
Graphs, Entities, and Step Mixture

Kyuyong Shin 1 Wonyoung Shin 2 Jung-Woo Ha 1 Sunyoung Kwon 1

Abstract
Existing approaches for graph neural networks
commonly suffer from the oversmoothing issue,
regardless of how neighborhoods are aggregated.
Most methods also focus on transductive sce-
narios for fixed graphs, leading to poor gener-
alization to unseen graphs. To address these is-
sues, we propose a new graph neural network
that considers both edge-based neighborhood re-
lationships and node-based entity features, i.e.
Graph Entities with Step Mixture via random
walk (GESM). GESM employs a mixture of var-
ious steps through random walk to alleviate the
oversmoothing problem, attention to dynamically
reflect interrelations depending on node infor-
mation, and structure-based regularization to en-
hance embedding representation. With intensive
experiments, we show that the proposed GESM
achieves state-of-the-art or comparable perfor-
mances on eight benchmark graph datasets.

1. Introduction
The majority of studies on graph neural networks
(GNNs) (Scarselli et al., 2008) have predominantly de-
pended on edges to aggregate features of neighboring nodes.
These edge-based methods are premised on the concept
of relational inductive bias within graphs (Battaglia et al.,
2018), which implies that two connected nodes have similar
properties and are more likely to share the same label (Kipf
& Welling, 2017). To improve the neighborhood aggregation
scheme, some studies have incorporated node information;
they fully utilize node information and reduce the effects
of structural (edge) information, so that weights used for
neighborhood aggregation differ according to the feature of
nodes (Veličković et al., 2018).

Regardless of neighborhood aggregation schemes, most

1Clova AI Research, NAVER Corp. 2Naver Shop-
ping, NAVER Corp.. Correspondence to: Sunyoung Kwon
<sunny.kwon@navercorp.com>.

ICML 2020 Workshop on Graph Representation Learning and
Beyond (GRL+ 2020), Vienna, Austria, 2020. Copyright 2020 by
the author(s).

methods, however, suffer from a common problem where
neighborhood information is considered to a limited de-
gree (Klicpera et al., 2019). Consequently, information
becomes localized and access to global information is re-
stricted (Xu et al., 2018), leading to poor performance on
datasets in which only a small portion is labeled (Li et al.,
2018).

In order to address the aforementioned issues, we propose
a novel method, Graph Entities with Step Mixture via ran-
dom walk (GESM), which considers information from all
nodes in the graph and can be generalized to new graphs
by incorporating random walk and attention. Random walk
enables our model to be applicable to previously unseen
graph structures, and a mixture of random walks alleviates
the oversmoothing problem, allowing global information to
be included during training. Hence, our method can be ef-
fective, particularly for nodes in the periphery or a sparsely
labeled dataset. The attention mechanism also advances
our model by considering node information for aggrega-
tion. This enhances the generalizability of models to diverse
graph structures.

Despite the attention mechanism, it is likely that some ho-
mogeneous neighbor nodes are not clustered closely in the
embedding space. We employ a triplet loss-based regulariza-
tion term (Gordo et al., 2017), which enforces homogeneous
neighbor nodes to be closer.

To validate our approach, we conducted extensive exper-
iments on eight standard benchmark datasets and demon-
strate that our proposed model is consistently competitive
and is applicable to both transductive and inductive learning
tasks. We also provide an in-depth analysis and confirm our
model’s superiority on the oversmoothing issue.

2. Graph Entity and Step Mixture (GESM)
First, we define the notations used in this paper for con-
venience. Nodes are represented as a feature matrix X ∈
Rn×f , where n and f respectively denote the number of
nodes and the input dimension per node. The adjacency ma-
trix of graph G is represented as A ∈ Rn×n and a learnable
weight matrix is denoted by W . The addition of self-loops
to the adjacency matrix is Ã = A + In, and the column
normalized matrix of Ã is ˆ̃A = ÃD−1 with ˆ̃A0 = In.

Graphs, Entities, and Step Mixture

Table 1. Experimental results on the public benchmark datasets. Evaluation metrics on transductive and
inductive learning datasets are classification accuracy (%) and F1-score, respectively.

