
Pointer Graph Networks

Petar Veličković 1 Lars Buesing 1 Matthew C. Overlan 1 Razvan Pascanu 1 Oriol Vinyals 1 Charles Blundell 1

Abstract
Graph neural networks (GNNs) are typically ap-
plied to static graphs that are assumed to be known
upfront. This static input structure is often in-
formed purely by insight of the machine learn-
ing practitioner, and might not be optimal for the
actual task the GNN is solving. We introduce
Pointer Graph Networks (PGNs) which augment
sets or graphs with additional inferred edges for
improved model expressivity. PGNs allow each
node to dynamically point to another node, fol-
lowed by message passing over these pointers.
Despite its sparsity, this adaptable graph structure
proves sufficiently expressive to simulate complex
algorithms. The pointing mechanism is super-
vised to model long-term sequences of operations
on classical data structures. PGNs can learn paral-
lelisable variants of pointer-based data structures,
and generalise out-of-distribution to 5× larger
test inputs on dynamic graph connectivity tasks,
outperforming unrestricted GNNs and Deep Sets.

1. Introduction
For problems where a graph structure is known (or can
be approximated), graph neural networks (GNNs) often
thrive. This places a burden upon the practitioner: which
graph structure should be used? As the complexity of the
task imposed on the GNN increases and, separately, the
number of nodes increases, not allowing the choice of graph
structure to be data-driven limits the applicability of GNNs.

Classical algorithms (Cormen et al., 2009) span computa-
tions that can be substantially more expressive than typical
machine learning subroutines (e.g. matrix multiplications),
making them hard to learn, and a good benchmark for GNNs
(Chen et al., 2020; Dwivedi et al., 2020). Prior work has
explored learning primitive algorithms (e.g. arithmetic) by
RNNs (Zaremba & Sutskever, 2014; Kaiser & Sutskever,

1DeepMind. Correspondence to: Petar Veličković
<petarv@google.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

2015; Trask et al., 2018), neural approximations to NP-hard
problems (Vinyals et al., 2015; Kool et al., 2018), mak-
ing GNNs learn (and transfer between) graph algorithms
(Veličković et al., 2019; Georgiev & Lió, 2020), recently
recovering a single neural core (Yan et al., 2020) capable of
sorting, path-finding and binary addition. Here, we propose
Pointer Graph Networks (PGNs), a framework that fur-
ther expands the space of general-purpose algorithms that
can be neurally executed. We consider algorithms that do
not directly align to dynamic programming, relying upon
pointer-based data structures.

Our PGNs adaptively learn a linear number of pointer edges
between nodes. The pointers are optimised through direct
supervision on classical data structures. We empirically
demonstrate that PGNs further increase GNN expressivity
beyond those with static graph structures (Garg et al., 2020),
without sacrificing computational cost or sparsity for this
added flexibility in graph structure.

2. Problem setup and PGN architecture
Problem setup We consider the following sequential su-
pervised learning setting: Assume an underlying set of n
entities. Given are sequences of inputs E(1), E(2), . . . where
E(t) = (~e

(t)
1 , ~e

(t)
2 , . . . , ~e

(t)
n ) is defined by a list of feature

vectors ~e(t)i ∈ Rm for every entity i ∈ {1, . . . , n}. We will
suggestively refer to ~e(t)i as an operation on entity i at time t.
The task consists now in predicting target outputs ~y(t) ∈ Rl
based on operation sequence E(1), . . . , E(t) up to t.

Pointer Graph Networks As the above sequential pre-
diction task is defined on the underlying, un-ordered set of
entities, any generalising prediction model is required to be
invariant under permutations of the entity set. Furthermore,
successfully predicting target ~y(t) in general requires the
prediction model to maintain a robust data structure to rep-
resent the history of operations for all entities throughout
their lifetime. In the following we present our proposed
prediction model, the Pointer Graph Network (PGN), that
combines these desiderata in an efficient way.

At each step t, our PGN model computes latent features
~h
(t)
i ∈ Rk for each entity i. Initially, ~h(0)i = ~0. Further,

the PGN model determines dynamic pointers—one per en-



Pointer Graph Networks

~h(0)a

~h
(0)
b

~h(0)c

~h
(0)
d

~e(1)a

~e
(1)
b

~e(1)c

~e
(1)
d

~h(0)a

~h
(0)
b

~h(0)c

~h
(0)
d

Π̃(0)

~h(1)a

~h
(1)
b

~h(1)c

~h
(1)
d

µ(1)a

µ
(1)
b

µ(1)c

µ
(1)
d

ψ(·, ·)

ψ(·, ·)

ψ(·, ·)

ψ(·, ·)

~h(1)a

~h
(1)
b

~h(1)c

~h
(1)
d

~e(2)a

~e
(2)
b

~e(2)c

~e
(2)
d

~h(1)a

~h
(1)
b

~h(1)c

~h
(1)
d

Π̃(1)

~h(2)a

~h
(2)
b

~h(2)c

~h
(2)
d

µ(2)a

µ
(2)
b

µ(2)c

µ
(2)
d

ψ(·, ·)

ψ(·, ·)

ψ(·, ·)

ψ(·, ·)

~y(1)Decoder
Eqn. 3

~y(2)Decoder
Eqn. 3

E (1) E (2)

GNN
Eqns. 1–2

Self-Attn
Eqns. 6–7

GNN
Eqns. 1–2

repeat

Figure 1. High-level overview of the pointer graph network (PGN) dataflow. Using descriptions of entity operations (~e(t)i ), PGNs
re-estimate latents ~h(t)

i , masks µ(t)
i , and (asymmetric) pointers Π̃(t). The symmetrised pointers, Π(t), are then used as edges for a GNN

that computes next-step latents, ~h(t+1)
i , continuing the process. The latents may be used to provide answers, ~y(t), to queries about the

underlying data. We highlight masked out nodes in red, and modified pointers/latents in blue.

tity and time step—which may be summarised in a pointer
adjacency matrix Π(t) ∈ Rn×n. Initially, we assume each
node points to itself: Π(0) = In. A summary of the coming
discussion may be found in Figure 1.

