-LWL? Does it lead to higher computation
times?

Q3 How much do the local algorithms speed up the computation time compared to the non-local algorithms or dense neural
architectures?

G.1. Datasets, graph kernels, and neural architectures

In the following, we give an overview of employed datasets, (baselines) kernels, and (baseline) neural architectures.

Datasets To evaluate kernels, we use the following, well-known, small-scale ENZYMES (Schomburg et al., 2004; Borgwardt
& Kriegel, 2005), IMDB-BINARY, IMDB-MULTI (Yanardag & Vishwanathan, 2015b), NCI1, NCI109 (Wale et al.,
2008), PTC_FM6, PROTEINS (Dobson & Doig, 2003; Borgwardt & Kriegel, 2005), and REDDIT-BINARY (Yanardag &
Vishwanathan, 2015b) datasets. To show that our kernels also scale to larger datasets, we additionally used the mid-scale
YEAST, YEASTH, UACC257, UACC257H, OVCAR-8, OVCAR-8H (Yan et al., 2008)7 datasets. For the neural
architectures, see Appendix E, we used the large-scale molecular regression datasets ZINC (Dwivedi et al., 2020; Jin
et al., 2018) and ALCHEMY (Chen et al., 2019a). We opted for not using the 3D-coordinates of the ALCHEMY dataset to
solely show the benefits of the (sparse) higher-order structures concerning graph structure and discrete labels. To further
compare to the (hierarchical) k-GNN (Morris et al., 2019) and k-IGN (Maron et al., 2019a), and show the benefits of our
architecture in presence of continuous features, we used the QM9 (Ramakrishnan et al., 2014; Wu et al., 2018) regression

6https://www.predictive-toxicology.org/ptc/
7https://sites.cs.ucsb.edu/~xyan/dataset.htm

https://www.predictive-toxicology.org/ptc/
https://sites.cs.ucsb.edu/~xyan/dataset.htm

Weisfeiler and Leman go sparse

Table 3: Dataset statistics and properties, †—Continuous vertex labels following (Gilmer et al., 2017), the last three components
encode 3D coordinates.

Dataset
Properties

Number of graphs Number of classes/targets ∅ Number of vertices ∅ Number of edges Vertex labels Edge labels

ENZYMES 600 6 32.6 62.1 3 7

IMDB-BINARY 1 000 2 19.8 96.5 7 7

IMDB-MULTI 1 500 3 13.0 65.9 7 7

NCI1 4 110 2 29.9 32.3 3 7

NCI109 4 127 2 29.7 32.1 3 7

PTC_FM 349 2 14.1 14.5 3 7

PROTEINS 1 113 2 39.1 72.8 3 7

REDDIT-BINARY 2 000 2 429.6 497.8 7 7

YEAST 79 601 2 21.5 22.8 3 3

YEASTH 79 601 2 39.4 40.7 3 3

UACC257 39 988 2 26.1 28.1 3 3

UACC257H 39 988 2 46.7 48.7 3 3

OVCAR-8 40 516 2 26.1 28.1 3 3

OVCAR-8H 40 516 2 46.7 48.7 3 3

ZINC 249 456 12 23.1 24.9 3 3

ALCHEMY 202 579 12 10.1 10.4 3 3

QM9 129 433 12 18.0 18.6 3(13+3D)† 3(4)

dataset.8 To study data efficiency, we also used smaller subsets of the ZINC and ALCHEMY dataset. That is, for the ZINC
10K (ZINK 50K) dataset, following (Dwivedi et al., 2020), we sampled 10 000 (50 000) graphs from the training, and 1 000
(5 000) from the training and validation split, respectively. For ZINC 10K, we used the same splits as provided by (Dwivedi
et al., 2020). For the ALCHEMY 10K (ALCHEMY 50K) dataset, as there is no fixed split available for the full dataset9, we
sampled the (disjoint) training, validation, and test splits uniformly and at random from the full dataset. See Table 3 for
dataset statistics and properties.10

