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Abstract
Graph convolutional networks (GCNs) are widely
used for semi-supervised node classification on
graphs today. The graph structure is however only
accounted for by considering the similarity of acti-
vations between adjacent nodes, in turn degrading
the results. In this work, we augment GCN mod-
els by incorporating richer notions of regularity by
leveraging cascades of band-pass filters, known
as geometric scatterings. We introduce a new
hybrid architecture for the task and demonstrate
its potential on multiple graph datasets, where it
outperforms leading GCN models.

1. Introduction
Geometric deep learning approaches typically use graphs to
model geometries, either by constructing them from input
data (e.g., via similarity kernels) or directly given as quanti-
fied interactions between data points (Bronstein et al., 2017).
Using such models, recent works have shown that graph
neural networks (GNNs) perform well in multiple fields,
including biology, chemistry and social networks (Gilmer
et al., 2017; Hamilton et al., 2017; Kipf & Welling, 2016).
Most GNNs consider each graph together with given node
features as a generalization of images or audio signals, aim-
ing to compute whole-graph representations. These can
be applied to graph classification, for example, when each
graph represents the molecular structure of proteins or en-
zymes classified by their chemical properties (Fout et al.,
2017; De Cao & Kipf, 2018; Knyazev et al., 2018).

On the other hand, methods such as graph convolutional
networks (GCNs) presented by Kipf & Welling (2016) con-
sider node-level tasks, and in particular node classification.
As explained in Kipf & Welling (2016), such tasks are of-
ten considered in the context of semi-supervised learning,
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as typically only a small portion of nodes on the graph
possesses labels. In these settings, the entire dataset is
considered as one graph and the network is tasked with
learning node representations that infer information from
node features as well as the graph structure. However, most
state-of-the-art approaches for incorporating graph structure
information in neural network operations aim to enforce
similarity between representations of adjacent nodes, which
essentially implements local smoothing of neuron activa-
tions over the graph (Li et al., 2018). Such smoothing oper-
ations often cause degradation of results in node processing
tasks due to oversmoothing (Li et al., 2018; NT & Mae-
hara, 2019), as nodes become indistinguishable with deeper
and increasingly complex network architectures. Graph
attention networks (Veličković et al., 2017) have shown
promising results in overcoming such limitations by intro-
ducing adaptive weights for graph smoothing via message
passing operations, using attention mechanisms computed
from node features and masked by graph edges. However,
these networks still essentially rely on enforcing similarity
(although adaptive) between neighboring nodes, while also
requiring more intricate training as their attention mech-
anism requires gradient computations driven not only by
graph nodes, but also by graph edges.

In this paper, we propose a new approach for node-level
processing in GNNs by introducing neural pathways that
encode higher-order forms of regularity in graphs. Our
construction is inspired by recently proposed geometric
scattering networks (Gama et al., 2018; Gao et al., 2019;
Zou & Lerman, 2019), which leverage deep cascades of
graph wavelets (Hammond et al., 2011; Coifman & Mag-
gioni, 2006) and pointwise nonlinearities to capture multiple
modes of variation from node features or labels. Using the
terminology of graph signal processing, these can be con-
sidered as generalized band-pass filtering operations, while
GCNs (and many other GNNs) can be considered as relying
on low-pass filters only. Our approach combines together
the merits of both GCN and geometric scattering archi-
tectures to enable the learning of node-level features that
encode geometric information beyond smoothed activation
signals, thus alleviating oversmoothing concerns.

Preliminaries: We refer the reader to the supplement for
notations and graph signal processing preliminaries.
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2. Graph Convolutional Network
Convolutional filters can be parametrized using the termi-
nology introduced in the supplement. As for graph convo-
lutional networks (GCNs) introduced in Kipf & Welling
(2016), we choose just one learnable parameter θ (to avoid
overfitting). This is done by setting ĝ[i] := θ(2− λi). The
resulting convolutional filtering operation is given by

gθ ? x = θ
(
In+D

−1/2WD−1/2
)
x. (1)

The matrix In+D−1/2WD−1/2 has eigenvalues in [0, 2],
which could lead to vanishing or exploding gradients.
This issue is addressed by the following renormalization
trick (Kipf & Welling, 2016): In+D−1/2WD−1/2 →
D̃
−1/2

