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1. Abstract
We present Bi-Level Attention-Based Relational Graph Con-
volutional Networks (BR-GCN), unique neural network ar-
chitectures that utilize masked self-attentional layers with re-
lational graph convolutions, to effectively operate on highly
multi-relational data. BR-GCN models use bi-level attention
to learn node embeddings through (1) node-level attention,
and (2) relation-level attention. BR-GCN’s node-level self-
attentional layers use intra-relational graph interactions to
learn relation-specific node embeddings using a weighted
aggregation of neighborhood features in a sparse subgraph
region. BR-GCN’s relation-level self-attentional layers use
inter-relational graph interactions to learn the final node em-
beddings using a weighted aggregation of relation-specific
node embeddings. BR-GCN’s bi-level attention mechanism
extends Transformer-based multiplicative attention from
the natural language processing (NLP) domain, and Graph
Attention Networks (GAT)-based attention, to large-scale
heterogeneous graphs (HGs). On node classification, BR-
GCN outperforms baselines from 0.29% to 14.95% as a
stand-alone model, and on link prediction, BR-GCN outper-
forms baselines from 0.02% to 7.40% as an auto-encoder
model. We also conduct ablation studies to evaluate the qual-
ity of BR-GCN’s relation-level attention and discuss how
its learning of graph structure may be transferred to enrich
other Graph Neural Networks (GNNs). Through various
experiments, we show that BR-GCN’s attention mechanism
is both scalable and more effective in learning compared to
state-of-the-art GNNs.

2. BR-GCN Architecture
We define directed and labeled HGs as utilized in this work
as G = (V, E ,R) where nodes are vi ∈ V and belong to
possibly different entities, and edges are (vi, r, vj) ∈ E with
r ∈ R and belong to possibly different relation types.
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2.1. Generalized Framework for Bi-Level Attention

Bi-level attention is more powerful in learning compared
to uni-level attention, where only one level of attention is
learned by the model. Bi-level attention learns attention
at different levels of granularity in the HG which thereby
captures more information about graph components than a
uni-level attention mechanism is capable of. Eq. 1 describes
the generalized bi-level attention framework to compute
embeddings for node i in the (l + 1)-th layer:

h(l+1)
i = AGG(

{
f(a(r))TAGG(

{
g(a(edgei,j |r))|j ∈ Nr

i

}
)|r ∈ Ri

}
) (1)

where g(a(edgei,j |r)) is a vector-output function of the
node-level attention that provides a relation-specific embed-
ding summary which is aggregated, AGG(·), over edges
edgei,j that belong to the neighborhood context of nodes
j ∈ Nr

i , and f(a(r)) is a vector-output function of the
relation-level attention that are weighted relation-specific
embeddings which are aggregated over relations in the
neighborhood context to form the final node embedding.
See Table 1 for explanations of variables.

In Sections 2.2 and 2.3, we propose a novel semi-supervised
attention-based GCN model, BR-GCN, for multi-relational
HGs. BR-GCN models use bi-level attention to learn (1)
node-level attention, followed by (2) relation-level attention.
BR-GCN’s attention mechanism is summarized in Figure 1.
BR-GCN models use L stacked layers, each of which is
defined through Eq. 1, where the previous layer’s output is
input to the next layer. The initialized input can be chosen
as a unique one-hot vector for each node if no other features
are present. The model also supports pre-defined features.
BR-GCN’s source code, pseudo-code, and a walkthrough
example of its attention mechanism is in the Appendix.

2.2. Node-level Attention

Node-level attention distinguishes the different roles of
nodes in the neighborhood context for learning relation-
specific node embeddings. As node-level attentions are
target-node-specific, they are different for different target
nodes. In HGs, neighbor nodes may belong to different
feature spaces, so the features of all nodes are projected
to the same feature space to enable node-level attention to
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Table 1. Variables (Var) and Explanations. Table on the left column corresponds to node-level attention. Table on the right column
corresponds to relation-level attention.