Transductive Inductive

Cora Citeseer Pubmed PPIMethod public (5.1%) public (3.6%) public (0.3%)

GCN (Kipf & Welling, 2017) 81.5 70.3 79.0 -
GraphSAGE (Hamilton et al., 2017) - - - 0.612
GAT (Veličković et al., 2018) 83.0 72.5 79.0 0.973
Union (Li et al., 2018) 80.5 65.7 78.3 -
∗APPNP (Klicpera et al., 2019) 83.2 71.7 79.7 -
SGC (Wu et al., 2019) 81.0 71.9 78.9 -
MixHop (Abu-El-Haija et al., 2019) 81.9 71.4 80.8 -
AdaLNet (Liao et al., 2019) 80.4 68.7 78.1 -
HGCN (Chami et al., 2019) 79.9 - 80.3 -

GESM (w/o att, reg) 82.8 71.7 80.3 0.753
GESM (w/o reg) 84.4 72.6 80.1 0.976
GESM 84.5 72.7 80.4 0.974
∗ Best experimental results from our own implementation

2.1. Step Mixture to Avoid Oversmoothing

Most graph neural networks suffer from oversmoothing
as the propagation step gets deeper. Although JK-Net (Xu
et al., 2018) handles oversmoothing by utilizing GCN blocks
with mulitple propagation, it cannot completely resolve the
oversmoothing issue as shown in Figure 2. We explicitly
separate the node embedding and propagation process by
employing a mixture of multiple random walk steps. This
step mixture approach allows our model to alleviate the
oversmoothing issue along with localized aggregation.

Our method consists of three stages. First, input X passes
through a fully connected layer with a nonlinear activation,
which outputs embedding node features Z = σ(XW). Sec-

ond, Z is multiplied by a normalized adjacency matrix ˆ̃A for
each random walk step that is to be considered. As shown in
the first and second stage, node embedding and propagation
processes are separated. Finally, the concatenated result of
each step fcat is fed into the prediction layer. The entire
propagation process can be formulated as:

fcat =

sn

k=0

ˆ̃AkZ, (1)

where
f

is the concatenation operation, s is the maximum

number of steps considered for aggregation, and ˆ̃Ak is the
normalized adjacency matrix ˆ̃A multiplied k times. As can
be seen from Equation 1, weights are shared across nodes.

In our method, the adjacency matrix ˆ̃A is an asymmetric
matrix, which is generated by random walks and flexible to
arbitrary graphs. On the other hand, prior methods such as
JK-Net (Xu et al., 2018) and MixHop (Abu-El-Haija et al.,
2019), use a symmetric Laplacian adjacency matrix, which
limits graph structures to given fixed graphs.

2.2. Neighborhood Interaction-based Attention

For more sophisticated design of node embedding Z, we
adopt bilinear pooling-based neighborhood interaction as
an attention mechanism so that node information is adap-
tively emphasized for aggregation. We simply replace Z in
Equation 1 with attention features denoted by Hmulti.

output = softmax((
sn

k=0

ˆ̃AkHmulti)W)). (2)

As described by Equation 3, we employ multi-head atten-
tion, where Hmulti and αi denote the concatenation of m
attention layers and the i-th attention coefficient. We only
compute α for nodes j ∈ Ni, the neighborhood nodes of
node i, to maintain the structural representation of the graph.
The attention coefficients α is calculated by the sum of
outer products between encoding vectors of node i and its
neighbor node j:

Hmulti =

mn

i=1

σ(αiZi)), (3)

αi = softmaxj(
∑

ei ⊗ ej), (4)

where e is a hadamard-product of node embedding Z and
weight matrix W , i.e., e = Z �W .

By incorporating attention to our base model, we can avoid
or ignore noisy parts of the graph, providing a guide for
random walk (Lee et al., 2018). In particular, datasets with
the same structure but different node information can benefit
from our method because these datasets can only be distin-
guished by node information. Therefore, focusing on node
features for aggregation can provide more reliable results in
inductive learning.

Graphs, Entities, and Step Mixture

Table 2. Node classification results on datasets with low label rates.

Cora Citeseer Pubmed

Method 1% 3% 0.5% 1% 0.1%

GCN (Kipf & Welling, 2017) 62.3 76.5 43.6 55.3 65.9
Union (Li et al., 2018) 69.9 78.5 46.3 59.1 70.7
∗JK-GCN (Xu et al., 2018) 65.1 76.8 37.1 55.3 71.1
∗APPNP (Klicpera et al., 2019) 67.6 80.8 40.5 59.9 70.7
∗SGC (Wu et al., 2019) 64.2 77.2 41.0 58.1 71.7
AdaLNet (Liao et al., 2019) 67.5 77.7 53.8 63.3 72.8

GESM (w/o att, reg) 68.2 81.6 45.6 62.6 73.0
GESM (w/o reg) 70.5 81.2 53.2 62.7 73.8
GESM 70.9 80.8 51.8 63.0 72.8
∗ Best experimental results through our own implementation

Table 3. Average test set accuracy and standard deviation over 100 random train/validation/test splits with 20 runs.