The Pointer Graph Network follows closely the encode-
process-decode (Hamrick et al., 2018) paradigm. The cur-
rent operation is encoded together with the latents in each
entity using an encoder network f :

~z
(t)
i = f

(
~e
(t)
i ,~h

(t−1)
i

)
(1)

after which the derived entity representations Z(t) =

(~z
(t)
1 , ~z

(t)
2 , . . . , ~z

(t)
n ) are given to a processor network, P ,

which takes into account the current pointer adjacency ma-
trix as relational information:

H(t) = P
(
Z(t),Π(t−1)

)
(2)

yielding next-step latent features, H(t) =

(~h
(t)
1 ,~h

(t)
2 , . . . ,~h

(t)
n ). These latents can be used to

answer set-level queries using a decoder network g:

~y(t) = g

(⊕

i

~z
(t)
i ,
⊕

i

~h
(t)
i

)
(3)

where
⊕

is any permutation-invariant readout aggregator,
such as summation or maximisation.

Many efficient data structures only modify a small1 subset
of the entities at once (Cormen et al., 2009). We can in-
corporate this inductive bias into PGNs by masking their
pointer modifications through a sparse mask µ(t)

i ∈ {0, 1}
1Typically on the order of O(logn) elements.

for each node that is generated by a masking network ψ:

P
(
µ
(t)
i = 1

)
= ψ

(
~z
(t)
i ,~h

(t)
i

)
(4)

where the output activation function for ψ is the logistic
sigmoid function, enforcing the probabilistic interpretation.
In practice, we threshold the output of ψ as follows:

µ
(t)
i = I

ψ
(
~z
(t)
i ,~h

(t)
i

)
>0.5

(5)

The PGN now re-estimates the pointer adjacency matrix
Π(t) using ~h(t)i . To do this, we leverage self-attention
(Vaswani et al., 2017), computing all-pairs dot products
between queries and keys:

α
(t)
ij = softmaxj

(〈
Wq

~h
(t)
i ,Wk

~h
(t)
j

〉)
(6)

where Wq and Wk are learnable linear transformations, and
〈·, ·〉 is the dot product operator. α(t)

ij indicates the relevance
of entity j to entity i, and we derive the pointer for i by
choosing entity j with the maximal αij . To simplify the
dataflow, we found it beneficial to symmetrise this matrix:

Π̃
(t)
ij = µ

(t)
i Π̃

(t−1)
ij +

(
1− µ(t)

i

)
I
j=argmaxk

(
α

(t)
ik

) (7)

Π
(t)
ij = Π̃

(t)
ij ∨ Π̃

(t)
ji (8)

where I is the indicator function, Π̃(t) denotes the pointers
before symmetrisation, and ∨ denotes logical disjunction
between the two operands. Nodes i and j will be linked
together in Π(t) if j is the most relevant to i, or vice-versa.

Unlike prior work which relied on the Gumbel trick (Kazi
et al., 2020; Kipf et al., 2018), we will provide direct su-
pervision w.r.t. ground-truth pointers, Π̂(t), of a target data
structure. Further, our data-driven conditional masking is
reminiscent of neural execution engines (Yan et al., 2020).



Pointer Graph Networks

PGN components and optimisation In our implementa-
tion, the encoder, decoder, masking and key/query networks
are all linear layers. Echoing the results of prior work on
algorithmic modelling with GNNs (Veličković et al., 2019),
we recovered strongest performance when using message
passing neural networks (MPNNs) (Gilmer et al., 2017) for
P , with elementwise maximisation aggregator. Hence, the
computation of Equation 2 is realised as follows:

~h
(t)
i = U

(
~z
(t)
i , max

Π
(t−1)
ji =1

M
(
~z
(t)
i , ~z

(t)
j

))
(9)

whereM and U are linear layers producing vector messages,
followed by ReLU. Accordingly, we found that elementwise-
max was the best readout operation for

⊕
in Equation 3.

Besides the query loss in ~y(t) (Equation 3), PGNs optimise
cross-entropy of the attentional coefficients α(t)

ij (Equation
6) against the ground-truth pointers, Π̂(t), and binary cross-
entropy of the masking network ψ (Equation 4) against the
ground-truth entities being modified at time t.

3. Task: Dynamic graph connectivity
We focus on instances of the dynamic graph connectivity
setup to illustrate the benefits of PGNs. Dynamic connectiv-
ity querying is an important subroutine in computer science,
e.g. when computing minimum spanning trees—deciding if
an edge can be included without inducing cycles (Kruskal,
1956), or maximum flow—detecting existence of paths from
source to sink with available capacity (Dinic, 1970).

Consider undirected and unweighted graphs of n nodes,
with evolving edge sets through time; we denote the edges
at time t by E(t). Initially, assume the graphs to be dis-
connected: E(0) = ∅. At each step, an edge (u, v) may
be added to or removed from E(t−1), yielding E(t) =
E(t−1) 	 {(u, v)}, where 	 is symmetric difference.

A connectivity query is then defined as follows: for a given
pair of vertices (u, v), does there exist a path between them
using edges in E(t)? This yields binary ground-truth query
answers ŷ(t) which we can supervise towards.