Var Explanation Var Explanation
r Relation on node edge W1,r Projection weight matrix for zri
Ri Set of relations on edge of node i W2,r Projection weight matrix for zri
h(l)
i Node i features at layer l W3,r Projection weight matrix for zri
eri,j GAT-based attention for (i, j) qr,i ∈ Qr Transformer-based query matrix row

edgei,j Edge between node i and node j kr,i ∈ Kr Transformer-based key matrix row
ar Relation-specific attention vector vr,i ∈ Vr Transformer-based value matrix row

γri,j Relation-specific weight for (i, j) Wi Weight matrix for h(l)i

Nr
i Set of relation-specific node neighbors ψr

i Importance of relation r for node i
zri Relation-specific node embedding δri Attended relation-specific embedding
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Figure 1. Bi-level attention visualization. (a) Node-level aggregating: A node’s features in the (l + 1)-th layer is a weighted combination
of relation-specific embeddings of the node, zri . (b) Relation-level aggregating: Relation-level attention is learned through multiplicative
attention using neighborhood relational similarity to other relations to determine the relation’s relative importance.

handle arbitrary node types. BR-GCN’s node-level attention
uses additive attention similar to GAT (11), but overcomes
GAT’s limitation by extending the attention to HGs. The
self-attention for pair (i, j) for node j’s importance to node
i for relation r is defined as:

eri,j = a(edgei,j |r) = attnode(h
(l)
i ,h(l)

j , r) (2)

= LeakyReLU(aT
(l)

r

[
h(l)
i ‖ h(l)

j

]
) (3)

For a specific relation r, attnode(·) is shared for all node
pairs, so that each node is influenced by its neighborhood
context. eri,j is asymmetric since the importance of node j
to node i may be different from the importance of node i to
node j. aTr attends over the concatenated, ||, node features
of nodes i and j with an applied LeakyReLU(·) activation.

By restricting the attention to within the relation-specific

neighborhood context of nodes j ∈ Nr
i , sparsity structural

information is injected into the model through masked self-
attentional layers. A softmax(·) activation is then applied
to normalize each node-pair attention weight:

γri,j = softmax(eri,j) (4)

=
exp(LeakyReLU(aT (l)

r

[
h(l)
i ‖ h(l)

j

]
))∑

k∈Nr
i
exp(LeakyReLU(aT (l)

r

[
h(l)
i ‖ h(l)

k

]
))

(5)

Node i’s relation-specific embedding, zri , can then be
learned with AGG(·) in Eq. 1 being a weighted summa-
tion of the neighbor’s projected features as follows:

zri =
∑
j∈Nr

i

[g(a(edgei,j |r))] =
∑
j∈Nr

i

[γri,jh(l)
j ] (6)

where zri serves as a summary of relation r for node i.
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2.3. Relation-level Attention

Relation-level attention distinguishes the different roles of
relations in the neighborhood context for learning more
comprehensive node embeddings. In HGs, different rela-
tions may play different roles of importance for a node i, in
addition to its relation-specific neighbor nodes. As such, we
learn relation-level attention to better fuse node i’s relation-
specific node embeddings. We extend Transformer-based
multiplicative attention to the HG domain to learn relation-
level attention by capturing the importance of a relation r
based on how similar it is to the other relations in the local
neighborhood context. By restricting the set of relations
to the local neighborhood, r ∈ Ri, we utilize multiplica-
tive attention. Node i’s relation-specific Transformer-based
query vector qr,i, key vector kr,i, and value vector vr,i are
computed as follows:

qr,i;kr,i; vr,i = W1,rzri ;W2,rzri ;W3,rzri (7)

where zri is projected onto the learnable weight matrices
W1,r,W2,r,W3,r.

The relation-level attention for relation pairs (r, r′) are com-
puted by iterating over relations in the neighborhood context,
r′ ∈ Ri. The importance of relation r′ of node i is denoted
as follows with Eq. 8 capturing relation similarity:

ψr
i = a(r) = attrelation(zri , r) =

∑
r′∈Ri

qT
r,ikr′,i (8)

where the more similar r′ is to r, the greater the attention
weights of r′, which results in more contribution of r′’s
embedding to node i’s final embedding.