Coauthor CS Coauthor Physics Amazon Computers Amazon Photo

MLP 88.3 ± 0.7 88.9 ± 1.1 44.9 ± 5.8 69.6 ± 3.8
GCN (Kipf & Welling, 2017) 91.1 ± 0.5 92.8 ± 1.0 82.6 ± 2.4 91.2 ± 1.2
GraphSAGE (Hamilton et al., 2017) 91.3 ± 2.8 93.0 ± 0.8 82.4 ± 1.8 91.4 ± 1.3
GAT (Veličković et al., 2018) 90.5 ± 0.6 92.5 ± 0.9 78.0 ± 19.0 85.7 ± 20.3

GESM (w/o att, reg) 91.8 ± 0.4 93.3 ± 0.6 79.2 ± 2.0 89.3 ± 1.9
GESM (w/o reg) 91.5 ± 0.5 93.4 ± 0.6 80.6 ± 2.1 89.8 ± 1.9
GESM 91.4 ± 0.5 93.5 ± 0.8 80.8 ± 2.0 90.3 ± 2.1

2.3. Embedding Regularization

For better representation learning, node embedding Z re-
quires a regularization that helps neighbor nodes to be clus-
tered and irrelevant nodes to become distant by reflecting the
graph structure (Figure 4). Our push and pull based triplet
regularization R can be formulated as:

R =
1

|S|
∑
p∈S
n∈Sc

(β · Dis(Zc, Zp)− (1− β) · Dis(Zc, Zn)) ,

(5)
where S ⊂ E and its cardinality |S| is the number of sam-
ples, and β denotes a weight for the distance of positive and
negative nodes. A positive node p represents the neighbor
node of a center node c, and a negative node n, on the other
hand, represents all nodes except the positive and center
nodes. For the distance function Dis(·, ·), we used a sigmoid
of dot products, i.e., Dis(Zi, Zj) = 1− sigmoid(ZT

i Zj).

Finally, our overall loss L is L = J +R, where J denotes
softmax cross-entropy loss, and R denotes the regularizer.

3. Results
3.1. Node classification

Results on benchmark datasets. Table 1 summarizes the
comparative experiments for transductive and inductive
learning tasks. In general, most methods limit their domain

to one type of learning tasks, and it is rare to have satisfac-
tory results on both domains. Our methods, however, are
ranked in the top-3 for each task with large predictive power.

For transductive learning tasks, our model GESM (w/o reg)
outperforms many existing baseline models. These results
indicate the significance of considering both global and local
information using the attention mechanism. It can also be
observed that GESM yielded more stable results than GESM
(w/o reg), suggesting the importance of reconstructing struc-
tural node representation in the aggregation process.

For the inductive learning task, our proposed model GESM
(w/o reg) and GESM surpass the results of GAT, despite
the fact that GAT consists of more attention layers. These
results for unseen graphs are in good agreement with results
shown by Veličković et al. (2018), in which enhancing the
influence of node information improved generalization.

Results on datasets with low label rates. To demonstrate
the importance of global information, we experimented on
sparse datasets with low label rates. As can be seen in Ta-
ble 2, our models show remarkable performance even on
the dataset with very few labels. These results indicate that
our methods can adaptively select node information from
local to global neighborhoods.

Experiments for robustness. For an in-depth verification of
overfitting, we extended our experiments to four additional
node classification datasets: Coauthor CS, Coauthor Physics,

Graphs, Entities, and Step Mixture

0 5 10 15 20 25 30

of steps

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
Ac

cu
ra

cy

GCN
SGC
GAT
GESM
JK-Net

Figure 1. Training accuracy as the number
of propagation step increases.

10 20 30 40 50

of steps

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

GESM
JK-Net

Figure 2. Test accuracy of JK-Net and
GESM after the 10th step.

0 5 10 15 20 25 30

of steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e(
s)

GCN
GAT
GESM

Figure 3. Inference time as the step size in-
creases on Cora.

Amazon Computers and Amazon Photo. We followed the
experimental setup of Shchur et al. (2018) including the
hyperparameter settings. The results in Table 3 prove that
our proposed methods do not overfit to a particular dataset.
Moreover, in comparison to GAT, the performance of GESM
is more accurate and stable.

3.2. Model Analysis

Oversmoothing and Accuracy. As shown in Figure 1,
GCN (Kipf & Welling, 2017), SGC (Wu et al., 2019), and
GAT (Veličković et al., 2018) suffer from oversmoothing.
GCN and GAT show severe degradation in accuracy after
the 8th step; The accuracy of SGC does not drop as much as
GCN and GAT but nevertheless gradually decreases as the
step size increases. The proposed GESM, unlike the others,
maintains its performance without any degradation, because
no rank loss (Luan et al., 2019) occurs and oversmoothing
is overcome by step mixture.

Interestingly, JK-Net (Xu et al., 2018) also maintains its
training accuracy regardless of the step size by using GCN
blocks with multiple steps according to Figure 1. We fur-
ther compared the test accuracy of GESM with JK-Net, a
similar approach to our model, in regards to step sizes. To
investigate the adaptability to larger steps of GESM and JK-
Net, we concatenated features after the 10th step. As shown
in Figure 2, GESM outperforms JK-Net, even though both
methods use concatenation to alleviate the oversmoothing
issue. These results are in line with the fact that JK-Net
obtains global information similar to GCN or GAT. Con-
sequently, the larger the step, the more difficult it is for
JK-Net to maintain performance. GESM, on the other hand,
maintains a steady performance, which confirms that the
accuracy of GESM does not collapse even for large step
sizes.