Kernels We implemented the δ-k-LWL, δ-k-LWL+, δ-k-WL, and k-WL kernel for k in {2, 3}. We compare our kernels to the
Weisfeiler-Leman subtree kernel (1-WL) (Shervashidze et al., 2011), the Weisfeiler-Leman Optimal Assignment kernel
(WLOA) (Kriege et al., 2016), the graphlet kernel (Shervashidze et al., 2009) (GR), and the shortest-path kernel (Borgwardt
& Kriegel, 2005) (SP). All kernels were (re-)implemented in C++11. For the graphlet kernel we counted (labeled) connected
subgraphs of size three.

Neural architectures We used the GIN and GIN-ε architecture (Xu et al., 2019) as neural baselines. For data with (continuous)
edge features, we used a 2-layer MLP to map them to the same number of components as the node features and combined
them using summation (GINE and GINE-ε). For the evaluation of the neural architectures of Appendix E, δ-k-LGNN, δ-k-
GNN, k-WL-GNN, we implemented them using PYTORCH GEOMETRIC (Fey & Lenssen, 2019), using a Python-wrapped
C++11 preprocessing routine to compute the computational graphs for the higher-order GNNs. We used the GIN-ε layer to
express fW1

merge and fW2
aggr of Equation (7). Finally, we used the PYTORCH (Paszke et al., 2019) implementations of the

3-IGN (Maron et al., 2019a), and 1-2-GNN, 1-3-GNN, 1-2-3-GNN (Morris et al., 2019) made available by the respective
authors.
For the QM9 dataset, we additionally used the MPNN architecture as a baseline, closely following the setup of (Gilmer
et al., 2017). For the GINE-ε and the MPNN architecture, following Gilmer et al. (Gilmer et al., 2017), we used a complete
graph, computed pairwise `2 distances based on the 3D-coordinates, and concatenated them to the edge features. We note
here that our intent is not the beat state-of-the-art, physical knowledge-incorporating architectures, e.g., DimeNet (Klicpera
et al., 2020) or Cormorant (Anderson et al., 2019), but to solely show the benefits of the (local) higher-order architectures
compared to the corresponding (1-dimensional) GNN. For the δ-2-GNN, to implement Equation (8), for each 2-tuple we
concatenated the (two) node and edge features, computed pairwise `2 distances based on the 3D-coordinates, and a one-hot

8We opted for comparing on the QM9 dataset to ensure a fair comparison concerning hyperparameter selection.
9Note that the full dataset is different from the contest dataset, e.g., it does not provide normalized targets, see https://alchemy.

tencent.com/.
10All datasets can be obtained from http://www.graphlearning.io.

https://alchemy.tencent.com/
https://alchemy.tencent.com/
http://www.graphlearning.io

Weisfeiler and Leman go sparse

Table 4: Classification accuracies in percent and standard deviations, OOT— Computation did not finish within one day, OOM—
Out of memory.

Method
Dataset

ENZYMES IMDB-BINARY IMDB-MULTI NCI1 NCI109 PTC_FM PROTEINS REDDIT-BINARY

B
as

el
in

e GR 29.8 ±1.0 59.5 ±0.4 40.6 ±0.5 66.3 ±0.2 66.7 ±0.2 62.3 ±0.9 71.6 ±0.2 60.0 ±0.2
SP 42.3 ±1.3 59.2 ±0.3 39.6 ±0.4 74.5 ±0.3 73.4 ±0.1 63.2 ±0.6 76.4 ±0.4 84.7±0.2
1-WL 53.4 ±1.4 72.4 ±0.5 50.6 ±0.6 85.1 ±0.2 85.2 ±0.2 62.9 ±1.6 73.7 ±0.5 75.3 ±0.3
WLOA 59.7 ±1.2 73.1 ±0.7 50.3 ±0.6 85.6 ±0.2 86.0 ±0.3 63.7 ±0.7 73.7 0.5± 88.7 ±0.2