Incremental graph connectivity with disjoint-set unions
We initially consider incremental graph connectivity: edges
can only be added to the graph. Therefore, this problem
only requires maintaining disjoint sets, supporting an effi-
cient union(u, v) operation that performs a union of
the sets containing u and v. Querying connectivity then
simply requires checking whether u and v are in the same
set, requiring an efficient find(u) operation which will
retrieve the set containing u.

We consider a combined operation on (u, v): first,
query whether u and v are connected, then perform a

INIT(u)

1 π̂u = u
2 ru ∼ U(0, 1)

FIND(u)

1 if π̂u 6= u
2 π̂u = FIND(π̂u)
3 return π̂u

UNION(u, v)

1 x = FIND(u)
2 y = FIND(v)
3 if x 6= y
4 if rx < ry
5 π̂x = y
6 else π̂y = x

QUERY-UNION(u, v)

1 if FIND(u) = FIND(v)

2 return 0 // ŷ(t) = 0
3 else UNION(u, v)

4 return 1 // ŷ(t) = 1

Figure 2. Pseudocode of DSU operations. Manipulations of
ground-truth pointers Π̂ (π̂u for node u) are in blue; path compres-
sion heuristic highlighted in green.

union on them if they are not. Pseudocode for this
query-union(u, v) operation is given in Figure 2.

We imitate the tree-based disjoint-set union (DSU) data
structure (Galler & Fisher, 1964), known to yield optimal
complexity (Fredman & Saks, 1989) for this task. DSU
represents sets as rooted trees—each node, u, has a parent
pointer, π̂u—and the set identifier will be its root node, ρu,
which by convention points to itself (π̂ρu = ρu). Hence,
find(u) reduces to recursively calling find(pi[u])
until the root is reached—see Figure 2 (Left). Further,
path compression (Tarjan & Van Leeuwen, 1984) is ap-
plied: upon calling find(u), all nodes on the path from u
to ρu will point to ρu. This self-organisation substantially
reduces future querying time along the path.

union(u, v) reduces to finding u and v’s roots, then
making one of them point to the other. To avoid pointer
ambiguity, we assign a random priority, ru ∼ U(0, 1), to
every node at initialisation time, then always preferring the
node with higher priority as the new root2.

At each step t, we call query-union(u, v), specified
by operation descriptions ~e(t)i = ri‖Ii=u∨i=v, containing
the nodes’ priorities, along with a binary feature indicat-
ing which nodes are u and v. The corresponding output
ŷ(t) indicates the return value of query-union(u, v).
We supervise the PGN’s (asymmetric) pointers, Π̃(t), by
making them match the ground-truth DSU’s pointers, π̂i
(Π̂(t)

ij = 1 iff π̂i = j, zero otherwise). Ground-truth masks,

µ̂
(t)
i , are set to 0 for only the paths from u and v to their

respective roots—no other node’s state is changed.

Fully dynamic tree connectivity with link/cut trees We
also consider fully dynamic tree connectivity—edges may
now be removed, with the restriction that E(t) is acyclic.
This is solvable in amortised O(log n) time by link/cut trees
(LCTs) (Sleator & Tarjan, 1983), elegant data structures that
maintain forests of rooted trees, requiring only one pointer
per node. For brevity, we delegate further descriptions of
their operations to Appendix C.

2Random priorities result in a sub-optimal worst-case time
complexity, but one which is still decidedly sub-linear.



Pointer Graph Networks

Table 1. F1 scores on the dynamic graph connectivity tasks for all models considered, on five random seeds. All models are trained on
n = 20, ops = 30 and tested on larger test sets.

Model
Disjoint-set union Link/cut tree

n = 20 n = 50 n = 100 n = 20 n = 50 n = 100
ops = 30 ops = 75 ops = 150 ops = 30 ops = 75 ops = 150

GNN 0.892±.007 0.851±.048 0.733±.114 0.558±.044 0.510±.079 0.401±.123

Deep Sets 0.870±.029 0.720±.132 0.547±.217 0.515±.080 0.488±.074 0.441±.068

PGN-NM 0.910±.011 0.628±.071 0.499±.096 0.524±.063 0.367±.018 0.353±.029

PGN 0.895±.006 0.887±.008 0.866±.011 0.651±.017 0.624±.016 0.616±.009

PGN-Ptrs 0.902±.010 0.902±.008 0.889±.007 0.630±.022 0.603±.036 0.546±.110

Oracle-Ptrs 0.944±.006 0.964±.007 0.968±.013 0.776±.011 0.744±.026 0.636±.065

4. Evaluation and results
Experimental setup As in (Veličković et al., 2019; Yan
et al., 2020), we evaluate out-of-distribution generalisation—
training on random operation sequences for small input
sets (n = 20 entities with ops = 30 operations), then
testing on up to 5× larger inputs (n = 50, ops = 75 and
n = 100, ops = 150). In line with (Veličković et al., 2019),
we generate 70 sequences for training, and 35 sequences
across each test size category for testing.

All models compute k = 32 latent features in each layer,
and are trained for 5, 000 epochs using Adam (Kingma &
Ba, 2014) with learning rate of 0.005.

We evaluate the PGN model against three baselines:

Deep Sets (Zaheer et al., 2017) independently process indi-
vidual entities, followed by an aggregation layer for resolv-
ing queries. This yields an only-self-pointer mechanism,
Π(t) = In for all t, within our framework. Deep Sets are
popular for set-based summary statistic tasks.

(Unrestricted) GNNs (Gilmer et al., 2017; Santoro et al.,
2017; Xu et al., 2019) make no prior assumptions on node
connectivity, yielding an all-ones adjacency matrix: Π

(t)
ij =

1 for all (t, i, j). Such models are a popular choice when
relational structure is assumed but not known.

