
UniKER: A Unified Framework for Combining Embedding
and Horn Rules for Knowledge Graph Inference

Kewei Cheng 1 Ziqing Yang 2 Ming Zhang 2 Yizhou Sun 1

Abstract

Combining KGE and logical rules for better KG
inference has gained increasing attention in recent
years. Unfortunately, a majority of existing meth-
ods employ sampling strategies to randomly se-
lect only a small portion of ground rules or hidden
triples, thus can only partially leverage the power
of logical rules in reasoning. In this paper, we pro-
pose a novel framework UniKER to address this
challenge by restricting logical rules to be Horn
rules, which can fully exploit the knowledge in
logical rules and enable the mutual enhancement
of logical rule-based reasoning and KGE in an
extremely efficient way. Extensive experiments
have demonstrated that our approach is superior
to existing state-of-the-art algorithms in terms of
both efficiency and effectiveness.

1. Introduction
Knowledge graph inference has been studied extensively
due to its wide applications in different domains, such as
search engines and question answering systems. There are
two main directions in solving the inference problem, i.e.,
logical rule reasoning and knowledge graph embedding
(KGE). Both methods have their own superiority as well
as limitations. On one hand, although logical rule-based
approaches have shown their strong ability to capture high-
order dependency between entities and relations, they suffer
from incapability to handle noisy data due to their symbolic
nature. In addition, high computation complexity presents
another central challenge for logical rule-based approaches.
On the other hand, even though KGE methods have demon-
strated their good scalability when coping with large scale
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real-world KGs, they fail to capture high-order dependency
between entities and relations.

Since KGE methods and logical rule-based methods are
complementary for better reasoning capability, several at-
tempts have been made to combine KGE and logical rules
for better KG inference. However, most of them (Guo et al.,
2016; Rocktäschel et al., 2015; Demeester et al., 2016) only
make a one-time injection of logic rules to KG embeddings
and thus fail to capture the mutual interaction between KGE
and logical rules (Guo et al., 2016; Rocktäschel et al., 2015).
Also, all the existing methods model logical inference as an
NP-complete problem by ignoring the fact that only Horn
rules, a special type of logical rules, are used for most time
in reality. As a result, to improve the scalability of logical
inference, they use sampling strategies that select only a
small portion of hidden triples/ground rules to approximate
the inference process, which inevitably causes loss of infor-
mation from the logical side. To address the above issues,
we propose a novel framework, UniKER, to combine KGE
and logical rules for better KG inference in an iterative man-
ner. In particular, by leveraging the nice properties of Horn
rules, UniKER can fully exploit the knowledge contained in
logical rules and completely transfer them into the embed-
dings. Additionally, UniKER can also tolerate erroneous
data and show robustness to noise and error in the KGs,
which previous methods cannot cope with.

2. Preliminaries and Related Work
Knowledge Graphs in the Language of Symbolic Logic.
A knowledge graph, denoted by G = {E,R,O}, consists
of a set of entities E, a set of relations R, and a set of ob-
served facts O. Each fact in O is represented by a triple
(ei, rk, ej), where ei ∈ E, ej ∈ E, and rk ∈ R denote
subject entity, object entity, and relation, respectively. In
the area of symbolic reasoning, entities can also be con-
sidered as constants and relations are called predicates.
Each predicate in KGs is a binary logical function defined
over two constants, denoted as r(·, ·). A ground predi-
cate is a predicate whose arguments are all instantiated by
particular constants. For example, we may have a pred-
icate Friend(·, ·). By assigning constants Alice and Bob
to it, we get a ground predicate Friend(Alice,Bob). A
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triple (ei, rk, ej) is essentially a ground predicate, denoted
as rk(ei, ej) in the language of logic. In the reasoning
task, a ground predicate can be regarded as a binary ran-
dom variable: rk(ei, ej) = 1 when the triple (ei, rk, ej)
holds true, and rk(ei, ej) = 0 otherwise. Given the ob-
served facts and their corresponding ground predicates
vO = {rk(ei, ej)|(ei, rk, ej) ∈ O}, the task of knowledge
graph inference is to predict the truth value of ground pred-
icates vH = {rk(ei, ej)|(ei, rk, ej) ∈ H} for all remain-
ing hidden triples, where H = {(ei, rk, ej)|(ei, rk, ej) /∈
O, ei, ej ∈ E, rk ∈ R}.