N
eu

ra
l Gin-0 39.6 ±1.3 72.8 ±0.9 50.0 ±0.1 78.5 ±0.5 77.1 ±0.6 58.0 ±1.4 71.7 ±0.9 90.7 ±0.9

Gin-ε 38.7 ±2.1 73.0 ±1.0 49.8 ±0.6 78.8 ±0.3 77.2 ±0.3 58.7 ±1.7 70.4 ±1.2 89.4 ±1.2

G
lo

ba
l 2-WL 38.9 ±0.8 69.2 ±0.6 48.0 ±0.5 67.5 ±0.3 68.3 ±0.2 64.3 ±0.6 75.3 ±0.3 OOM

3-WL 45.9 ±0.8 69.2 ±0.4 47.9 ±0.7 OOT OOT 64.4 ±0.6 OOM OOM

δ-2-WL 39.1 ±1.1 69.4 ±0.7 48.0 ±0.4 67.4 ±0.3 68.3 ±0.3 64.5 ±0.4 75.2 ±0.5 OOM
δ-3-WL 45.9 ±0.9 69.1 ±0.6 47.9 ±0.8 OOT OOT 64.4 ±0.6 OOM OOM

L
oc

al

δ-2-LWL 57.7 ±1.0 73.3 ±0.7 50.9 ±0.6 85.4 ±0.2 84.8 ±0.2 62.7 ±1.3 74.5 ±0.6 90.0 ±0.2
δ-2-LWL+ 57.0 ±0.8 78.9 ±0.6 64.0 ±0.4 91.8 ±0.2 90.8 ±0.2 62.7 ±1.4 82.6 ±0.4 91.5 ±0.2
δ-3-LWL 60.4 ±0.8 73.5 ±0.5 49.6 ±0.7 84.0 ±0.3 83.0 ±0.3 62.6 ±1.2 OOM OOM

δ-3-LWL+ 58.9 ±1.1 80.6 ±0.5 60.3 ±0.4 83.9 ±0.3 82.9 ±0.3 62.4 ±1.2 OOM OOM

Table 5: Classification accuracies in percent and standard deviations on medium-scale datasets.

Method
Dataset

YEAST YEASTH UACC257 UACC257H OVCAR-8 OVCAR-8H

1-WL 88.9 < 0.1 88.9 < 0.1 96.8 < 0.1 96.9 < 0.1 96.3 < 0.1 96.3 < 0.1

N
eu

ra
l GINE 88.3 < 0.1 88.3 < 0.1 95.9 < 0.1 95.9 < 0.1 94.9 < 0.1 94.9 < 0.1

GINE-ε 88.3 < 0.1 88.3 < 0.1 95.9 < 0.1 95.9 < 0.1 95.0 < 0.1 94.9 < 0.1

L
oc

al δ-2-LWL 88.6 < 0.1 88.5 < 0.1 96.8 < 0.1 96.5 < 0.1 96.1 < 0.1 95.9 < 0.1

δ-2-LWL+ 98.9 < 0.1 99.1 < 0.1 99.2 < 0.1 98.9 < 0.1 99.3 < 0.1 99.0 < 0.1

encoding of the (labeled) isomorphism type. Finally, we used a 2-layer MLP to learn a joint, initial vectorial representation.

The source code of all methods and evaluation procedures will be made available at www.github.com/chrsmrrs/
sparsewl.

G.2. Experimental protocol and model configuration

In the following, we describe the experimental protocol and hyperparameter setup.