PGN without masks (PGN-NM) remove the masking
mechanism of Equations 4–7. This repeatedly overwrites
all pointers, i.e. µ(t)

i = 0 for all (i, t). PGN-NM is related
to a directly-supervised variant of the prior art in learnable
k-NN graphs (Franceschi et al., 2019; Kazi et al., 2020).

To assess the utility of the data structure learnt by the
PGN mechanism, as well as its performance limits, we per-
form two tests with fixed pointers, supervised only on the
query: PGN-Ptrs, where pointers are fixed based on a pre-
trained PGN model; and Oracle-Ptrs, which hard-codes the
ground-truth pointers Π̂(t).

1

2

3

4

5

6

7
1

2 3 4 5 6 7

1

2

3

4 5 6 7

1

2

3

4 5 6 7

1

2

3

4

5

6

7

Figure 3. PGN rollout on the DSU setup, for the case of repeated
union(i, i+1) (Left). The first few pointers in Π(t) are vi-
sualised (Middle) as well as the final state (Right)—the PGN
produced a valid DSU at all times, but 2× shallower.

Results and discussion Our results (Table 1) indicate out-
performance of our PGN model, especially on the larger-
scale test sets. Competitive performance of PGN-Ptrs im-
plies that the PGN models a robust data structure that GNNs
can readily reuse. While the PGN-NM model is potent in-
distribution, its performance rapidly decays once it is tasked
to model larger sets of pointers at test time. We provide
qualitative insights into PGNs’ performance in Appendix D.

Rollout analysis of PGN pointers We determined that
PGNs have 50–75% pointer accuracy w.r.t. ground-truth
pointers Π̂, indicating indicates a substantial deviation,
while maintaining strong query performance. The learnt
pointers are still meaningful: given our sparse inductive
bias, even minor discrepancies that result in modelling in-
valid data structures can negatively affect performance.

We observe the learnt PGN pointers on a pathological DSU
example (Figure 3). Repeatedly calling query-union(i,
i+1) with nodes ordered by priority yields a linearised
DSU. Such graphs (of large diameter) are difficult for mes-
sage propagation with GNNs. During rollout, the PGN mod-
els a correct DSU at all times, but halving its depth—easing
GNN usage and GPU parallelisability. Effectively, the PGN
learns to use the query supervision from y(t) to “nudge” its
pointers in a direction more amenable to GNNs, discovering
parallelisable data structures which may deviate from the
ground-truth Π̂(t).



Pointer Graph Networks

References
Chen, Z., Chen, L., Villar, S., and Bruna, J. Can graph

neural networks count substructures? arXiv preprint
arXiv:2002.04025, 2020.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.
Introduction to algorithms. MIT press, 2009.

Dinic, E. A. Algorithm for solution of a problem of maxi-
mum flow in networks with power estimation. In Soviet
Math. Doklady, volume 11, pp. 1277–1280, 1970.

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., and
Bresson, X. Benchmarking graph neural networks. arXiv
preprint arXiv:2003.00982, 2020.

Franceschi, L., Niepert, M., Pontil, M., and He, X. Learn-
ing discrete structures for graph neural networks. arXiv
preprint arXiv:1903.11960, 2019.

Fredman, M. and Saks, M. The cell probe complexity of
dynamic data structures. In Proceedings of the twenty-
first annual ACM symposium on Theory of computing, pp.
345–354, 1989.

Galler, B. A. and Fisher, M. J. An improved equivalence
algorithm. Communications of the ACM, 7(5):301–303,
1964.

Garg, V. K., Jegelka, S., and Jaakkola, T. Generalization and
representational limits of graph neural networks. arXiv
preprint arXiv:2002.06157, 2020.

Georgiev, D. and Lió, P. Neural bipartite matching. arXiv
preprint arXiv:2005.11304, 2020.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. arXiv preprint arXiv:1704.01212, 2017.

Hamrick, J. B., Allen, K. R., Bapst, V., Zhu, T., McKee,
K. R., Tenenbaum, J. B., and Battaglia, P. W. Relational
inductive bias for physical construction in humans and
machines. arXiv preprint arXiv:1806.01203, 2018.

Kaiser, Ł. and Sutskever, I. Neural gpus learn algorithms.
arXiv preprint arXiv:1511.08228, 2015.

Kazi, A., Cosmo, L., Navab, N., and Bronstein, M. Differen-
tiable graph module (dgm) graph convolutional networks.
arXiv preprint arXiv:2002.04999, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., and Zemel,
R. Neural relational inference for interacting systems.
arXiv preprint arXiv:1802.04687, 2018.

Kool, W., van Hoof, H., and Welling, M. Attention,
learn to solve routing problems! arXiv preprint
arXiv:1803.08475, 2018.

Kruskal, J. B. On the shortest spanning subtree of a graph
and the traveling salesman problem. Proceedings of the
American Mathematical society, 7(1):48–50, 1956.

Santoro, A., Raposo, D., Barrett, D. G., Malinowski, M.,
Pascanu, R., Battaglia, P., and Lillicrap, T. A simple neu-
ral network module for relational reasoning. In Advances
in neural information processing systems, pp. 4967–4976,
2017.

Sleator, D. D. and Tarjan, R. E. A data structure for dynamic
trees. Journal of computer and system sciences, 26(3):
362–391, 1983.

Tarjan, R. E. and Van Leeuwen, J. Worst-case analysis of
set union algorithms. Journal of the ACM (JACM), 31(2):
245–281, 1984.