First Order Logic and Horn Rules. First-order logic
(FOL) rules are constructed over predicates using logi-
cal connectives and quantifiers. They usually require ex-
tensive human supervision to create and validate, which
severely limit their applications. Instead, Horn rules,
as a special case of FOL rules, can be extracted au-
tomatically and efficiently via modern rule mining sys-
tems, such as WARMR (Dehaspe & Toivonen, 1999) and
AMIE (Galárraga et al., 2013; 2015) with high quality, thus
result in their monopoly in practice. Horn rules are com-
posed a body of conjunctive predicates and a single head
predicate. They are usually written in the form of implica-
tion and an example is shown below:

∀x, y, z : r0(x, y)← r1(x, z1)∧r2(z1, z2)∧r3(z2, y) (1)

where r0(x, y) is called the head of the rule while
r1(x, z1) ∧ r2(z1, z2) ∧ r3(z2, y) is the body of the rule.
By substituting the variables x, z1, z2, y with concrete en-
tities ei, ep, eq, ej , we get a ground Horn rule as follows:

r0(ei, ej)← r1(ei, ep) ∧ r2(ep, eq) ∧ r3(eq, ej) (2)

A Brief Review over Knowledge Graph Inference
There are two main directions in solving the KG inference
problem, i.e., traditional logical inference and KGE. Tradi-
tional logical inference aims to find an assignment of truth
values to all hidden ground predicates, which results in max-
imizing the number of ground rules that can be satisfied.
Thus, it can be mathematically modeled as a MAX-SAT
problem, which is NP-complete (Arora & Barak, 2009).
One approach to this problem is stochastic local search, ex-
emplified by WalkSAT (Selman et al., 1993). Markov Logic
Network (MLN) (Richardson & Domingos, 2006) further
provides a probabilistic extension of FOL via probabilis-
tic graphical models. Unlike traditional logical inference,
which infer missing facts via logical rules, KGE aims to
capture the similarity of entities by embedding entities and
relations into continuous low-dimensional vectors. Scoring
functions (SFs), which measure the plausibility of triples
in KGs, is the crux of KGE models. We denote the score
of a triple (ei, rk, ej) calculated following SF as frk(ei, ej).

Representative KGE algorithms include TransE (Bordes
et al., 2013), TransH (Wang et al., 2014), DistMult (Yang
et al., 2014), ComplEx (Trouillon et al., 2016) and Ro-
tatE (Sun et al., 2019), which differ from each other with
different SFs.

Several attempts have been made to combine KG embed-
ding and logical rules for better KG inference, which can
be broadly divided into two categories: (1) designing log-
ical rule-based regularization to embedding models. Ap-
proaches in this category treat logical rules as additional
regularization to embedding models, where the satisfaction
loss of ground rules is integrated into the original embed-
ding loss. The satisfication loss of a ground rule is usually
computed based on soft logic, where the probability of each
predicate is determined by the embedding. KALE (Guo
et al., 2016), RUGE (Guo et al., 2017) and Rocktäschel
et al. (Rocktäschel et al., 2015) are some of the represen-
tative methods; and (2) designing embedding-based varia-
tional distribution for variational inference of MLN. Several
methods including pGAT (Harsha Vardhan et al., 2020), Ex-
pressGNN (Zhang et al., 2019) and pLogicNet (Qu & Tang,
2019) propose to leverage graph embedding to define varia-
tional distribution for all possible hidden triples to conduct
variational inference of MLN.

3. A Unified Framework for Knowledge
Graph Inference: UniKER

Both types of existing approaches consider logical rule in-
ference as an NP complete problem by ignoring the fact that
in most cases only Horn rules, a special case of logical rules,
are used in reality. Due to the complexity of NP complete
problems, these methods only partially leverage the power
of logical rules in reasoning by sampling a small portion
of hidden triples/ground rules to avoid infeasible inference
time. In this section, we show that by leveraging the nice
properties of Horn rules, there is a much simpler way to
directly derive truth values of all unobserved triples.

Horn-satisfiability of Knowledge Graph Inference
Given a set of Horn rules F and their ground Horn rules Fg ,
if there exists at least one truth assignment that satisfies all
ground Horn rules Fg, we call it Horn-satisfiable. We will
show there always exists a truth assignment to all hidden
triples in a KG such that all ground Horn rules are satisfied,
i.e., Horn-satisfiable.

Theorem 1. Knowledge graph inference is Horn-
satisfiable.