Kernels For the smaller datasets (first third of Table 3), for each kernel, we computed the (cosine) normalized gram matrix. We
computed the classification accuracies using the C-SVM implementation of LIBSVM (Chang & Lin, 2011), using 10-fold
cross-validation. The C-parameter was selected from {10−3, 10−2, . . . , 102, 103} by (inner) 10-fold cross-validation on
the training folds. We repeated each 10-fold cross-validation ten times with different random folds, and report average
accuracies and standard deviations. For the larger datasets (second third of Table 3), we computed sparse feature vectors for
each graph and used the linear C-SVM implementation of LIBLINEAR (Fan et al., 2008), using 10-fold cross-validation.
The C-parameter was again selected from {10−3, 10−2, . . . , 102, 103} using a validation set sampled uniformly at
random from the training fold (using 10% of the training fold). For measuring the classification accuracy, the number of
iterations of the 1-WL, WLOA, δ-k-LWL, the δ-k-LWL+, and the k-WL were selected from {0, . . . , 5} using 10-fold
cross validation on the training folds only, or using the validation set for the medium-scale datasets.11 Moreover, for
the δ-k-LWL+, we only added the additional label function # on the last iteration to prevent overfitting. We report

11As already shown in (Shervashidze et al., 2011), choosing the number of iterations too large will lead to overfitting.

www.github.com/chrsmrrs/sparsewl
www.github.com/chrsmrrs/sparsewl

Weisfeiler and Leman go sparse

Table 6: Mean MAE (mean std. MAE, logMAE) on large-scale (multi-target) molecular regression tasks.

Method
Dataset

ZINC (10k) ZINC (50k) ZINC (FULL) ALCHEMY (10K) ALCHEMY (50K) ALCHEMY (FULL)

B
as

el
in

e GINE-ε 0.278 ±0.022 0.145 ±0.006 0.084 ±0.004 0.185 ±0.007 -1.864 ±0.062 0.127 ±0.004 -2.415 ±0.053 0.103 ±0.001 -2.956 ±0.029

2-WL-GNN 0.399 ±0.006 0.357 ±0.017 0.133 ±0.013 0.149 ±0.004 -2.609 ±0.029 0.105 ±0.001 -3.139 ±0.020 0.093 ±0.001 -3.394 ±0.035
δ-2-GNN 0.374 ±0.022 0.150 ±0.064 0.042 ±0.003 0.118 ±0.001 -2.679 ±0.044 0.085 ±0.001 -3.239 ±0.023 0.080 ±0.001 -3.516 ±0.021

δ-2-LGNN 0.306 ±0.044 0.100 ±0.005 0.045 ±0.006 0.122 ±0.003 -2.573 ±0.078 0.090 ±0.001 -3.176 ±0.020 0.083 ±0.001 -3.476 ±0.025

Table 7: Overall computation times for the whole datasets in seconds (Number of iterations for 1-WL, 2-WL, 3-WL, δ-2-WL,
WLOA, δ-3-WL, δ-2-LWL, and δ-3-LWL: 5), OOT— Computation did not finish within one day (24h), OOM— Out of memory.

Graph Kernel
Dataset

ENZYMES IMDB-BINARY IMDB-MULTI NCI1 NCI109 PTC_FM PROTEINS REDDIT-BINARY

B
as

el
in

e GR <1 <1 <1 1 1 <1 <1 2
SP <1 <1 <1 2 2 <1 <1 1 035
1-WL <1 <1 <1 2 2 <1 <1 2
WLOA <1 <1 <1 14 14 <1 1 15

G
lo

ba
l 2-WL 302 89 44 1 422 1 445 11 14 755 OOM

3-WL 74 712 18 180 5 346 OOT OOT 5 346 OOM OOM

δ-2-WL 294 89 44 1 469 1 459 11 14 620 OOM

δ-3-WL 64 486 17 464 5 321 OOT OOT 1119 OOM OOM

L
oc

al

δ-2-LWL 29 25 20 101 102 1 240 59 378
δ-2-LWL+ 35 31 24 132 132 1 285 84 044
δ-3-LWL 4 453 3 496 2 127 18 035 17 848 98 OOM OOM

δ-3-LWL+ 4 973 3 748 2 275 20 644 20 410 105 OOM OOM

computation times for the 1-WL, WLOA, the δ-k-LWL, the δ-k-LWL+, and the k-WL with five refinement steps. All
kernel experiments were conducted on a workstation with an Intel Xeon E5-2690v4 with 2.60GHz and 384GB of RAM
running Ubuntu 16.04.6 LTS using a single core. Moreover, we used the GNU C++ Compiler 5.5.0 with the flag -O2.