W̃ D̃
−1/2

, where W̃ := In+W and D̃ is a diago-
nal matrix with D̃[i, i] :=

∑n
j=1 W̃ [i, j] for i ∈ [n]. This

operation replaces the features of the nodes by a weighted av-
erage of itself and its neighbors. Note that the repeated exe-
cution of graph convolutions will enforce similarity through-
out higher-order neighborhoods with order equal to the

number of stacked layers. SettingA := D̃
−1/2

W̃ D̃
−1/2

,
the complete layer-wise propagation rule takes the form
h`j = σ

(∑N`−1

i=1 θ`iAh
`−1
i

)
, where θ`iAh

`−1
i = gθ`i ?h

`−1
i

is the convolutional filter operation. Here, ` indicates the
layer with N` neurons, h`j ∈ Rn the activation vector of
the jth neuron, θ`i the learned parameter of the convolution
with the ith incoming activation vector from the preceding
layer and σ(.) an element-wise applied activation function.
Written in matrix notation, this gives

H` = σ
(
AH`−1Θ`

)
, (2)

where Θ` ∈ RN`−1×N` is the weight-matrix of the `th layer
andH` ∈ Rn×N` contains the activations of the `th layer.

We remark that the above explained GCN model can be in-
terpreted as a low-pass operation. For the sake of simplicity,
let us consider the convolutional operation (Eq. 1) before
the renormalization trick. If we observe the convolution
operation as the summation gθ ? x =

∑n
i=1 γix̂[i]qi, we

clearly see that higher weights γi = θ(2−λi) are put on the
low-frequency harmonics, while high-frequency harmonics
are progressively less involved as 0 = λ1 6 λ2 6 · · · 6
λn 6 2. This indicates that the model can only access a
diminishing portion of the original information contained
in the input signal the more graph convolutions are stacked.
This observation is in line with the well-known oversmooth-
ing problem (Li et al., 2018) related to GCN models. The
repeated application of graph convolutions will successively
smooth the signals of the graph such that nodes cannot be
distinguished anymore.

3. Geometric Scattering
The construction of geometric scattering on graphs is based
on the lazy random walk matrix P := 1

2

(
In+WD−1

)
,

which is closely related to the graph random walk defined as
a Markov process with transition matrixR :=WD−1. The
matrix P however allows self loops while renormalizing to
retain a Markov process. Therefore, considering an initial
distribution µ0 ∈ Rn, its positional distribution after t steps
is encoded by µt = P

tµ0.

As discussed in Gao et al. (2019), the propagation of a graph
signal x ∈ Rn by xt = P tx performs a low-pass operation
that suppresses high frequencies. In geometric scattering,
this low-pass information is augmented by introducing the
wavelet matrices Ψk ∈ Rn×n of scales 2k, k ∈ N0,{

Ψ0 := In−P ,
Ψk := P 2k−1

− P 2k = P 2k−1(
In−P 2k−1)

,
(3)

for k ≥ 1. This leverages the fact that high frequencies
can be recovered with multiscale wavelet transforms, e.g.,
by decomposing nonzero frequencies into dyadic frequency
bands. The operation (Ψkx)[vi] collects signals from a
neighborhood of order 2k, but extracts multiscale differ-
ences rather than averaging over them. The wavelets in
Eq. 3 can be organized in a filter bank {Ψk, Ψ̃K}0≤k≤K ,
where Ψ̃K := P 2K is a pure low-pass filter. The telescop-
ing sum of matrices in this filter bank constitutes the identity
matrix, thus enabling to reconstruct processed signals from
their filter responses. See, e.g., Perlmutter et al. (2019) for
further discussion of this construction and its properies.