Proof. A set of ground Horn rules is unsatisfiable if we can
derive a pair of opposite ground predicates (i.e., r0(ei, ej)
and ¬r0(ei, ej)) from them. It is the case if and only if
¬r0(ei, ej) is defined in KG as Horn rules can only in-
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clude one single positive head predicate which results in
its incapability in deriving negative triples. However, a
typical KG will not explicitly include negative triples (i.e.,
¬r0(ei, ej)). Thus we can never derive such a pair of oppo-
site ground predicates, which confirms that KG inference is
Horn-satisfiable.

Truth Value Assignment via Forward Chaining Ac-
cording to Theorem 1, it is guaranteed that there ex-
ists a truth assignment that satisfies all ground Horn
rules, which can be denoted as vT

H
∗ and vF

H
∗, where

vT
H
∗

= {rk(ei, ej) = 1 | rk(ei, ej) ∈ vH} and vF
H
∗

=
{rk(ei, ej) = 0 | rk(ei, ej) ∈ vH}. An existing algo-
rithm called forward chaining (Salvat & Mugnier, 1996)
has been proposed to derive vT

H
∗ and vF

H
∗ in an efficient

way. The basic mechanism is that starting from any ground
rule whose bodies are satisfied in the KG, it keeps adding
the inferred head (i.e., the new knowledge represented by
a ground predicate) to the KG until no ground predicate
can be added anymore. Unlike other logical inference al-
gorithms, which require all ground rules into calculation,
forward chaining adopts lazy inference instead. It actives
only ground rules whose bodies are satisfied in the KGs to
add the inferred head (i.e., the new knowledge represented
by a ground predicate) to the KGs until no more head predi-
cate can be inferred. The mechanism dramatically improves
inference efficiency via avoiding the computation for a large
number of ground predicates/rules that are never used.

Enhancement of Logical Inference via Knowledge
Graph Embedding Although forward chaining can find
the satisfying truth assignment for all hidden triples in an
efficient way, its reasoning ability is severely limited by
the coverage of rules, the incompleteness of the KG, and
the errors contained in KG. Fortunately, due to its strong
reasoning ability and robustness, KGE models are not only
useful to prepare a more complete KGs by including useful
hidden triples but also helpful to eliminate incorrect triples
in both KGs and inferred results.

Including Potential Useful Hidden Triples. Due to the spar-
sity of real-world KGs, only a small portion of ground Horn
rules can contribute to logical inference, as a ground Horn
rule can get activated only if all the predicates in its body
are completely observed, which severely limits the reason-
ing ability of Horn rules. A straightforward solution would
be computing the score for every hidden triple and adding
the most promising ones with the highest scores to the KG.
Unfortunately, the number of hidden triples is quadratic to
the number of entities (i.e. O(|E| × |R| × |E|)), thus it is
too expensive to compute scores for all of them. Instead,
we adopt “lazy inference” strategy to select only a small
subset of “potential useful” triples. To illustrate what is a
“potential useful” triple, we take the ground Horn rule in

Eq. (2) as an example. If r1(ei, ep) ∈ vO, r3(eq, ej) ∈ vO,
and r2(ep, eq) ∈ vH , we would not be able to infer the head
(i.e., r0(ei, ej)) as whether r2(ep, eq) is true or not is un-
known. Thus, r2(ep, eq) becomes the crux to determine the
truth value of the head, which is called “potential useful”.
In general, given a ground rule whose body includes only
one unobserved ground predicate, this unobserved ground
predicate can be regarded as a “potential useful” triple. We
denote the set of all ‘potential useful” triples as ∆+. The
detailed algorithm of identifying ‘potential useful” triples
can be found in appendix.

Excluding Potential Incorrect Triples. In addition, due to
the symbolic nature, logical rules also lack the ability to
handle noisy data. If the KGs contain any error, based on
incorrect observations, forward chaining will not be able to
make the correct inference. Even worse, it might contribute
to the propagation of the error by including incorrectly in-
ferred triples. Therefore, eliminating incorrect triples in
both KGs and inferred results is significant for logical in-
ference. Since KGE models show great power in capturing
network structure of KGs, which incorrect triples usually
contradict, error triples usually get lower prediction scores
in KGE models compared to correct ones. For each triple
(ei, rk, ej) in O ∪VT

H
∗, score frk(ei, ej) will be computed

by KGE model to measure its reliability. We denote bottom
θ% triples with lowest prediction scores as ∆−. It will be
excluded from O ∪VT

H
∗ to alleviate the impact of noise.