Neural architectures For comparing to kernel approaches, see Tables 4 and 5, we used 10-fold cross-validation. For the
small-scale datasets, the number of components of the (hidden) node features in {32, 64, 128} and the number of layers in
{1, 2, 3, 4, 5} of the GIN and GIN-ε layer were selected using a validation set sampled uniformly at random from the
training fold (using 10% of the training fold). For the medium-scale datasets, due to computation time constraints, we set
the number of (hidden) node features to 64 and the number of layers to 3. We used mean pooling to pool the learned node
embeddings to a graph embedding and used 2-layer MLP for the final classification, using a dropout layer with p = 0.5
after the first layer of the MLP. We repeated each 10-fold cross-validation ten times with different random folds, and report
the average accuracy and standard deviations. Due to the different training methods, we do not provide computation times
for the GNN baselines.
For the larger molecular regression tasks, ZINC and ALCHEMY, see Table 6, we closely followed the hyperparameters
found in (Dwivedi et al., 2020) and (Chen et al., 2019a), respectively, for the GINE-ε layers. That is, for ZINC, we used four
GINE-ε layers with a hidden dimension of 256 followed by batch norm and a 4-layer MLP for the joint regression of the
twelve targets, after applying mean pooling. For ALCHEMY and QM9, we used six layers with 64 (hidden) node features
and a set2seq layer (Vinyals et al., 2016) for graph-level pooling, followed by a 2-layer MLP for the joint regression of the
twelve targets. We used exactly the same hyperparameters for the (local) δ-2-LGNN, and the dense variants δ-2-GNN and
2-WL-GNN.
For ZINC, we used the given train, validation split, test split, and report the MAE over the test set. For the ALCHEMY and
QM9 datasets, we uniformly and at random sampled 80% of the graphs for training, and 10% for validation and testing,
respectively. Moreover, following (Chen et al., 2019a; Gilmer et al., 2017), we normalized the targets of the training split to
zero mean and unit variance. We used a single model to predict all targets. Following (Klicpera et al., 2020), we report
mean standardized MAE and mean standardized logMAE. We repeated each experiment five times (with different random
splits in case of ALCHEMY and QM9) and report average scores and standard deviations.

Weisfeiler and Leman go sparse

Table 8: Overall computation times for the whole datasets in seconds on medium-scale datasets (Number of iterations for 1-WL,
δ-2-LWL, and δ-3-LWL: 2).

Graph Kernel Dataset

YEAST YEASTH UACC257 UACC257H OVCAR-8 OVCAR-8H

1-WL 11 19 6 10 6 10

L
oc

al δ-2-LWL 1 499 5 934 1 024 3 875 1 033 4 029
δ-2-LWL+ 2 627 7 563 1 299 4 676 1 344 4 895

Table 9: Additional results for the neural architectures.

(a) Mean std. MAE and mean std. logMAE compared to (Maron et al.,
2019a; Morris et al., 2019; Gilmer et al., 2017)

Method
Dataset

QM9

B
as

el
in

e

GINE-ε 0.081 ±0.003 -3.400 ±0.094
MPNN (Gilmer et al., 2017) 0.034 ±0.001 -4.156±0.030
1-2-GNN (Morris et al., 2019) 0.068 ±0.001 -3.413 ±0.025
1-3-GNN (Morris et al., 2019) 0.088 ±0.007 -2.704 ±0.170
1-2-3-GNN (Morris et al., 2019) 0.062 ±0.001 -3.534 ±0.030
3-IGN (Maron et al., 2019a) 0.046 ±0.001 -3.567 ±0.022