Geometric scattering was originally introduced in the con-
text of whole-graph classification and consisted of ag-
gregating scattering features. These are stacked wavelet
transforms parameterized via tuples J := (k1, . . . , km) ∈
∪m∈NNm0 containing the bandwidth scale parameters sepa-
rated by element-wise absolute value nonlinearities, i.e.,

ΦJx := Ψkm |Ψkm−1
. . . |Ψk2 |Ψk1x|| . . . |,

where m corresponds to the length of the tuple J . The
scattering features are aggregated over the whole graph by
taking qth-order moments over the set of nodes,

S(J, q)x :=
∑n
i=1 |ΦJx[vi]|q. (4)

Here, we modify this construction to keep the scattering
transform ΦJ at the node-level by dismissing the aggrega-
tion step in Eq. 4. For each tuple J , we define the scattering
propagation rule

H` = σ
(
ΦJH

`−1Θ`
)
, (5)

which mirrors the GCN one while replacing the low-pass
filter by a geometric scattering operation. We note that in
practice, we only use a subset of tuples, selected as part of
our network design explained in the following section.
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4. Combining GCN and Scattering Models
To combine the benefits of GCNs and geometric scattering
adapted to the node level, we propose a hybrid architecture
that combines low-pass operations based on the GCN model
with band-pass operations from geometric scattering. To
define the layer-wise propagation rule, we introduce

H`
gcn :=

[
H`

gcn,1 ‖ . . . ‖H
`
gcn,Cgcn

]
,

and
H`

sct :=
[
H`

sct,1 ‖ . . . ‖H
`
sct,Csct

]
,

which are the concatenations of channels
{
H`

gcn,k

}Cgcn
k=1

and
{
H`

sct,k

}Csct
k=1

, respectively. Every H`
gcn,k is defined

according to Eq. 2 with the slight modification of added
biases and powers ofA, i.e.,

H`
gcn,k := σ

(
AkH`−1Θ`

gcn,k +B
`
gcn,k

)
.

Note that every GCN filter uses a different propagation
matrix Ak and therefore aggregates information from k-
step neighborhoods. Similarly, we proceed with H`

sct,k

according to Eq. 5 and calculate

H`
sct,k := σ

(
ΦJkH

`−1Θ`
sct,k +B

`
sct,k

)
,

where Jk ∈
⋃
m∈N Nm0 , k = 1, . . . , Csct enables scatterings

of different orders and scales. Finally, the GCN components
and scattering components get concatenated to

H` :=
[
H`

gcn ‖H
`
sct

]
. (6)

The learned parameters are the weight matrices
Θ`
gcn,k,Θ

`
sct,k ∈ RN`−1×N` coming from the convo-

lutional and scattering layers. These are complemented
by vectors of the biases b`gcn,k, b

`
sct,k ∈ RN` , which are

transposed and vertically concatenated n times to the
matrices Bgcn,k,Bsct,k ∈ Rn×N` . To simplify notation,
we assume here that all channels use the same number
of neurons (N`). Waiving this assumption would slightly
complicate the notation but works perfectly fine in practice.

In this work, for simplicity, and because it is sufficient
to establish our claim, we limit our architecture to three
GCN channels and two scattering channels. Inspired by the
aggregation step in classical geometric scattering, we use
σ(.) := | . |q as nonlinearity. However, unlike in Eq. 4, the
qth power is applied at the node-level instead of being aggre-
gated as moments over the entire graph, thus retaining the
distinction between node-wise activations. We set the input
of the first layerH0 to be the original node features. Each
subchannel transforms the original feature space to a new
hidden space with the dimension determined by the number

of neurons encoded in the columns of the corresponding
submatrix ofH`. These transformations are learned via the
weights and biases. Larger matricesH` (i.e., more columns,
as the number of nodes in the graph is fixed) indicate that the
weight matrices have more parameters to learn. Thus, the
information in these channels can be propagated well and
will be sufficiently represented. The channel width reflects
the importance of the captured regularities. Wider channels
suggest that their frequency components are more critical
and need to be sufficiently learned.