Similar to Relational Graph Convolutional Networks (R-
GCN) (8), to enable the representation of a node to be in-
formed by its representation in previous layers, we add
a self-connection of a special relation type to each node,
which is projected onto Wi, and aggregated to the attended
relation-specific embedding, ψr

i vr′,i. A softmax(·) activa-
tion is then applied to normalize these embeddings.

δri = softmax(
∑
r′∈Ri

ψr
i vr′,i +W ih

(l)
i ) (9)

The final node embedding for node i is learned with AGG(·)
in Eq. 1 being a weighted summation of the relation-specific
embeddings:

h
(l+1)
i =

∑
r∈Ri

[f(a(r))] =
∑
r∈Ri

[δri ] (10)

Finally, putting the above equation components together,
the final node embedding is learned by:

h
(l+1)
i =

∑
r∈Ri

softmax(
∑
r′∈Ri

qT
r,ikr′,ivr′,i +W ih

(l)
i )

(11)

2.4. Justification for BR-GCN’s Bi-Level Attention
Mechanism

Our approach uses GAT-based attention to learn node-level
attention because it is an effective additive attention mecha-
nism, and using multiplicative attention requires the strong
assumption that the importance of a node is a function of
its similarity to other nodes in its context. There may be
relation-specific nodes that are highly similar to each other
but require different node-level attentions to be learned.
Transformer-based attention is used to learn relation-level
attention because it is an effective multiplicative attention
mechanism, and since concatenation is not enough to cap-
ture relational importance. Relation features are character-
ized simply by their relation types, whereas node features
may have several attributes. As such, the assumption of
multiplicative attention is applicable to the relation-level
unlike the node-level where it is more difficult to learn the
similarity of nodes when many attribute factors are at play.
By hierarchically learning node-level and relation-level at-
tention of HGs, BR-GCN models address the limitations of
R-GCN and GAT, since bi-level attention captures more in-
formation than uni-level attention. By considering the entire
HG instead of subgraphs from pre-selected meta-paths as
in Heterogeneous Graph Attention Networks (HAN) (13),
BR-GCN comprehensively learns different aspects of nodes
through the entire set of nodes and relations. Furthermore,
by learning relation-level attention using information from
the neighborhood context instead of a generic global vector
as in HAN, BR-GCN learns a more personalized attention
for that relation to construct the final node embedding.

3. Experiments
In this section, we present experiments on node classifica-
tion and link prediction using benchmark datasets: AIFB (7),
MUTAG (7), BGS (7), AM (7), FB15k (1), WN18 (3), and
FB15k-237 (9). The models evaluated are: BR-GCN and
variant models, HAN, R-GCN and variant models, GAT,
and Graph Isomorphism Networks (GIN) (14). Link predic-
tion experiments, which are based on the splits from (2), are
detailed in the Appendix. The Appendix also discusses ex-
periments on ablation studies to evaluate the quality of BR-
GCN’s relation-level attention and explains how its learn-
ing of graph structure may be transferred to enrich other
GNNs. Furthermore, the Appendix discusses the computa-
tional complexity of BR-GCN and primary baseline models,
which suggest that BR-GCN is a scalable architecture.

3.1. Node Classification

Node classification is the semi-supervised classification of
nodes to entity types. For evaluation consistency against
R-GCN and GAT, BR-GCN architectures are implemented
using two convolutional layers with the final layer using



Bi-Level Attention Neural Architectures for Relational Data

Table 2. Node classification test accuracy %. Results are averaged over 10 runs and with benchmark splits from (8). Baseline models
are HAN (13), R-GCN (8), GAT (11), and GIN (14). BR-GCN-node and BR-GCN-relation are uni-level attention models such that
BR-GCN-node uses BR-GCN’s node-level attention, and BR-GCN-relation uses BR-GCN’s relation-level attention. BR-GCN’s model is
described in Section 2. Experiments are run using the PyTorch Geometric framework (4) on an NVIDIA Tesla V100 GPU cluster.