δ-2-LGNN 0.029 ±0.001 -4.054 ±0.036

(b) Average speed up ratios over all epochs (training and testing)

Method
Dataset

ZINC (10k) ALCHEMY (10K)

B
as

el
in

e GINE-ε 0.2 0.4
2-WL-GNN 2.2 1.1
δ-2-GNN 2.5 1.7

δ-2-LGNN 1.0 1.0

To compare training and testing times between the δ-2-LGNN, the dense variants δ-2-GNN and 2-WL-GNN, and the
(1-dimensional) GINE-ε layer, we trained all four models on ZINC (10K) and ALCHEMY (10K) to convergence, divided
by the number of epochs, and calculated the ratio with regard to the average epoch computation time of the δ-2-LGNN
(average computation time of dense/baseline layer divided by average computation time of the δ-2-LGNN). All neural
experiments were conducted on a workstation with four Nvidia Tesla V100 GPU cards with 32GB of GPU memory
running Oracle Linux Server 7.7.
We trained all neural architecutes (excluding 3-IGN (Maron et al., 2019a)) withADAM (Kingma & Ba, 2015) with a
learning rate decay of 0.5 and a patience parameter of 5, a starting learning rate of 0.01 and a minimum of 10−6. For the
3-IGN, we used the parameters provided by Maron et al. as this lead to better results (a learning rate of 0.8 with a patience
parameter of 20).

G.3. Results and discussion

In the following we answer questions Q1 to Q3.

A1 Kernels. See Table 4. The local algorithm, for k = 2 and 3, severely improves the classification accuracy compared to the
k-WL and the δ-k-WL. For example, on the ENZYMES dataset the δ-2-LWL achieves an improvement of almost 20%,
and the δ-3-LWL achieves the best accuracies over all employed kernels, improving over the 3-WL and the δ-3-WL by
almost 15%. This observation holds over all datasets (excluding PTC_FM and PROTEINS). However, it has to be noted
that increasing k does not always result in increased accuracies. For example, on all datasets (excluding ENZYMES), the
performance of the δ-2-LWL is better or on par with the δ-3-LWL. Hence, with increasing k the local algorithm is more
prone to overfitting. Our algorithms also perform better than neural baselines.
Neural architectures. See Table 6. On the ZINC and ALCHEMY datasets, the δ-2-LGNN is on par or slightly worse than
the δ-2-GNN. Hence, this is in contrast to the kernel variant. We assume that this is due to the δ-2-GNN being more
flexible than its kernel variant, in weighing the importance of global and local neighbors. This is further highlighted by the
worse performance of the 2-WL-GNN, which performs worse than GINE-ε on the ZINC dataset. Overall, the δ-k-LGNN
performs better than the GINE-ε baseline on the (full) datasets. However, it seems less data-efficient than the GINE-ε as it
performs worse on smaller ZINC (10K). However, this is not the case for the ALCHEMY (10K) dataset, which contains
smaller graphs.
On the QM9 dataset, see Table 9, the δ-2-GNN performs better than higher-order methods from (Maron et al., 2019a)
and (Morris et al., 2019) as well as the GINE-ε baseline while being on par with the MPNN architecture. We note here that

Weisfeiler and Leman go sparse

0 25 50 75 100 125
Epoch

0.2

0.4

0.6

M
A

E

δ-k-LGNN train

δ-k-LGNN test

δ-k-GNN train

δ-k-GNN test

k-GNN train

k-GNN test

(a) ZINC (FULL)

0 20 40 60 80 100
Epoch

0.10

0.15

0.20

0.25

M
ea

n
st

d.
M

A
E

δ-k-LGNN train

δ-k-LGNN test

δ-k-GNN train

δ-k-GNN test

k-GNN train

k-GNN test

(b) ALCHEMY (FULL)

Figure 6: Train and test error on ZINC (FULL) and ALCHEMY (FULL) over five runs.

the MPNN was specifically tuned to the QM9 dataset, which is not the case for the δ-2-LGNN (and the other higher-order
architectures).