Tarjan, R. E. and Werneck, R. F. Dynamic trees in prac-
tice. Journal of Experimental Algorithmics (JEA), 14:
4–5, 2010.

Trask, A., Hill, F., Reed, S. E., Rae, J., Dyer, C., and Blun-
som, P. Neural arithmetic logic units. In Advances in
Neural Information Processing Systems, pp. 8035–8044,
2018.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Veličković, P., Ying, R., Padovano, M., Hadsell, R., and
Blundell, C. Neural execution of graph algorithms. arXiv
preprint arXiv:1910.10593, 2019.

Vinyals, O., Fortunato, M., and Jaitly, N. Pointer networks.
In Advances in Neural Information Processing Systems,
pp. 2692–2700, 2015.

Xu, K., Li, J., Zhang, M., Du, S. S., Kawarabayashi, K.-i.,
and Jegelka, S. What can neural networks reason about?
arXiv preprint arXiv:1905.13211, 2019.

Yan, Y., Swersky, K., Koutra, D., Ranganathan,
P., and Hashemi, M. Neural execution engines.
2020. URL https://openreview.net/forum?
id=rJg7BA4YDr.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. Deep sets. In
Advances in neural information processing systems, pp.
3391–3401, 2017.

Zaremba, W. and Sutskever, I. Learning to execute. arXiv
preprint arXiv:1410.4615, 2014.

https://openreview.net/forum?id=rJg7BA4YDr
https://openreview.net/forum?id=rJg7BA4YDr


Pointer Graph Networks

~h
(t−1)
i

~y(t−1)

µ
(t−1)
i

~z
(t)
i

~e
(t)
i

~h
(t)
i

Π(t−1) Π(t)

~y(t)

µ
(t)
i

~z
(t+1)
i

~e
(t+1)
i

~h
(t+1)
i

Π(t+1)

~y(t+1)

µ
(t+1)
i

Figure 4. Detailed view of the dataflow within the PGN model,
highlighting inputs ~e(t)i (outlined), objects optimised against
ground-truths (query answers ~y(t), masks µ(t)

i and pointers Π(t))
(shaded) and all intermediate latent states (~z(t)i and ~h(t)

i ). Solid
lines indicate differentiable computation with gradient flow in red,
while dotted lines indicate non-differentiable opeations (teacher-
forced at training time). N.B. This computation graph should also
include edges from ~z

(t)
i into the query answers, masks and pointers

(as it gets concatenated with ~h(t)
i )—we omit these edges for clarity.

A. Pointer graph networks gradient
computation

To provide a more high-level overview of the PGN model’s
dataflow across all relevant variables (and for realising its
computational graph and differentiability), we provide the
visualisation in Figure 4.

Most operations of the PGN are realised as standard neural
network layers and are hence differentiable; the two excep-
tions are the thresholding operations that decide the final
masks µ(t)

i and pointers Π(t), based on the soft coefficients
computed by the masking network and the self-attention,
respectively. This makes no difference to the training algo-
rithm, as the masks and pointers are teacher-forced, and the
soft coefficients are directly optimised against ground-truth
values of µ̂(t)

i and Π̂(t).

Further, note that our setup allows a clear path to end-to-end
backpropagation (through the latent vectors) at all steps,
allowing the representation of ~h(t)i to be optimised with
respect to all predictions made for steps t′ > t in the future.

B. Summary of operation descriptions and
supervision signals

To aid clarity, within Table 2, we provide an overview of all
the operation descriptions and outputs (supervision signals)
for the data structures considered here (disjoint-set unions
and link/cut trees).

Note that the manipulation of ground-truth pointers (π̂i) is
not discussed for LCTs in the main text for purposes of
brevity; for more details, consult Appendix C.

C. Link/cut tree operations
In this section, we provide a detailed overview of the link/cut
tree (LCT) data structure (Sleator & Tarjan, 1983), as well as
the various operations it supports. This appendix is designed
to be as self-contained as possible.

The operations supported by LCTs are:
find-root(u) retrieves the root of node u; link(u,
v) links nodes u and v, with the precondition that u is
the root of its own tree; cut(v) removes the edge from
v to its parent; evert(u) re-roots u’s tree, such that u
becomes the new root.

LCTs also support efficient path-aggregate queries on the
(unique) path from u to v, which is very useful for reasoning
on dynamic trees. Originally, this speeded up bottleneck
computations in network flow algorithms (Dinic, 1970).
Nowadays, the LCT has found usage across online versions
of many classical graph algorithms, such as minimum span-
ning forests and shortest paths (Tarjan & Werneck, 2010).
Here, however, we focus only on checking connectivity of
u and v; hence find-root(u) will be sufficient for our
queries.

Similarly to our DSU analysis, here we will compress up-
dates and queries into one operation, query-toggle(u,
v), which our models will attempt to support. This op-
eration first calls evert(u), then checks if u and v are
connected: if they are not, adding the edge between them
wouldn’t introduce cycles (and u is now the root of its tree),
so link(u, v) is performed. Otherwise, cut(v) is
performed—it is guaranteed to succeed, as v is not going
to be the root node. Pseudocode of query-toggle(u,
v), along with visualising the effects of running it, is pro-
vided in Figure 5.

We encode each query-toggle(u, v) as ~e
(t)
i =

ri‖Ii=u∨i=v. Random priorities, ri, are again used; this
time to determine whether u or v will be the node to call
evert on, breaking ambiguity. As for DSU, we super-
vise the asymmetric pointers, Π̃(t), using the ground-truth
LCT’s pointers, π̂i and ground-truth mask values, µ̂(t)

i , are
set to 0 only if π̂i is modified in the operation at time t.