Model AIFB MUTAG BGS AM
HAN 96.68 ± 0.04 78.46 ± 0.07 86.84 ± 0.21 90.68 ± 0.23

R-GCN 95.83 ± 0.62 73.23 ± 0.48 83.10 ± 0.80 89.29 ± 0.35
GAT 92.50 ± 0.29 66.18 ± 0.00 77.93 ± 0.17 88.52 ± 1.65
GIN 96.18 ± 0.53 78.89 ± 0.09 86.42 ± 0.35 91.33 ± 0.16

BR-GCN-node 96.46 ± 0.13 73.19 ± 0.25 84.23 ± 0.22 89.45 ± 0.02
BR-GCN-relation 95.28 ± 0.23 76.17 ± 0.22 87.53 ± 0.34 90.52 ± 0.18
BR-GCN (ours) 96.97 ± 0.08 81.13 ± 0.61 88.30 ± 0.04 92.57 ± 0.15

a softmax(·) activation per node. We optimize BR-GCN
using cross-entropy loss for labeled nodes with parameters
learned through the Adam Optimizer. We minimize the
cross-entropy loss below:

L = −
∑
i∈Y

K∑
k=1

tiklnh
(L)
ik (12)

with Y being the indices of labeled nodes, h(L)
ik being the

k-th entry of the i-th labeled node for the L-th layer, and tik
being hik’s corresponding ground-truth label.

Datasets: To ensure fair comparison against reported re-
sults of baseline models, we evaluate BR-GCN on the com-
monly used node classification heterogeneous datasets in
the Resource Description Framework (RDF) format (6; 7):
AIFB, MUTAG, BGS, and AM. Consistent with (8), rela-
tions used to create entity labels: employs and affiliation
(AIFB), isMutagenic (MUTAG), hasLithogenesis (BGS),
and objectCategory and material (AM) are removed. The
reader is referred to the Appendix for dataset details.

Results: The experimental results of Table 2 are reported
by using the benchmark splits from (8). We evaluate against
state-of-the-art GNNs with two hidden layers for fairness
of comparison: HAN (13), R-GCN (8), GAT (11), and
GIN (14), in addition to BR-GCN variant models: BR-GCN-
node being a uni-level attention model using BR-GCN’s
node-level attention, BR-GCN-relation being a uni-level
attention model using BR-GCN’s relation-level attention,
and BR-GCN is our model, described in Section 2. We use
the graph defined by all meta-paths for evaluating HAN,
since the authors do not indicate how the pre-defined meta-
paths are selected. BR-GCN outperforms prior state-of-the-
art models on the benchmark datasets and in comparison to
BR-GCN-node and BR-GCN-relation. Furthermore, HAN,
another bi-level attention model, achieves test accuracy that
is generally higher on all datasets compared to the uni-level

attention models of GAT, BR-GCN-node, and BR-GCN-
relation. This suggests that bi-level attention may be more
effective than uni-level attention. While there is insufficient
evidence to determine whether relation-level or node-level
attention is more important for learning embeddings, bi-
level attention seems to leverage the information of both
uni-level attentions using an effective weighted aggregation.
Hyperparameter values for BR-GCN models are reported in
the Appendix.

4. Conclusions and Future Work
We present a generalized framework for computing bi-level
attention and discuss our novel bi-level attention model,
BR-GCN. Our best BR-GCN model effectively leverages
attention and graph sparsity as suggested by experiment
results against state-of-the-art baseline models of HAN, R-
GCN, GAT, GIN, BR-GCN-node, and BR-GCN-relation.
On node classification, BR-GCN outperforms baselines
from 0.29% to 14.95%, and on link prediction, BR-GCN
outperforms baselines from 0.02% to 7.40%. As GNNs
and attention-based neural architectures have been widely
applied to numerous domains, by advancing these architec-
tures, BR-GCN also has the potential to further advance
knowledge discovery in these domains. Domain applica-
tions of BR-GCN include social networks, medical informat-
ics, software development, and natural language processing.
For future work, we plan to investigate applying BR-GCN
to enhance the inference tasks of question-answering for
text and software, graph similarity detection, as well as to
benefit domain-specific tasks such as code recommendation
and bug detection in software development, and disease
prediction and prognosis in medical informatics.
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APPENDIX

A. Source Code and Environment
The source code for our work can be found at: https:
//github.com/roshnigiyer/BR-GCN

Details for running the source code are present in the
README.md file, and environment details are in the
requirements.txt file.