Inference time. As shown in Figure 3, the computational
complexity of all models increases linearly as the step
size increases. We can observe that the inference time of
GCN (Kipf & Welling, 2017) is slightly faster than that of
GESM by a constant margin. GESM is much faster than
GAT (Veličković et al., 2018) in terms of inference time,

(a) GESM (w/o reg) (b) GESM

Figure 4. t-SNE plot of the last hidden layer trained on Cora.

while providing higher and stable results as shown in Ta-
ble 3. Our methods are both fast and accurate due to the
mixture of random walk steps.

Embedding visualization. Figure 4 visualizes the hidden
features with the t-SNE algorithm (Maaten & Hinton, 2008).
The figure illustrates the difference between GESM (w/o
reg) and GESM. While the nodes are scattered for GESM
(w/o reg), they are more closely clustered for GESM. Ac-
cording to the results in Table 1, more closely clustered
GESM generally produces better results than loosely clus-
tered GESM (w/o reg).

4. Conclusion
Traditional graph neural networks suffer from the over-
smoothing issue for a large number of propagation steps
as well as poor generalization on unseen graphs. To tackle
these issues, we propose a simple but effective model that
weights differently depending on node information in the ag-
gregation process and adaptively considers global and local
information by employing the mixture of multiple random
walk steps. To further refine the graph representation, we
have presented a new regularization term, which enforces
similar neighbor nodes to be closely clustered in the node
embedding space. The results from extensive experiments
on eight benchmark graph datasets show that our GESM
successfully achieves state-of-the-art or competitive perfor-
mance for both transductive and inductive learning tasks.

Graphs, Entities, and Step Mixture

References
Abu-El-Haija, S., Perozzi, B., Kapoor, A., Harutyunyan, H.,

Alipourfard, N., Lerman, K., Steeg, G. V., and Galstyan,
A. Mixhop: Higher-order graph convolution architec-
tures via sparsified neighborhood mixing. International
Conference on Machine Learning (ICML), 2019.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-
Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti,
A., Raposo, D., Santoro, A., Faulkner, R., et al. Rela-
tional inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261, 2018.

Chami, I., Ying, Z., Ré, C., and Leskovec, J. Hyperbolic
graph convolutional neural networks. In Advances in
Neural Information Processing Systems, pp. 4869–4880,
2019.

Gordo, A., Almazan, J., Revaud, J., and Larlus, D. End-
to-end learning of deep visual representations for image
retrieval. International Journal of Computer Vision, 124
(2):237–254, 2017.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In Advances in Neural
Information Processing Systems, pp. 1024–1034, 2017.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. International
Conference on Learning Representations (ICLR), 2017.

Klicpera, J., Bojchevski, A., and Günnemann, S. Predict
then propagate: Graph neural networks meet personal-
ized pagerank. International Conference on Learning
Representations (ICLR), 2019.

Lee, J. B., Rossi, R. A., Kim, S., Ahmed, N. K., and Koh,
E. Attention models in graphs: A survey. arXiv preprint
arXiv:1807.07984, 2018.

Li, Q., Han, Z., and Wu, X.-M. Deeper insights into graph
convolutional networks for semi-supervised learning. In
Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

Liao, R., Zhao, Z., Urtasun, R., and Zemel, R. S. Lanc-
zosnet: Multi-scale deep graph convolutional networks.
International Conference on Learning Representations
(ICLR), 2019.

Luan, S., Zhao, M., Chang, X.-W., and Precup, D. Break the
ceiling: Stronger multi-scale deep graph convolutional
networks. Advances in neural information processing
systems, 2019.

Maaten, L. v. d. and Hinton, G. Visualizing data using
t-sne. Journal of machine learning research, 9(Nov):
2579–2605, 2008.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, 2008.

Shchur, O., Mumme, M., Bojchevski, A., and Günnemann,
S. Pitfalls of graph neural network evaluation. arXiv
preprint arXiv:1811.05868, 2018.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio,
P., and Bengio, Y. Graph attention networks. Interna-
tional Conference on Learning Representations (ICLR),
2018.

Wu, F., Zhang, T., Souza Jr, A. H. d., Fifty, C., Yu, T.,
and Weinberger, K. Q. Simplifying graph convolutional
networks. International Conference Machine Learning
(ICML), 2019.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-i.,
and Jegelka, S. Representation learning on graphs with
jumping knowledge networks. International Conference
on Machine Learning (ICML), 2018.

