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Abstract
We illustrate that developing a theory of ‘how to
embed a random graph using GNN’ is the key
to achieving the first near-optimal learning-based
scheduling algorithm for an NP-hard multi-robot
scheduling problem for tasks with time-varying
rewards. We focus on a problem referred to as
a Multi-Robot Reward Collection (MRRC) prob-
lem, of which immediate applications are rideshar-
ing and pickup-and-delivery problems. We 1)
observe that states in our robot scheduling prob-
lems can be represented as an extension of prob-
abilistic graphical models (PGMs), which we re-
fer to as random PGMs, and 2) develop a mean-
field inference method for random PGMs. We
then prove that a simple heuristic for applying
deep graph encoder for random graph embed-
ding is theoretically justified. We illustrate how a
two-step hierarchical inference induces precise Q-
function estimation. We empirically demonstrate
that our method achieves near-optimality (plus
transferability and scalability, machine schedul-
ing (IPMS) applications in the appendix section).
Arxiv preprint: https://arxiv.org/abs/1905.12204.

1. Introduction
We consider a set of robots and seek to serve a set of spa-
tially distributed tasks. A reward is given for serving each
task promptly, resulting in a decaying reward collection
problem. We focus on ‘scheduling’ problems possessing
constraints such as ‘no possibility of two robots assigned
to a task at once’. Such problems prevail in various opera-
tion research problems, e.g., dispatching multiple vehicles
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to deliver customers in a city or scheduling multiple ma-
chines in a factory. Impossibility results in asynchronous
communication1 [Fischer et al. (1985)] make these prob-
lems inherently centralized. This study is the first to explore
the possibility of near-optimally solving such larger scale
multi-robot, multi-task NP-hard scheduling problems with
time-dependent rewards using a learning-based algorithm.

Proposed methods and contributions. We first extend the
probabilistic graphical model (PGM)-based mean-field in-
ference theory in (Dai et al., 2016) for random PGM. Then
we show that a naively-looking two-step heuristic of “First,
approximate each edge’s presence probability” and “Then,
apply a typical deep graph encoder with probabilistic adjust-
ments” is justified from the subsequent theoretical results.
We call structure2vec ((Dai et al., 2016) combined with this
heuristic as ‘random structure2vec’. We then empirically
demonstrate the effectiveness of this method. After observ-
ing that each state of robot scheduling problem can be rep-
resented as a ‘random’ PGM, we use random structure2vec
to design a transferable reinforcement learning method that
is first to learn a near-optimal NP-hard multi-robot/machine
scheduling (97% optimal for a multi-robot scheduling prob-
lem called multi-robot reward collection (MRRC) with deter-
ministic environment with linearly-varying rewards where
true optimal baselines are available).

2. Multi-robot scheduling problem
formulation

We formulate a multi-robot reward collection problem
(MRRC) as a discrete-time, discrete-state sequential
decision-making problem. We assume that we are given
“time required for an assigned robot to complete a task”
which we call “task completion time”. A task completion
time may be deterministic, or a random variable2. These
durations are time-invariant. At each time-step, we assign
robots to remaining tasks. We cast MRRC problem as a
sequential decision-making problem as follows.

1Due to this limitation, multi-agent (decentralized) methods
are rarely used in industries (e.g., factories)

2Our method requires only samples of the random variable; its
distribution is not required.
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Figure 1. Representing a State into a random PGM

State. The state st at time step t is represented as (Gt, αt).
Gt is a directed graph (Rt ∪ Tt, Et) where Rt is the set
of all robots at time step t, Tt is the set of all remaining
unserved tasks at time step t, and Et = ERTt ∪ ETTt is the set
of directed edges. A directed edge εRTi,p ∈ ERTt is assigned
with a random variable denoting the task completion time
for robot i to finish task p A directed edge εTTp,q ∈ ETTt is
assigned with a weight (random variable) denoting the task
completion time (a duration) for a robot that just competed
task p to complete task q. αt = {ηpt ∈ R|p ∈ Tt} is a set of
ages where ηpt indicates the age of task p at time-step t. We
denote the set of possible states as S. See Figure 1.

Joint assignment. A joint assignment of robots to tasks at
current state st = (Gt, αt), denoted as at, should satisfy two
constraints: (i) no two robots can be assigned to the same
task, and (ii) a robot may only remain without assignment
when the number of robots exceeds the number of remaining
tasks. Thus, a joint assignment at is a maximal bipartite
matching in the bipartite graph (Rt ∪ Tt, ERTt ). A policy π
is defined as π : S 7→ A.