A2 See Tables 4 and 5. The δ-2-LWL+ improves over the δ-2-LWL on all datasets excluding ENZYMES. For example, on
IMDB-BINARY, IMDB-MULTI, NCI1, NCI109, and PROTEINS the algorithm achieves an improvement over of 4%,
respectively, achieving a new state-of-the-art. The computation times are only increased slightly. Similar results can be
observed on the larger datasets, see Table 5.

A3 Kernels. See Table 7. The local algorithm severely speeds up the computation time compared to the δ-k-WL and the k-WL
for k = 2 and 3. For example, on the ENZYMES dataset the δ-2-LWL is over 10 times faster than δ-2-WL. The δ-3-LWL is
even 14 times faster than the δ-3-WL. The improvement of the computation times can be observed across all datasets. For
some datasets, the {2, 3}-WL and δ-{2, 3}-WL did not finish within the given time limit or went out of memory. For
example, on four out of eight datasets, the δ-3-WL is out of time or out of memory. In contrast, for the corresponding local
algorithm, this happens only two out of eight times. Hence, the local algorithm is more suitable for practical applications.
Neural architectures. See Table 9. The local algorithm severely speeds up the computation time of training and testing.
Especially, on the ZINC dataset, which has larger graphs compared to the ALCHEMY dataset, the δ-2-GNN achieves a
computation time that is more than two times lower compared to the δ-2-GNN and δ-2-WL-GNN.

H. Proof of Proposition 3

The weaker condition δ-k-WL v k-WL is straightforward because Mδ,δ
i (v) =Mδ,δ

i (w) implies Mi(v) =Mi(w) for all v
and w in V (G)k and i ≥ 0. Hence, it remains to show the strictness condition, i.e., δ-k-WL @ k-WL. It suffices to show
an infinite family of graphs (Gk, Hk), k ∈ N, such that (a) k-WL does not distinguish Gk and Hk, although (b) δ-k-WL
distinguishes Gk and Hk. We proceed to the construction of this family, which is based on the classic result of (Cai et al., 1992).

Construction. Let K denote the complete graph on k+1 vertices (there are no loops in K). The vertices of K are numbered
from 0 to k. Let E(v) denote the set of edges incident to v in K: clearly, |E(v)| = k for all v ∈ V (K). Define the graph G as
follows:

1. For the vertex set V (G), we add
(a) (v, S) for each v ∈ V (K) and for each even subset S of E(v),
(b) two vertices e1, e0 for each edge e ∈ E(K).

2. For the edge set E(G), we add
(a) an edge {e0, e1} for each e ∈ E(K),
(b) an edge between (v, S) and e1 if v ∈ e and e ∈ S,
(c) an edge between (v, S) and e0 if v ∈ e and e 6 S,

Define a companion graph H , in a similar manner to G, with the following exception: in Step 1(a), for the vertex 0 ∈ V (K), we
choose all odd subsets of E(0). Counting vertices, we find that |V (G)| = |V (H)| = (k + 1) · 2k−1 +

(
k
2

)
× 2. This finishes

Weisfeiler and Leman go sparse

the construction of graphs G and H . We set Gk := G and Hk := H .

A set S of vertices is said to form a distance-two-clique if the distance between any two vertices in S is exactly two.

Lemma 11. The following holds for graphs G and H defined above.

• There exists a distance-two-clique of size (k + 1) inside G.
• There does not exist a distance-two-clique of size (k + 1) inside H .

Hence, G and H are non-isomorphic.