The overall process of BR-GCN is described in Algorithm
1. A walkthrough example of BR-GCN’s architecture is
detailed in Figure 2.

B. Dataset Description
We evaluate node classification on four datasets: AIFB,
MUTAG, BGS, and AM. We evaluate link prediction on
three datasets: FB15k, WN18, and FB15k-237. We evaluate
ablation studies on the AM dataset. The description of these
datasets are found below.

AIFB The AIFB dataset is a social network dataset per-
taining to the Institute for Applied Informatics and Formal
Description Methods at the Karlsruhe Institute of Technol-
ogy. It includes the relationships between persons (e.g.,
Professors, Students), research topics, projects, publications
etc. AIFB has 8,285 entities, 45 relations, and 29,043 edges.
176 of the entities have labels and are to be classified into 4
classes.

MUTAG The MUTAG dataset is a biological dataset that
contains information about molecules that are potentially
carcinogenic. MUTAG has 23,644 entities, 23 relations, and
74,227 edges. 340 of the entities have labels and are to be
classified into 2 classes.

BGS The BGS dataset is a geological dataset that contains
information about rock units. BGS has 333,845 entities, 103
relations, and 916,199 edges. 146 of the entities have labels
and are to be classified into 2 classes.

AM The AM dataset contains information about artifacts
from the Amsterdam Museum. AM has 1,666,764 entities,
133 relations, and 5,988,321 edges. 1,000 of the entities
have labels and are to be classified into 11 classes.

FB15k The FB15k dataset is a subset of Freebase, a highly
multi-relational collaborative HG. FB15k has 14,951 enti-
ties, and 1,345 relations. 483,142 edges are used for training,
50,000 edges are used for validation, and 59,071 edges are
used for testing.

WN18 The WN18 dataset is a subset of WordNet, a multi-
relational lexical HG for the English language. WN18 has
40,943 entities, and 18 relations. 141,442 edges are used
for training, 5,000 edges are used for validation, and 5,000
edges are used for testing.

FB15k-237 The FB15k-237 dataset is a reduced dataset
of FB15k with inverse triplet pairs removed. Triplet and
inverse triplet pairs are denoted as: t = (e1, r, e2) and
t−1 = (e2, r

−1, e1). FB15k-237 has 14,541 entities, and
237 relations. 272,115 edges are used for training, 17,535
edges are used for validation, and 20,466 edges are used for
testing.

C. Experiments
In this section we describe further experimental details for
BR-GCN and baseline models for node classification, link
prediction, and ablation studies.

C.1. Model Hyperparameters

We proceed to summarize the hyperparameter values used
for BR-GCN models for node classification experiments.
The hyperparameters used for BR-GCN models for link
prediction experiments and ablation studies are the same as
the hyperparameter values for BR-GCN models for the AM
dataset.

The learning rate for BR-GCN-node for the datasets of
AIFB, MUTAG, BGS, and AM are {0.010, 0.001, 0.001,
0.001} respectively, with the l2 penalty as 0 and the # hid-
den units as 16 for all datasets. The # basis functions are {6,
1, 0, 2} respectively, and the # epochs are {70, 90, 70, 80}
respectively. The dropout rate is {0.6, 0.4, 0.0, 0.6} respec-
tively. The negative slope for LeakyReLU(·) activation is
{0.6, 0.8, 0.4, 0.8} respectively.