Before covering the specifics of LCT operations, it is im-
portant to understand how it represents the forest it models;
namely, in order to support efficient O(log n) operations
and path queries, the pointers used by the LCT can differ
significantly from the edges in the forest being modelled.

Preferred path decomposition Many design choices in
LCTs follow the principle of “most-recent access”: if a
node was recently accessed, it is likely to get accessed again
soon—hence we should keep it in a location that makes it
easily accessible.



Pointer Graph Networks

Table 2. Summary of operation descriptions and supervision signals on the data structures considered.
Data structure

Operation descriptions, ~e(t)i
Supervision signalsand operation

Disjoint-set union (Galler & Fisher, 1964)
query-union(u, v)

ri: randomly sampled priority of node i,
Ii=u∨i=v: Is node i being operated on?

ŷ(t): are u and v in the same set?,
µ̂
(t)
i : is node i visited by find(u)

or find(v)?,
Π̂

(t)
ij : is π̂i = j after executing?

(asymmetric pointer)

Link/cut tree (Sleator & Tarjan, 1983)
query-toggle(u, v)

ri: randomly sampled priority of node i,
Ii=u∨i=v: Is node i being operated on?

ŷ(t): are u and v connected?,
µ̂
(t)
i : is node i visited during

query-toggle(u, v)?,
Π̂

(t)
ij : is π̂i = j after executing?

(asymmetric pointer)

QUERY-TOGGLE(u, v)

1 if ru < rv
2 SWAP(u, v)
3 EVERT(u)
4 if FIND-ROOT(v) 6= u
5 LINK(u, v)
6 return 0 // ŷ(t) = 0
7 else CUT(v)
8 return 1 // ŷ(t) = 1

a

c

hg

d e

b

f

i j k

a

c

hg

d e

b

f

i j k

a

c

hg

d e

b

f

i j k

a

c

hg

d e

b

f

i j k

Figure 5. Left: Pseudocode of the query-toggle(u, v) operation, which will be handled by our models; Right: Effect of calling
query-toggle(h, d) on a specific forest (Top), followed by calling query-toggle(g, e) (Bottom). Edges affected by
evert (blue), link (green), and cut (red) are highlighted. N.B. this figure represents changes to the forest being modelled, and not
the underlying LCT pointers; see Appendix C for more information on pointer manipulation.



Pointer Graph Networks

The first such design is preferred path decomposition: the
modelled forest is partitioned into preferred paths, such
that each node may have at most one preferred child: the
child most-recently accessed during a node-to-root opera-
tion. As we will see soon, any LCT operation on a node u
will involve looking up the path to its respective root ρu—
hence every LCT operation will be be composed of several
node-to-root operations.

One example of a preferred path decomposition is demon-
strated in Figure 6 (Left). Note how each node may have
at most one preferred child. When a node is not a preferred
child, its parent edge is used to jump between paths, and is
hence often called a path-parent.

LCT pointers Each preferred path is represented by
LCTs in a way that enables fast access—in a binary search
tree (BST) keyed by depth. This implies that the nodes
along the path will be stored in a binary tree (each node will
potentially have a left and/or right child) which respects the
following recursive invariant: for each node, all nodes in its
left subtree will be closer to the root, and all nodes in its
right subtree will be further from the root.

For now, it is sufficient to recall the invariant above—the
specific implementation of binary search trees used in LCTs
will be discussed towards the end of this section. It should be
apparent that these trees should be balanced: for each node,
its left and right subtree should be of (roughly) comparable
sizes, recovering an optimal lookup complexity of O(log n),
for a BST of n nodes.

Each of the preferred-path BSTs will specify its own set
of pointers. Additionally, we still need to include the path-
parents, to allow recombining information across different
preferred paths. While we could keep these links unchanged,
it is in fact canonical to place the path-parent in the root
node of the path’s BST (N.B. this node may be different
from the top-of-path node3!).

As we will notice, this will enable more elegant operation of
the LCT, and further ensures that each LCT node will have
exactly one parent pointer (either in-BST parent or path-
parent, allowing for jumping between different path BSTs),
which aligns perfectly with our PGN model assumptions.

The ground-truth pointers of LCTs, Π̂(t), are then recov-
ered as all the parent pointers contained within these bi-
nary search trees, along with all the path-parents. Similarly,
ground-truth masks, µ̂(t)

i , will be the subset of LCT nodes
whose pointers may change during the operation at time t.
We illustrate how a preferred path decomposition can be
represented with LCTs within Figure 6 (Right).

3The top-of-path node is always the minimum node of the BST,
obtained by recursively following left-children, starting from the
root node, while possible.

a

b c d e

f g h i j

k l m

n o

p

q

b

a f

g

l c j

e md p

h

i o q

k

n

Figure 6. Left: Rooted tree modelled by LCTs, with its four pre-
ferred paths indicated by solid lines. The most-recently accessed
path is f → b → a. Right: One possible configuration of LCT
pointers which models the tree. Each preferred path is stored in a
binary search tree (BST) keyed by depth (colour-coded to match
the LHS figure), and path-parents (dashed) emanate from the root
node of each BST—hence their source node may changed (e.g.
d� a is represented as l � a).

LCT operations Now we are ready to cover the specifics
of how individual LCT operations (find-root(u),
link(u, v), cut(u) and evert(u)) are imple-
mented.

All of these operations rely on an efficient operation which
exposes the path from a node u to its root, making it
preferred—and making u the root of the entire LCT (i.e.
the root node of the top-most BST). We will denote this
operation as expose(u), and assume its implementation
is provided to us for now. As we will see, all of the inter-
esting LCT operations will necessarily start with calls to
expose(u) for nodes we are targeting.