Proof. In the graph G, consider the vertex subset S = {(0, ∅), (1, ∅), . . . , (k, ∅)} of size (k + 1). That is, from each “cloud”
of vertices of the form (v, S) for a fixed v, we pick the vertex corresponding to the trivial even subset, the empty set denoted by
∅. Observe that any two vertices in S are at distance two from each other. This holds because for any i, j ∈ V (K), (i, ∅) is
adjacent to {i, j}0 which is adjacent to (j, ∅) (e.g. see Figure 1). Hence, the vertices in S form a distance-two-clique of size
k + 1.

On the other hand, for the graph H , suppose there exists a distance-two-clique, say (0, S0), . . . , (k, Sk) in H , where each
Si ⊆ E(i). If we compute the parity-sum of the parities of |S0|, . . . , |Sk|, we end up with 1 since there is exactly one odd
subset in this collection, viz. S0. On the other hand, we can also compute this parity-sum in an edge-by-edge manner: for
each edge (i, j) ∈ E(K), since (i, Si) and (j, Sj) are at distance two, either both Si and Sj contain the edge {i, j} or neither
of them contains {i, j}: hence, the parity-sum contribution of Si and Sj to the term corresponding to e is zero. Since the
contribution of each edge to the total parity-sum is 0, the total parity-sum must be zero. This is a contradiction, and hence, there
does not exist a distance-two-clique in H .

Next, we show that the local algorithm δ-k-LWL can distinguish G and H . Since δ-k-WL v δ-k-LWL, the above lemma
implies the strictness condition δ-k-WL @ k-WL.

Lemma 12. δ-k-LWL distinguishes G and H .

Proof. The proof idea is to show that δ-k-LWL algorithm is powerful enough to detect distance-two-cliques of size (k + 1),
which ensures the distinguishability of G and H . Indeed, consider the k-tuple P = ((1, ∅), (2, ∅), . . . , (k, ∅)) in V (G)k. We
claim that there is no tuple Q in V (H)k such that the unrolling of P is isomorphic to the unrolling of Q. Indeed, for the sake
of contradiction, assume that there does exist Q in V (H)k such that the unrolling of Q is isomorphic to the unrolling of P .
Comparing isomorphism types, we know that the tuple Q must be of the form ((1, S1), . . . , (k, Sk)).

Consider the depth-two unrolling of P : from the root vertex P , we can go down via two local-edges labeled 1, to hit the tuple
P2 = ((2, ∅), (2, ∅), . . . , (k, ∅)). If we consider the depth-two unrolling of Q, the isomorphism type of P2 implies that the
vertices (1, S1) and (2, S2) must be at distance-two in the graphH . Repeating this argument, we obtain that (1, S1), . . . , (k, Sk)
form a distance-two-clique in H of size k. Our goal is to produce a distance-two-clique in H of size k, for the sake of
contradiction.

For that, consider the depth-four unrolling of P : from the root vertex P , we can go down via two local-edges labeled 1 to hit the
tuple R = ((0, ∅), (2, ∅), . . . (k, ∅). For each 2 ≤ j ≤ k, we can further go down from R via two local edges labeled j to reach
a tuple whose 1st and jth entry is (0, ∅). Similarly, for the unrolling of Q, there exists a subset S0 ⊆ E(0) and a corresponding
tuple R′ = ((0, S0), (2, S2), . . . , (k, Sk)), such that for each 2 ≤ j ≤ k, we can further go down from R′ via two local edges
labeled j to reach a tuple whose 1st and jth entry is (0, S0). Comparing the isomorphism types of all these tuples, we deduce that
(0, S0) must be at distance two from each of (i, Si) for i ∈ [k]. This implies that the vertex set {(0, S0), (1, S1), . . . , (k, Sk)}
is a distance-two-clique of size k + 1 in H , which is impossible. Hence, there does not exist any k-tuple Q in V (H)k such that
the unrolling of P and the unrolling of Q are isomorphic. Hence, δ-k-LWL distinguishes G and H .