Enhancement of Knowledge Graph Embedding via
Logical Inference Since vT

H
∗ and vF

H
∗ are the satisfying

truth assignment derived by forward chaining, knowledge
contained in Horn rules is guaranteed to be fully exploited
by taking vT

H
∗ and vF

H
∗ as guidance to to optimize KGE

model. Thus, the objective function of KGE model becomes
as follows:

min
{e},{r}

∑
(ei,rk,ej)∈(O∪vT

H
∗)

max(0, γ − frk(ei, ej)

+
∑

(e′i,r,e
′
j)∈N (ei,r,ej)

1

|N (ei, r, ej)|
frk(e′i, e

′
j))

(3)

where a common margin-based pairwise ranking loss is
employed to define the objective function. When learn-
ing the entity and relation embeddings, we treat triples
(ei, rk, ej) in both O and vT

H
∗ as positive examples while

(e′i, rk, e
′
j) is their corresponding negative samples, and γ is

a margin separating them. The score frk(ei, ej) of a triple
(ei, rk, ej) can be calculated following any SFs of KGE
models. To reduce the effects of randomness, we sample
multiple negative triples for each positive sample. We de-
note the negative triple set of a positive triple (ei, rk, ej)
as N (ei, rk, ej). Conventional embedding models follow
closed world assumption (CWA) (i.e., assuming all facts
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Model Kinship FB15k-237 WN18RR
Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR

RESCAL (Nickel et al., 2011) 0.489 0.894 0.639 0.108 0.322 0.179 0.123 0.239 0.162
SimplE (Kazemi & Poole, 2018) 0.335 0.888 0.528 0.150 0.443 0.249 0.290 0.351 0.311
KALE (Guo et al., 2016) 0.433 0.869 0.598 0.131 0.424 0.230 0.032 0.353 0.172
RUGE (Guo et al., 2017) 0.495 0.962 0.677 0.098 0.376 0.191 0.251 0.327 0.280

BLP (De Raedt & Kersting, 2008)† - - - 0.062 0.150 0.092 0.187 0.358 0.254
MLN (Richardson & Domingos, 2006)† 0.655 0.732 0.694 0.067 0.160 0.098 0.191 0.361 0.259
ExpressGNN (Zhang et al., 2019) 0.105 0.282 0.164 0.150 0.317 0.207 0.036 0.093 0.054
pLogicNet (Qu & Tang, 2019)† 0.683 0.874 0.768 0.237 0.524 0.332 0.398 0.537 0.441
pGAT (Harsha Vardhan et al., 2020)‡ - - - 0.377 0.609 0.457 0.395 0.578 0.459

TransE (Bordes et al., 2013)† 0.221 0.874 0.453 0.198 0.441 0.279 0.013 0.531 0.223
UniKER-TransE 0.866 0.968 0.910 0.463 0.630 0.522 0.040 0.561 0.307
DistMult (Toutanova et al., 2015)† 0.360 0.885 0.543 0.199 0.446 0.281 0.390 0.490 0.430
UniKER-DistMult 0.770 0.945 0.823 0.507 0.587 0.533 0.432 0.538 0.485
† Results on FB15k-237 and WN18RR are taken from (Qu & Tang, 2019).
‡ Results are taken from (Harsha Vardhan et al., 2020).

Table 1. Results of Reasoning on Kinship, FB15K-237 and
WN18RR Datasets.

that are not contained in the knowledge graph are false)
to construct negative triples, which is usually incorrect in
real-world applications. Instead of adopting CWA, we con-
duct negative sampling from vF

H
∗ to make sure that true but

unseen triples will not be sampled. As assignment vT
H
∗ and

vF
H
∗ is a satisfying truth assignment regard to the HORN-

SAT problem defined over all ground Horn rules, we can
safely regard any hidden triples which belong to vF

H
∗ as the

negative triples without violating any ground Horn rules.

Integrating Embedding and Logical Rules in an Itera-
tive Manner. Since logical rules and KGE can mutually
enhance each other as discussed above, we propose a uni-
fied framework, known as UniKER, to integrate KGE and
Horn rules-based inference in an iterative manner. For each
iteration, it is comprised of two steps. First, following for-
ward chaining algorithm, we derive entailed triples set vT

H
i∗

based on current KG (i.e., O). Then, we add newly inferred
triples vT

H
i∗ to KG by updating O = O ∪ vT

H
i∗. Second,

we train a KGE model based on the updated KG (i.e., O).
With the well trained KGE, we eliminate ∆−, which is the
bottom θ% triples with lowest prediction scores, from O
meanwhile add new potentially useful triples ∆+ to O.