Before discussing each of the LCT operations, note one
important invariant after running expose(u): node u is
now the root node of the top-most BST (containing the
nodes on the path from u to ρu), and it has no right children
in this BST—as it is the deepest node in this path.

As in the main document, we will highlight in blue all
changes to the ground-truth LCT pointers π̂u, which will be
considered as the union of ground-truth BST parents p̂u and
path-parents p̂pu. Note that each node u will either have
p̂u or p̂pu; we will denote unused pointers with NIL. By
convention, root nodes, ρ, of the entire LCT will point to
themselves using a BST parent; i.e. p̂ρ = ρ, p̂pρ = NIL.

• find-root(u) can be implemented as follows: first



Pointer Graph Networks

execute expose(u). This guarantees that u is in the
same BST as ρu, the root of the entire tree. Now,
since the BST is keyed by depth and ρu is the shallow-
est node in the BST’s preferred path, we just follow
left children while possible, starting from u: ρu is the
node at which this is no longer possible. We conclude
with calling expose on ρu, to avoid pathological be-
haviour of repeatedly querying the root, accumulating
excess complexity from following left children.

FIND-ROOT(u)

1 EXPOSE(u)
2 ρu = u
3 while leftρu 6= NIL
4 ρu = leftρu
5 EXPOSE(ρu)
6 return ρu

• link(u, v) has the precondition that u must be the
root node of its respective tree (i.e. u = ρu), and u
and v are not in the same tree. We start by running
expose(u) and expose(v). Attaching the edge
u→ v extends the preferred path from v to its root, ρv ,
to incorporate u. Given that u can have no left children
in its BST (it is a root node, hence shallowest), this can
be done simply by making v a left child of u (given v
is shallower than u on the path u→ v → · · · → ρv).

LINK(u, v)

1 EXPOSE(u)
2 EXPOSE(v)
3 leftu = v
4 p̂v = u

• cut(u), as above, will initially execute expose(u).
As a result, u will retain all the nodes that are deeper
than it (through path-parents pointed to by u), and
can just be cut off from all shallower nodes along the
preferred path (contained in u’s left subtree, if it exists).

CUT(u)

1 EXPOSE(u)
2 if leftu 6= NIL
3 p̂leftu = leftu
4 leftu = NIL

• evert(u), as visualised in Figure 5, needs to isolate
the path from u to ρu, and flip the direction of all
edges along it. The first part is already handled by
calling expose(u), while the second is implemented
by recursively flipping left and right subtrees within the
entire BST containing u (this makes shallower nodes
in the path become deeper, and vice-versa).

This is implemented via lazy propagation: each node
u stores a flip bit, φu (initially set to 0). Calling
evert(u) will toggle node u’s flip bit. Whenever
we process node u, we further issue a call to a spe-
cial operation, release(u), which will perform
any necessary flips of u’s left and right children, fol-
lowed by propagating the flip bit onwards. Note that
release(u) does not affect parent-pointers π̂u—but
it may affect outcomes of future operations on them.

RELEASE(u)

1 if u 6= NIL and φu = 1
2 SWAP(leftu, rightu)
3 if leftu 6= NIL
4 φleftu = φleftu ⊕ 1
5 if rightu 6= NIL
6 φrightu = φrightu ⊕ 1
7 φu = 0

EVERT(u)

1 EXPOSE(u)
2 φu = φu ⊕ 1
3 RELEASE(u)

Implementing expose(u) It only remains to provide
an implementation for expose(u), in order to specify the
LCT operations fully.

LCTs use splay trees as the particular binary search tree
implementation to represent each preferred path. These
trees are also designed with “most-recent access” in mind:
nodes recently accessed in a splay tree are likely to get ac-
cessed again, therefore any accessed node is turned into the
root node of the splay tree, using the splay(u) operation.
The manner in which splay(u) realises its effect is, in
turn, via a sequence of complex tree rotations; such that
rotate(u) will perform a rotation that brings u one level
higher in the tree.

We describe these three operations in a bottom-up fashion:
first, the lowest-level rotate(u), which merely requires
carefully updating all the pointer information. Depending
on whether u is its parent’s left or right child, a zig or zag
rotation is performed—they are entirely symmetrical. Refer
to Figure 7 for an example of a zig rotation followed by a
zag rotation (often called zig-zag for short).



Pointer Graph Networks

w

v

u

A

B C

D

w

u

v

A

B

C D

u

w v

A B C D

Figure 7. A schematic of a zig-zag rotation: first, node u is rotated
around node v; then, node u is rotated around node w, bringing it
two levels higher in the BST without breaking invariants.

ROTATE(u)

1 v = p̂u
2 w = p̂v
3 if leftv = u // Zig rotation
4 leftv = rightu
5 if rightu 6= NIL
6 p̂rightu = v
7 rightu = v
8 else // Zag rotation
9 rightv = leftu

10 if leftu 6= NIL
11 p̂leftu = v
12 leftu = v
13 p̂pu = p̂pv
14 p̂v = u
15 p̂pv = NIL
16 if w 6= NIL // Adjust grandparent
17 if leftw = v
18 leftw = u
19 else
20 rightw = u
21 p̂u = w

Armed with the rotation primitive, we may define
splay(u) as a repeated application of zig, zig-zig and
zig-zag rotations, until node u becomes the root of its BST4.
We also repeatedly perform lazy propagation by calling
release(u) on any encountered nodes.

4Note: this exact sequence of operations is required to achieve
optimal amortised complexity.