Transition function and reward. In the hierarchical con-
trol literature, our ‘assignment’ is termed a ‘macro-action’.
In pursuit of the macro-action, robots may make multiple
sequential micro-actions to service task. (We allow reassign-
ment prior to arrival.) The transition probability associated
with ’macro-action’ is derived from transition probability
associated with ‘micro-action’ [Omidshafiei et al. (2017)].
In MRRC, each task has an arbitrarily determined initial age.
At each time-step, the age of each task increases by one.
When a task is served, a reward is given according to a prede-
termined reward function that computes reward according to
the task’s age at the time of service. Note that the state and
assignment information st, at and st+1 are thus sufficient to
determine the reward at time step t+ 1. As such we denote
the reward function as R(st, at, st+1) : S ×A× S 7→ R.

Objective. Given an initial state s0 ∈ S, the MRRC seeks
to maximize the sum of expected rewards through time by
the selection of an assignment policy π∗ satisfying π∗ =
argmax

π
Eπ,P ′ [

∑∞
t=0R (st, π(st), st+1) |s0] .

MRRC is a general class of problems with numerous ap-
plications. For example, by considering ‘movement from

location A to location B’ as a task to which a robot or vehi-
cle is assigned, ride-sharing problems or package delivery
problems are naturally modeled as an MRRC problem.

3. Scheduling by Inferencing Random PGM
3.1. Backgrounds on probabilistic graphical model

(PGM)

PGM. Given random variables {Xk}, suppose that the joint
distribution factors as P (X1, . . . , Xn) = 1

Z

∏
i φi (Di)

where φi(Di) denotes a marginal distribution or conditional
distribution with a set of random variablesDi; Z is a normal-
izing constant. Then {Xk} is called a probabilistic graphical
model (PGM). In a PGM, Di is called a clique and φi(Di)
is called a clique potential for Di. When we write simply
φi, suppressing Di, Di is called the scope of φi.

Mean-field inference with PGM. A popular use of PGM is
PGM-based mean-field inference. In mean-field inference,
we find a surrogate distribution q(X1, . . . , Xn) =

∏
i qi(xi)

with smallest Kullback-Leibler distance to the original joint
distribution P (X1, . . . , Xn). This surrogate distribution is
used to conduct the inference. Koller & Friedman (2009)
shows that when we are given a PGM, the qi(xi) can be
obtained by a fixed point equation. Despite the usefulness
of this approach, we are not often directly given the proba-
bilistic graphical model.

Structure2vec. Dai et al. (2016) suggests that for graph-like
structured data the edges of PGM (i.e. probabilistic relation-
ships) can be assumed heuristically, and this info may be
enough for an inference method called structure2vec. There
are two types of random variables: {Yk} serving as input to
the inference problem (e.g., atomic number of atom k in Dai
et al. (2016)) and {Hk} serving as latent random variables
whereHk corresponds to Yk. Yk andHk are connected with
an edge. The edges among {Hk} are heuristically assumed
from the graph structure of data (e.g. molecular bindings
in Dai et al. (2016)). In PGM, the joint probability distribu-
tion on random variables ({Hk}, {Yk}) can be factored as
P ({Hk} , {Yk}) ∝

∏
k∈V φ (Hk, Yk)

∏
k,i∈V φ (Hk, Hi),

where V denotes the set of vertex indexes and φ is a clique
potential. Dai et al. (2016) has proposed structure2vec
to embed the posterior marginal p({hk}|{yk}) of a fea-
ture mapping φ(Hi) of a hidden variable Hi as µi =∫
H φ(Hi)p(hi|yi)dhi, to generate the parameterized fixed

point equation for µ̃k as µ̃k = σ(W1yk +W2

∑
j 6=k µ̃j).

Here σ denotes Relu function and W denotes parameters of
neural networks (see Dai et al. (2016)).

3.2. Inference with random PGM

Random PGM. Denote the set of all random variables in
the inference problem as X = {Xi}. Suppose that the set
of possible PGMs on X , denoted as GX , is prior knowledge
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(in many robot scheduling problems, this is the set of all
possible Bayesian networks - see Appendix 3). A random
PGM on X is then defined as {GX ,P} where P : GX 7→
[0, 1] is the probability of realizing an element of GX . Note
that the inference of P will be difficult. To avoid this task,
we start by defining ‘semi-cliques’. Suppose that we are
given the set of all possible cliques on X as CX . Only a
few probabilistic relationships in CX are actually realized
as an element of PGM and become real cliques. We call the
elements Dm ∈ CX as ‘semi-cliques’. Note that if we are
givenP then we can easily calculate the presence probability
pm of semi-clique Dm as pm =

∑
G∈GX P(G)1Dm∈G.