4. Experiments
Knowledge Graph Completion We compare different al-
gorithms on KG inference task. We mask the head or tail
entity of each test triple, and require each method to predict
the masked entity. During evaluation, we use the filtered set-
ting (Bordes et al., 2013) and three evaluation metrics, i.e.,
Hit@1, Hit@10 and Mean Reciprocal Rank (MRR). Table 1
shows the comparison results from which we find that: (1)
UniKER consistently outperforms basic KGE models in al-
most all cases with significant performance gain, which can
ascribe to the utilization of additional knowledge from logi-
cal rules; (2) UniKER also obtains better performance than
both classes of approaches to combine embedding model
with logical rules as it provides an exact optimal solution
to HORN-SAT problem defined over all ground Horn rules

rather than employ sampling strategies to do approxima-
tion; (3) Traditional rule-based algorithms show the worst
performance among all methods. The major reason is the
insufficient coverage of logical rules, which indicates the
potential of using KGE to improve the reasoning ability of
traditional rule-based algorithms.

Impact of Iterative Algorithm on KG Completion. Note
that UniKER is trained in an iterative way. In each iteration,
there are some new triples being derived. To investigate
how this iterative process helps improve reasoning ability
of UniKER, we conduct experiments on Kinship dataset. In
particular, iteration 0 represents KGE model is trained based
on the original data without any inferred triples included. As
presented in Figure 1, we observed that (1) With the increase
of iterations, the performance is first improved rapidly, then
slows down gradually; (2) UniKER has a bigger impact on
Hit@1, Hit@10 compared to MRR.

Robustness Analysis. To investigate the robustness of
UniKER, we compare the reasoning ability of UniKER
with TransE on Kinship dataset with noise. We introduce
noise by substituting the true head entity or tail entity with
randomly selected entity. Following this approach, we con-
struct a noisy Kinship dataset with noisy triples to be 40%
of original training data. To study the effect of parameter θ
(i.e., the threshold used to eliminate noisy triples), we vary θ
among {10, 20, 30}. The comparison results are presented
in Table 2. We can observe that (1) UniKER outperforms
TransE on noisy KG with significant performance gain; (2)
With the increase of θ, the performance of UniKER keeps
improving, which validates that our UniKER can indeed
eliminate noise from training data.

Figure 1. Performance of KG
Completion on Kinship Dataset
w.r.t. #Iterations for Effective-
ness Analysis.

Model θ Hit@1 Hit@10 MRR

TransE - 0.026 0.800 0.319
UniKER-TransE 10 0.286 0.776 0.466
UniKER-TransE 20 0.311 0.816 0.503
UniKER-TransE 30 0.322 0.833 0.520

Table 2. Results of Reasoning on
Kinship Dataset with Noise. θ%
is the Threshold Used to Elimi-
nate Noise.

5. Conclusion
In this paper, we proposed a novel framework, known as
UniKER, to integrate embedding and Horn rules in an itera-
tive manner for better KG inference. We have shown that
UniKER can fully leverage the knowledge from Horn rules
and completely transfer them into the embedding models
in an extremely efficient way. In addition, UniKER also
shows robustness to noise and error in KGs, which previous
methods cannot cope with. The experimental results demon-
strate that UniKER is superior to existing state-of-the-art
algorithms in terms of both efficiency and effectiveness.
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6. Appendix

A. Algorithm for Potential Useful Hidden Triples Identification.
According to their positions, “potential useful” triples can be divided into two categories: (1) triples that are the first or the
last predicate in a ground Horn rule; and (2) triples that are neither the first nor the last. We proposed algorithms to identify
both type of “potential useful” triples respectively, by taking the Horn rule in Eq. (2) as an example. Notation wise, we
denote the |E| × |E| adjacent matrix associated with with each relation rk in KG as Mk, in which the element Mk

ij = 1 if
the triple (ei, rk, ej) ∈ O, and zero otherwise.

• When the “potential useful” triple is the first or the last predicate in a ground Horn rule (i.e., the “potential useful” triple
is r1(ei, ep) or r3(eq, ej)), other observed triples still constitute a complete path, which can be extracted efficiently by
sparse matrix multiplication. For example, to identify the “potential useful” triple r1(ei, ep), we have to first extract all
connected path r2(ep, eq) ∧ r3(eq, ej) by calculating M = M(2)M(3), where M(2) and M(3) are adjacency matrices
corresponding to relations r2 and r3. Each nonzero element Mpj indicates a connected path between ep and ej . We
denote all indexes correspond to nonzero rows in M as δ = {p|(

∑
j Mpj) 6= 0}, which indicates that there is always a

connected path starting at p. For specific p ∈ δ, ∆p = {(ei, r1, ep)|ei ∈ E} defines a set “potential useful” triples. If
(ei, r1, ep) in ∆p is predicted to be true via KGE, the head predicates r0(ei, ej) can be inferred.