SPLAY(u)

1 while p̂u 6= NIL // Repeat while u is not BST root
2 v = p̂u
3 w = p̂v
4 RELEASE(w) // Lazy propagation
5 RELEASE(v)
6 RELEASE(u)
7 if w = NIL // zig rotation
8 ROTATE(u)
9 if (leftw = v) = (leftv = u) // zig-zig rotation

10 ROTATE(v)
11 ROTATE(u)
12 else // zig-zag rotation
13 ROTATE(u)
14 ROTATE(u)
15 RELEASE(u) // In case u was root node already

Finally, we may define expose(u) as repeatedly inter-
changing calls to splay(u) (which will render u the root
of its preferred-path BST) and appropriately following path-
parents, p̂pu, to fuse u with the BST above. This concludes
the description of the LCT operations.

EXPOSE(u)

1 do
2 SPLAY(u) // Make u root of its BST
3 if rightu 6= NIL
4 p̂rightu = NIL
5 p̂prightu = u

6 rightu = NIL
7 w = p̂pu
8 if w 6= NIL // Attach u into w’s BST
9 SPLAY(w)

10 if rightw 6= NIL
11 p̂rightw = NIL
12 p̂prightw = w

13 rightw = u
14 p̂u = w
15 p̂pu = NIL
16 while p̂u 6= u // Repeat until u is root of its LCT

It is worth reflecting on the overall complexity of individual
LCT operations, taking into account the fact they’re propped
up on expose(u), which itself requires reasoning about
tree rotations, followed by appropriately leveraging pre-
ferred path decompositions. This makes the LCT modelling
task substantially more challenging than DSU.

Remarks on computational complexity and applica-
tions As can be seen throughout the analysis, the com-
putational complexity of all LCT operations can be reduced
to the computational complexity of calling expose(u)—
adding only a constant overhead otherwise. splay(u) has
a known amortised complexity of O(log n), for n nodes in



Pointer Graph Networks

Figure 8. Credit assignment study results for the DSU setup, for
the baseline GNN (Top) and the PGN (Bottom), arranged left-to-
right by test graph size. PGNs learn to put larger emphasis on
both the two nodes being operated on (blue) and the nodes on their
respective paths-to-roots (green).

Figure 9. Credit assignment study results for the LCT setup, fol-
lowing same convention as Figure 8.

the BST; it seems that the ultimate complexity of expos-
ing is this multiplied by the worst-case number of different
preferred-paths encountered.

However, detailed complexity analysis can show that splay
trees combined with preferred path decomposition yield
an amortised time complexity of exactly O(log n) for all
link/cut tree operations. The storage complexity is highly
efficient, requiring O(1) additional bookkeeping per node.

Finally, we remark on the utility of LCTs for performing
path aggregate queries. When calling expose(u), all
nodes from u to the root ρu become exposed in the same
BST, simplifying computations of important path aggregates
(such as bottlenecks, lowest-common ancestors, etc). This
can be augmented into an arbitrary path(u, v) operation
by first calling evert(u) followed by expose(v)—this
will expose only the nodes along the unique path from u to
v within the same BST.

D. Credit assignment analysis
Firstly, recall how our decoder network, g, is applied to the
latent state (~z(t)i , ~h(t)i ), in order to derive predicted query
answers, ~y(t)i (Equation 3). Knowing that the elementwise

maximisation aggregator performed the best as aggregation
function, we can rewrite Equation 3 as follows:

~y(t) = g
(
max
i
~z
(t)
i ,max

i

~h
(t)
i

)
(10)

This form of max-pooling readout has a unique feature: each
dimension of the input vectors to g will be contributed to
by exactly one node (the one which optimises the corre-
sponding dimension in ~z(t)i or ~h(t)i ). This provides us with
opportunity to perform a credit assignment study: we can
verify how often every node has propagated its features
into this vector—and hence, obtain a direct estimate of how
“useful” this node is for the decision making by any of our
considered models.

We know from the direct analysis of disjoint-set union (Sec-
tion 3) and link/cut tree (Appendix C) operations that only a
subset of the nodes are directly involved in decision-making
for dynamic connectivity. These are exactly the nodes along
the paths from u and v, the two nodes being operated on, to
their respective roots in the data structure. Equivalently,
these nodes directly correspond to the nodes tagged by
ground-truth masks (nodes i for which µ̂(t)

i = 0).

With the above hindsight, we compare a trained baseline
GNN model against a PGN model, in terms of how much
credit is assigned to these “important” nodes, throughout the
rollout. The results of this study are visualised in Figures 8
(for DSU) and 9 (for LCT), visualising separately the credit
assigned to the two nodes being operated on (blue) and the
remaining nodes along their paths-to-roots (green).

From these plots, we can make several direct observations:

• In all settings, the PGN amplifies the overall credit
assigned to these relevant nodes.

• On the DSU setup, the baseline GNN is likely suffering
from oversmoothing effects: at larger test set sizes, it
seems to hardly distinguish the paths-to-root (which
are often very short due to path compression) from the
remainder of the neighbourhoods. The PGN explicitly
encodes the inductive bias of the structure, and hence
more explicitly models such paths.

• As ground-truth LCT pointers are not amenable to
path compression, paths-to-root may more significantly
grow in lengthwith graph size increase. Hence at this
point the oversmoothing effect is less pronounced for
baselines; but in this case, LCT operations are highly
centered on the node being operated on. The PGN
learns to provide additional emphasis to the nodes op-
erated on, u and v.

In all cases, it appears that through a careful and targeted
constructed graph, the PGN is able to significantly over-
come the oversmoothing issues with fully-connected GNNs,



Pointer Graph Networks

providing further encouragement for applying PGNs in prob-
lem settings where strong credit assignment is required, one
example of which are search problems.