We note that in sparsely labelled graphs, high-frequency
noise (e.g., differences between labelled and unlabelled
nodes) can unintentionally be captured by scattering fea-
tures. To mitigate such artifacts, we introduce the graph
residual convolution, an adjustable lowpass filter inspired
by skip connections in residual networks. Governed by the
hyperparameter α , it is defined via the matrixAres(α) =
1

α+1 (In + αWD−1) and applied after the hybrid layer
of GCN and scattering filters. We have Ares(0) = In,
while α → ∞ gives R = WD−1, which is an interpola-
tion between the completely lazy random walk In and the
non-resting random walk R. We apply the graph residual
layer on the outputH` of the scattering GCN layer (Eq. 6).
The update rule for this step is expressed by H`+1 =
Ares(α)H

`Θres + Bres, where Θres ∈ RN×N`+1 are
learned weights,Bres ∈ Rn×N`+1 are learned biases (simi-
lar to the notations used previously), andN is the number of
features of the concatenated layerH` in Eq. 6. If H`+1 is
the final layer, we set N`+1 equal to the number of classes.

5. Additional Information Introduced by
Node-level Scattering Features

Before empirically verifying the viability of the proposed
architecture in node classification tasks, we first discuss a
property demonstrating the additional information (in par-
ticular, carried by node features) provided by scattering
channels beyond that provided by traditional GCN chan-
nels. The following lemma shows a particular type of such
information in the form of two-coloring features provided
on bipartite graphs. We note that such features are highly
regular and completely determined by the graph structure,
but the smoothing in GCN channels would eliminate their
information while the addition of certain scattering channels
would retain it for further downstream processing.

Lemma. Consider a bipartite graph on n ∈ N nodes with
constant node degree β. Let x ∈ Rn be a 2-coloring signal
(i.e., one part assigned constant a and the other b, where
a 6= b ∈ R). Then, for any θ ∈ R, the GCN filtering gθ ? x
from Eq. 1 yields a constant signal, while the scattering filter
Ψ0x from Eq. 3 still produces a (non-constant) 2-coloring.
This result extends to any finite linear filter cascade (i.e.,
gθ ? · · · ? gθ ? x or Ψk

0x with k ∈ N filter applications).
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Table 1. Dataset characteristics
Dataset Nodes Edges Features Degrees Edges

Nodes

Citeseer 3,327 4,732 3,703 3.77±3.38 1.42
Cora 2,708 5,429 1,433 4.90±5.22 2.00

Pubmed 19,717 44,338 500 5.50±7.43 2.25
DBLP 17,716 105,734 1639 6.97±9.35 5.97

6. Empirical Results
To evaluate our Scattering GCN approach, we compare it to
several established methods for semi-supervised node classi-
fication, including the original GCN (Kipf & Welling, 2016)
and the GAT network (Veličković et al., 2017), which indi-
rectly addresses oversmoothing by training adaptive node-
wise weighting of the smoothing operation via an attention
mechanism, as well as the methods from Li et al. (2018,
Partially Absorbing), Defferrard et al. (2016, Chebyshev),
and Zhu et al. (2003, Label Propagation). Our comparisons
are based on four popular graph datasets1 with varying sizes
and connectivity structures summarized in Tab. 1. We or-
der the datasets here by increasing connectivity structure,
reflected by node degrees and edges-to-nodes ratios. As
discussed in Li et al. (2018), increased connectivity leads
to faster mixing of node features in GCN, exacerbating
the oversmoothing problem (as nodes quickly become in-
distinguishable) and degrading classification performance.
Therefore, we expect the relative improvement achieved by
Scattering GCN to correspond to the increasing connectivity
order in Tab. 1, which is maintained in Tab. 2 and Fig. 1.

Table 2. Classification accuracy comparison (top two methods
marked in bold; best one underlined) on four benchmark datasets.

MODEL CITESEER CORA PUBMED DBLP

SCATTERING GCN (OURS) 71.7 84.2 79.4 81.5
GAT 72.5 83.0 79.0 66.1
PARTIALLY ABSORBING 71.2 81.7 79.2 56.9
GCN 70.3 81.5 79.0 59.3
CHEBYSHEV 69.8 78.1 74.4 57.3
LABEL PROPAGATION 58.2 77.3 71.0 53.0

NODE FEATURES (SVM) 61.1 58.0 49.9 48.2

We first consider test classification accuracy reported in
Tab. 2, which shows that our approach outperforms other
methods on three out of the four considered datasets. On the
remaining one (namely Citeseer) we are only outperformed
by GAT. However, we note that this dataset has the weakest
connectivity structure (see Tab. 1) and the most informative
node features (e.g., achieving 61.1% accuracy via linear
SVM without considering any graph information). In con-
trast, on DBLP, which has the richest connectivity structure
and least informative features (only 48.2% SVM accuracy),
we significantly outperform GAT (over 15% improvement),

1See, e.g., Yang et al. (2016) for Citeseer, Cora, and Pubmed,
and Pan et al. (2016) for DBLP

which in itself significantly outperforms all other methods.