• Otherwise, the path corresponds to the conjunctive body of the ground Horn rule get broken into two paths by the
“potential useful” triple, which we have to extract separately. For example, to identify “potential useful” triples
r2(ep, eq) ∈ vH , two paths are essentially two single relations, whose corresponding matrices are M(1) and M(3),
respectively. We denote all indexes correspond to nonzero columns in M(1) as δ1 = {p|(

∑
i M

(1)
ip ) 6= 0} and all

indexes correspond to nonzero rows in M(3) as δ2 = {q|(
∑

j M
(3)
qj ) 6= 0}. ∆12 = {(ep, r2, eq)|p ∈ δ1, q ∈ δ2}

defines a set “potential useful” triples. If (ep, r2, eq) in ∆12 is predicted to be true via KGE, the head predicates
{r0(ei, ej)|M(1)

ip 6= 0,M
(3)
qj 6= 0} can be inferred.

Note that a dynamic programming algorithm can be used to alleviate the computational complexity for long Horn rules.

B. Experimental Setting
Data Statistics We evaluate UniKER on both small experimental datasets and large scale real-world knowledge graph. To
be specific, we include three small experimental datasets in total. They are RC1000, sub-YAGO3-10 and sub-Kinship. Since
sub-Kinship is a subset of Kinship dataset, we will discuss it when we introduce Kinship dataset.

• RC1000 is a typical benchmark dataset for inference in MLN. It involves the task of relational classification.

• sub-YAGO3-10 is a subset of a well known benchmark dataset of knowledge graph, YAGO3-10.

For the large scale knowledge graph, we adopt three commonly used benchmark datasets, including Kinship, FB15k-237
and WN18RR.

• Kinship contains kinship relationships among members of a family (Denham, 1973). We substract a subset from
Kinship dataset and call it sub-Kinship.

• FB15k-237 is the most commonly used benchmark knowledge graph datasets introduced in (Bordes et al., 2013).
It is an online collection of structured data harvested from many sources, including individual, user-submitted wiki
contributions.

• WN18RR is another widely used benchmark knowledge graph datasets introduced in (Bordes et al., 2013). It is
designed to produce an intuitively usable dictionary and thesaurus, and support automatic text analysis. Its entities
correspond to word senses, and relationships define lexical relations between them.

Compared Methods. We evaluate our proposed method against a number of state-of-the-art algorithms, including basic
KG embedding models (e.g., RESCAL (Nickel et al., 2011), TransE (Bordes et al., 2013), DistMult (Toutanova et al., 2015)



Title Suppressed Due to Excessive Size

Dataset Type #Entity #Relation #Triple #Rule Rule Generator

RC1000 Citation network 656 4 1006 3 hand-coded
sub-Kinship Kinship network 68 12 412 41 hand-coded
sub-YAGO3-10 YAGO knowledge 55 8 61 5 AMIE+
Kinship Kinship network 3007 12 28356 41 hand-coded
FB15k-237 Freebase knowledge 14541 237 310116 300 AMIE+
WN18RR Lexical network 40943 11 93003 11 AMIE+

Table 3. Data Statistics.

and SimplE (Kazemi & Poole, 2018)), traditional logical rule-based algorithms (e.g., MLN (Richardson & Domingos, 2006)
and BLP (De Raedt & Kersting, 2008)) and both classes of approaches to combine embedding model with logical rules. As
for the approaches which design logical rules-based regularization to embedding models, we choose two representative
methods to compare with, including KALE (Guo et al., 2016) and RUGE (Guo et al., 2017). For the approaches which
design embedding-based variational distribution for variational inference of MLN, we compare with pLogicNet (Qu & Tang,
2019), ExpressGNN (Zhang et al., 2019) and pGAT (Harsha Vardhan et al., 2020).

Experimental Setup. To generate candidate rules, we hand-code logical rules for Kinship and RC1000 datasets, and mine
rules on FB15k-237, WN18RR and sub-YAGO3-10 using AMIE+ (Galárraga et al., 2015). TransE (Bordes et al., 2013) and
DistMult (Toutanova et al., 2015) are implemented as the score function for UniKER.