The learning rate for BR-GCN-relation for the datasets of
AIFB, MUTAG, BGS, and AM are {0.010, 0.010, 0.050,
0.001} respectively, with the l2 penalty as {0, 0, 0, 5 ×
10−4} respectively. The # hidden units are 16 for all datasets.
The # basis functions are {2, 0, 4, 2} respectively, and the #
epochs are {70, 75, 85, 85} respectively.

The learning rate for BR-GCN for the datasets of AIFB,
MUTAG, BGS, and AM are {0.050, 0.010, 0.005, 0.010}
respectively, with the l2 penalty being {0, 5× 10−4, 0, 0}
respectively. The # hidden units are 16 for all datasets. The
# basis functions are {0, 0, 1, 0} respectively, and the #
epochs are {85, 90, 95, 100} respectively. The dropout rate
is {0.4, 0.2, 0.6, 0.6} respectively. The negative slope for
LeakyReLU(·) activation is {0.2, 0, 0.4, 0} respectively.

C.2. Link Prediction

Denote E ′ to be the incomplete subset of edges E in the
HG. Link prediction involves assigning confidence scores
α to (h,r,t) to determine how likely those predicted edges
belong to E , or the true relations. We construct graph auto-
encoder models, with BR-GCN used as the encoder, and HG
embedding models used as the decoder, for this task. We

https://github.com/roshnigiyer/BR-GCN
https://github.com/roshnigiyer/BR-GCN
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use the approach of (8) to train and evaluate our model. As
such, our models use negative sampling, with ω being the
number of negative samples per observed example. Negative
sampling is constructed by randomly corrupting entities of
the observed example. We use cross-entropy for the loss
function, where observable triples are scored higher than
negative triples, with parameters learned using the Adam
Optimizer. The loss function is calculated as:

L = c×
∑

(h,r,t,y)∈T

ylogl(α) + (1− y)log(1− l(α)) (13)

c = − 1

(1 + ω)|E ′|
(14)

y =

{
1 if positive triples
0 if negative triples

(15)

with T being the total set of real and corrupted triples, α
being the confidence score, E ′ being the incomplete subset
of edges in the HG, ω being the number of negative samples
per observed example, y being an indicator variable defined
in Eq. 15, and l(·) being the logistic sigmoid activation.

Datasets: To ensure fair comparison against reported re-
sults of baseline models, we evaluate BR-GCN on the
commonly used link prediction heterogeneous datasets of

FB15k (1), WN18 (3), and FB15k-237 (9), a reduced ver-
sion of FB15k. Results are based on splits from (2). See
Section B for dataset descriptions.

Results: We use mean reciprocal rank (MRR) and Hits @
n as evaluation metrics, computed in a raw and filtered
setting. The reader is referred to (2) for details. The
same number of negative samples, w = 1, are utilized
to make the datasets comparable. We evaluate BR-GCN
and R-GCN as standalone models and as autoencoder mod-
els as in (8), using the following HG embedding mod-
els as decoders: DistMult (D) (15), TransE (T) (2), HolE
(H) (5), and ComplEx (C) (10). BR-GCNembedding is an
ensemble model with a trained BR-GCN model and a sep-
arately trained embedding model: αBR−GCNembedding

=
β×αBR−GCN+(1−β)×αembedding , β = 0.4. Similarly,
for R-GCNembedding . See Table 3 for results on FB15k and
WN18, and Table 4 for results on FB15k-237. The best BR-
GCN models outperform R-GCN models. In general, the
ComplEx model achieves promising results perhaps since
it explicitly models asymmetry in relations. The FB15k
and WN18 datasets are well-connected and therefore nodes
can learn important information from their neighborhood
contexts. FB15k-237, however, does not contain as much
important local information, so HG embedding models are
not as useful when being coupled with R-GCN and BR-GCN
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Figure 2. Bi-level attention visualization walkthrough example. The featurized graph G′ of node i denotes relations in the neighborhood
context for node i in red. An induced graph for each relation in the neighborhood context is created and node-level attention for each
induced graph is learned to form relation-specific embeddings z1i , and z2i for relations 1 and 2. The relation-level attention mechanism to
learn the final node embedding h(l+1)