Next, we consider the impact of training size on classifica-
tion performance, as we are interested in semi-supervised
settings where only a small portion of nodes in the graph are
labelled. Fig. 1 presents the classification accuracy (on vali-
dation set) for the training size reduced to 20%, 40%, 60%,
80% and 100% of the original training size available for
each dataset. These results indicate that generally Scattering
GCN exhibits greater stability to sparse training conditions
compared to other methods. Importantly, we note that on
Citeseer, while GAT outperforms our method for the orig-
inal training size, its performance degrades rapidly when
the training size is reduced below 60% of the original one,
at which point Scattering GCN outperforms all other meth-
ods. We also note that on Pubmed, even a small decrease in
training size creates a significant performance gap between
Scattering GCN and GAT, which we believe is due to node
features being less independently informative in this case
(see baseline in Tab. 2) compared to Citeseer and Cora.
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Figure 1. Impact of training set size on classification accuracy.

7. Conclusion
Our study of semi-supervised node classification in graphs
presents a new approach to address some of the main con-
cerns and limitations of GCN models. Our construction is in-
spired by geometric scattering, which has mainly been used
for whole-graph classification so far. Our results demon-
strate several benefits of incorporating the elements pre-
sented here (i.e., scattering channels and residual convolu-
tion) in GCN architectures. We expect future work looking
to incorporate these elements together in more intricate
architectures (e.g., with attention mechanisms) to provide
promising new capabilities of pattern recognition and local
information extraction in graphs.
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Supplement

A. Notations
We denote matrices and vectors with bold letters with up-
percase letters representing matrices and lowercase letters
representing vectors. In particular, In ∈ Rn×n is used for
the identity matrix and 1n ∈ Rn denotes the vector with
ones in every component. We write 〈., .〉 for the standard
scalar product in Rn. We will interchangeably consider
functions of graph nodes as vectors indexed by the nodes,
implicitly assuming a correspondence between a node and
a specific index. This carries over to matrices, where we
relate nodes to column or row indices. We further use the
abbreviation [n] := {1, . . . , n} where n ∈ N and write
N0 := N ∪ {0}.

B. Graph Signal Processing Preliminaries
Let G = (V,E,w) be a weighted graph with V :=
{v1, . . . , vn} the set of nodes, E ⊂ {{vi, vj} ∈ V × V, i 6=
j} the set of (undirected) edges and w : E → (0,∞) assign-
ing (positive) edge weights to the graph edges. We note that
w can equivalently be considered as a function of V × V ,
where we set the weights of non-adjacent node pairs to zero.
We define a graph signal as a function x : V → R on the
nodes of G and aggregate them in a signal vector x ∈ Rn
with the ith entry being x(vi).

We define the (combinatorial) graph Laplacian matrix L :=
D −W , where W ∈ Rn×n is the weighted adjacency
matrix of the graph G given by

W [vi, vj ] :=

{
w(vi, vj) if {vi, vj} ∈ E
0 otherwise,

andD ∈ Rn×n is the degree matrix of G defined byD :=
diag(d1, . . . , dn) with di := deg(vi) :=

∑n
j=1W [vi, vj ]

being the degree of the node vi. In practice, we work
with the (symmetric) normalized Laplacian matrix L :=
D−1/2LD−1/2 = In−D−1/2WD−1/2. It can be ver-
ified that L is symmetric and positive semi-definite and
can thus be orthogonally diagonalized as L = QΛQT =∑n
i=1 λiqiq

T
i , where Λ := diag(λ1, . . . , λn) is a diago-

nal matrix with the eigenvalues on the main diagonal and
Q is an orthogonal matrix containing the corresponding
normalized eigenvectors q1, . . . , qn ∈ Rn as its columns.

A detailed study (see, e.g., (Chung, 1997)) of the eigen-
values reveals that 0 = λ1 6 λ2 6 · · · 6 λn 6 2 . We
can interpret the λi, i ∈ [n] as the frequency magnitudes
and the qi as the corresponding Fourier modes. We ac-
cordingly define the Fourier transform of a signal vector
x ∈ Rn by x̂[i] = 〈x, qi〉 for i ∈ [n]. The corresponding
inverse Fourier transform is given by x =

∑n
i=1 x̂[i]qi.

Note that this can be written compactly as x̂ = QTx and

x = Qx̂. Finally, we introduce the concept of graph con-
volutions. We define a filter g : V → R defined on the
set of nodes and want to convolve the corresponding filter
vector g ∈ Rn with a signal vector x ∈ Rn, i.e. g ? x.
To explicitly compute this convolution, we recall that in
the Euclidean setting, the Fourier transform of the convolu-
tion of two signals equals the product of the corresponding
Fourier transforms. This property generalizes to graphs
(Shuman et al., 2016) in the sense that (ĝ ? x)[i] = ĝ[i]x̂[i]
for i ∈ [n]. Applying the inverse Fourier transform
yields g ? x =

∑n
i=1 ĝ[i]x̂[i]qi =

∑n
i=1 ĝ[i]〈qi,x〉qi =

QĜQTx, where Ĝ := diag(ĝ) = diag(ĝ[1], . . . , ĝ[n]).
Hence, convolutional graph filters can be parameterized by
using the Fourier coefficients in Ĝ.

Furthermore, it can be verified (Defferrard et al., 2016)
that when these coefficients are defined as polynomials
ĝ[i] :=

∑
k γkλ

k
i for i ∈ N of the Laplacian eigenvalues

in Λ (i.e. Ĝ =
∑
k γkΛ

k), the resulting filter convolution
are localized in space and can be written in terms of L
as g ? x =

∑
k γkLkx without requiring spectral decom-

position of the normalized Laplacian. This motivates the
standard practice (Kipf & Welling, 2016; Defferrard et al.,
2016; Susnjara et al., 2015; Liao et al., 2019) of using filters
that have polynomial forms, which we follow here as well.

C. Proof of the Lemma
Proof. We first notice that if g 1

2
?x is constant, then gθ?x =

2θ(g 1
2
? x) is constant for any θ. Furthermore, for the

considered class of graphs,D = β In with β > 0, implying
that D−1 = 1

β In and D−1/2 = 1√
β
In. Therefore, as a

direct result of Eq. 1 in the main paper, it holds that

g 1
2
? x =

(
1

2
In+

1

2β
W

)
x = Px. (7)

Similarly, it is easily verified that any k ∈ N applications
of the convolution with gθ (for any θ ∈ R) can be written
as 2kθkP kx. Furthermore, since P is column-stochastic
and (here) symmetric (thus also row-stochastic), we have
Pc = c for any constant signal c = c12n. Thus, it is
sufficient to show that Px is a constant signal to verify the
first claim of the lemma.

We consider the set of nodes V . For any node v ∈ V ,
according to Eq. 7, we can write

(Px)[v] =

= 1
2︷ ︸︸ ︷

P [v, v]x[v] +
∑

u∈N (v)

= 1
2β︷ ︸︸ ︷

P [v, u]x[u]

+
∑
w∈V v

P [v, w]︸ ︷︷ ︸
=0

x[w],

where we denote by N (v) the neighborhood of the node v
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and set V v := V \ ({v} ∪ N (v)). This implies that

(Px)[v] =
x[v]

2
+

∑
u∈N (v)

x[u]

2β
. (8)

We now consider a 2-coloring signal x ∈ Rn. W.l.o.g., let
x[v] = a, which implies x[u] = b for all u ∈ N (v). Now,
since |N (v)| = β, it holds

(Px)[v] =
a+ b

2
,

thus verifying the first claim of the lemma as the choice
of v was arbitrary. Finally, it is now straightforward to
verify the second claim as well, since the operation Ψ0x =
(In−P )x = x − a+b

2 1n retains a 2-coloring signal (the
original colors are shifted by a constant: −a+b2 ).