i and the corresponding weighted relation representations of relations 1 and 2 are shown.
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Table 3. Link prediction results on the FB15k and WN18 datasets for mean reciprocal rank (MRR), and Hits @ n metrics. We evaluate
BR-GCN and R-GCN as standalone models and as autoencoder models using HG embedding models as decoders: DistMult (D) (15),
TransE (T) (2), HolE (H) (5), and ComplEx (C) (10). BR-GCNembedding is an ensemble model with a trained BR-GCN model and a
separately trained embedding model. Similarly for R-GCNembedding . Experiments are run using the Deep Graph Library (DGL) (12),
and the PyTorch Geometric framework (4), on an NVIDIA Tesla V100 GPU cluster. Averages are reported for 10 runs.

FB15k WN18

MRR Hits @ MRR Hits @

Model Raw Filtered 1 3 10 Raw Filtered 1 3 10

R-GCN 0.251 0.651 0.541 0.736 0.825 0.553 0.814 0.686 0.928 0.955
BR-GCN 0.255 0.662 0.564 0.748 0.829 0.557 0.814 0.691 0.928 0.956
R-GCND 0.262 0.696 0.601 0.760 0.842 0.561 0.819 0.697 0.929 0.964
R-GCNT 0.252 0.651 0.543 0.738 0.828 0.554 0.815 0.681 0.928 0.956
R-GCNH 0.257 0.659 0.556 0.744 0.839 0.567 0.822 0.699 0.933 0.966
R-GCNC 0.260 0.712 0.629 0.771 0.845 0.565 0.822 0.701 0.933 0.965
BR-GCND 0.265 0.703 0.646 0.782 0.851 0.564 0.825 0.700 0.934 0.966
BR-GCNT 0.254 0.655 0.544 0.740 0.829 0.559 0.815 0.684 0.928 0.960
BR-GCNH 0.258 0.661 0.560 0.748 0.840 0.567 0.823 0.702 0.934 0.969
BR-GCNC 0.264 0.725 0.668 0.785 0.851 0.566 0.829 0.702 0.934 0.966

Table 4. Link prediction results on the FB15k-237 dataset, a reduced version of FB15k with problematic inverse relation pairs removed
for mean reciprocal rank (MRR), and Hits @ n metrics. We evaluate BR-GCN auto-encoder models against R-GCN auto-encoder
models (8) using the following HG embedding models as decoders: DistMult (D) (15), TransE (T) (2), HolE (H) (5), and ComplEx
(C) (10). R-GCNembedding denotes R-GCN as the encoder combined with the specific embedding model as the decoder. Similarly, for
BR-GCNembedding . Experiments are run using the Deep Graph Library (DGL) (12), and the PyTorch Geometric framework (4).

MRR Hits @

Model Raw Filtered 1 3 10

R-GCN 0.158 0.248 0.153 0.258 0.414
BR-GCN 0.160 0.249 0.160 0.261 0.418
R-GCND 0.156 0.249 0.151 0.264 0.417
R-GCNT 0.161 0.258 0.159 0.274 0.421
R-GCNH 0.159 0.257 0.156 0.272 0.420
R-GCNC 0.158 0.255 0.152 0.268 0.419
BR-GCND 0.157 0.251 0.255 0.265 0.419
BR-GCNT 0.163 0.261 0.164 0.275 0.423
BR-GCNH 0.161 0.258 0.158 0.272 0.422
BR-GCNC 0.160 0.259 0.153 0.268 0.420

compared to in the FB15k and WN18 datasets. The TransE
embedding model seems to be most effective in FB15k-237
perhaps because the embedding relationship between the
head and tail entities are linear. Refer to Section C.1 for
details on model hyperparameters.

C.3. Ablation Studies

We conduct experiments to determine the quality of relation-
level attention and graph-structure learned from BR-GCN.
We modify the AM dataset to contain the following types of
relations, each with cummulative 10% splits: (1) relations
considered by random selection, (2) relations with the high-
est corresponding relation-level attention weights learned by

BR-GCN, and (3) relations with the lowest corresponding
relation-level attention weights learned by BR-GCN. The at-
tention of relations for BR-GCN that we utilize is a function
of the learned relation-level attention matrix ψr, which is
computed by averaging the matrix elements: average(ψr).
The experiment figures for the primary baseline models of
HAN, R-GCN, GAT, and BR-GCN models are detailed in
the Figure 3.

As shown in Figure 3, the AM graph produced by the high-
est attention relation results in the highest test accuracy
compared to the other metrics in all models. The AM graph
produced by the lowest attention relation results in the low-
est test accuracy compared to the other metrics in all models.
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Table 5. Test Accuracy (%) achieved from the top x% attention relations for the AM dataset. The attention of relations is a function of the
learned relation-level attention matrix ψr computed by BR-GCN, defined as average(ψr).

Model Top 10% Top 50% Top 100%
HAN 84.32 88.55 90.68

R-GCN 83.61 88.47 89.29
GAT 75.25 81.90 88.52

BR-GCN-node 85.38 87.63 89.45
BR-GCN-relation 84.97 88.89 90.52
BR-GCN (ours) 85.91 89.19 92.55

The test accuracy for the AM graph produced by relations
randomly selected are as expected in between the test ac-
curacies of the other two metrics. Since models that do
not learn relation-level attention (R-GCN, GAT, BR-GCN-
node) still benefit from the graph structure identified by the
highest attention relations, this shows that the learning of
graph structure identified by relation-level attention may
be transferable. Furthermore, as larger % of relations are
considered, all models benefit from learning better graph
structure and some models may also learn better attention,
resulting in even higher test accuracies.

Table 5 summarizes the model test accuracies achieved from
the AM graph produced by the highest attention relation
metric for the top 10%, 50%, and 100% of relations. BR-
GCN produces the highest test accuracy in all categories,
showing that it may learn the best from graph structure and
relation-level attention compared to the primary baseline
models.

D. Theoretical Analysis

Table 6. Runtime complexity for BR-GCN and primary baseline
models for computing h

(l+1)
i .

Model Runtime Complexity

HAN O(P · d(l)) + O(|VP | · d3(l))
R-GCN O(|Ri| · |Nr

i |2 · d(l+1) · d(l))
GAT O(K · |Nr

i | · d2(l))
BR-GCN-node O(|Ri| · |Nr

i | · d(l+1) · d(l))
BR-GCN-relation O(|Ri| · |Nr

i | · d(l+1) · d(l))
BR-GCN (ours) O(d2(l)) +O(|Ri| · |Nr

i | · d(l))

Table 6 shows the runtime complexity for BR-GCN and the
primary baseline models, and Table 7 shows the memory
complexity for BR-GCN and the primary baseline models.
d(l) and d(l+1) are the node dimensions at the l-th and (l +
1)-th layers respectively, Ri is the set of relations in the
neighborhood context, R is the set of relations in the HG,
Nr

i is the set of nodes in the neighborhood context, K is the

Table 7. Memory complexity for BR-GCN and primary baseline
models for computing h

(l+1)
i .

Model Memory Complexity

HAN O(d(l) × (K + |R|))
R-GCN O(|Ri| · d(l+1) · d(l))

GAT O(d(l) × (K + |Ri|))
BR-GCN-node O(|Ri| · d(l+1) · d(l))

BR-GCN-relation O(d(l+1))

BR-GCN (ours) O(|Ri| · d(l))

number of attention heads, P is the set of pre-defined meta-
paths used in HAN, and Vp is the set of nodes contained in
the pre-defined meta-paths. The reader is referred to (8; 11;
13) for descriptions of the baseline GNN models. BR-GCN
is comparable in runtime and memory complexity to the
state-of-the-art neural architectures of HAN, R-GCN, and
GAT, suggesting that it is a scalable architecture.
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Figure 3. Ablation study experiments on primary baseline models of HAN, R-GCN, GAT, and BR-GCN models to evaluate learned
relation-level attention and graph structure of BR-GCN.