Mean-field inference with random PGM. The following
theorem extends mean-field inference with PGM Koller &
Friedman (2009) to mean-field inference with random PGM.
It shows that we only need infer the presence probability of
each semi-clique in the random PGM.

Theorem 1. Random PGM based mean field inference.
Suppose we are given a random PGM on X = {Xk}.
Also, assume that we know presence probability
{pm} for all semi-cliques Dm ∈ CX . The la-
tent variable distribution {qk(xk)} in mean-field
inference is locally optimal only if qk (xk) =
1
Zk

exp
{∑

m:Xk∈Dm
pmE(Dm−{Xk})∼q [lnφm (Dm, xk)]

}
where Zk is a normalizing constant and φm is the clique
potential for clique m. (For the proof see Appendix 4.)

Random structure2vec. From Theorem 1, we can de-
velop a random structure2vec corresponding to a random
PGM with ({Hk}, {Yk}). That is, we can combine (1) the
fixed point equation of the mean field approximation for
qk (hk) (Theorem 1) and (2) the injective embedding for
µi =

∫
H φ(Hi)p(hi|yi)dhi to come up with parameterized

fixed point equation for µ̃k (see Figure 1). As in Dai et al.
(2016), we restrict our discussion to the case where there are
semi-cliques between two random variables. In this case,
the notation we use for Dm and pm is Dij and pij .

Lemma 1. Structure2vec for random PGM. Given a ran-
dom PGM onX = ({Hk}, {Yk}). Assume that we know the
presence probabilities {pij} for all pairwise semi-cliques
Dij ∈ CX . The fixed point equation in Theorem 1 for
posterior marginal P ({Hk}|{yk}) can be embedded in a
nonlinear function mapping to generate the fixed point equa-
tion µ̃k = σ

(
W1yk +W2

∑
j 6=k pkj µ̃j

)
.

The proof of Lemma 1 can be found in Appendix 5. The
implication of Lemma 1 is only a simple inference task is
required: inferring the presence probability of each semi-
clique. See Appendix 6 for the algorithm. We formalize this
observation as a separate corollary.

Corollary 1. For MRRC, the random PGM representation
for Lemma 1 is ((Tt, ETTt ), {pij}) where {pij} denotes the
probability of a robot choosing task i after serving task j.

Figure 2. Illustration of overall pipeline of our method

4. Scheduling MRRC with Random
structure2vec

We discuss how random structure2vec in Section 3.2 can
be used to estimate Q(st, at). For assignment choice and
exploration method that enables scalability, see Appendix.

4.1. Inferring Q(st, at)

First, we discuss the two-step sequential and hierarchical
state-embedding strategy using random structure2vec.For
brevity, we illustrate the inference procedure where task
completion time is deterministic. (For random task comple-
tion times, see Appendix 7.)

Step 1. Distance Embedding. Intuitively the output vec-
tors {µ̃1

k} of structure2vec embed local graph information
around that vector node Dai et al. (2016). We here focus
on embedding information on robot locations around a task
node and thus infer each task’s ‘relative graphical distance’
from the robots around it. For the input of the first use of
structure2vec ({xk} in Lemma 1), we only use robot assign-
ment information (if k is an assigned task, we set the value
of xk to ‘task completion time of assignment’ (a duration);
if k is not an assigned task:, we set xk = 0). This procedure
is illustrated in Figure 2.
Step 2. Value Embedding. The second step is designed to
infer ‘How much value is likely in the local graph around
each task’. Recall that the output vectors of the first step
{µ̃1

k} carry information about the relative graphical distance
from all robots to each task. For each task k, we concatenate
the age ηkt the corresponding vector µ̃1

k and use the resulting
graph as the input ({xk} in Lemma 1) to a second struc-
ture2vec. See Figure 2. The resulting output vectors {µ̃2

k}
provide sufficient information about ‘How much value is
likely in the local graph around each task’.
Step 3. Computing Q(st, at). To infer Q(st, at), we ag-
gregate the embedding vectors for all nodes as µ̃2 =

∑
k µ̃

2
k

to obtain one global vector µ̃2 to embed the ‘value affinity’
of the global graph. We then use a neural network to map
µ̃2 into Q(st, at). The intuition behind transferability and
detailed algorithm of the above procedure (with random task
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Table 1. Performance test (50 trials of training for each cases)

Rew. Env. Base. Testing size : Robot (R) / Task (T)
2R/20T3R/20T3R/30T5R/30T5R/40T8R/40T8R/50T

Linear Determ.
%Opt 98.31 97.50 97.80 95.35 96.99 96.11 96.85

(4.23) (4.71) (5.14) (5.28) (5.42) (4.56) (3.40)
%Ekisi 99.86 97.50 118.33 110.42 105.14 104.63 120.16
%SGA 137.3 120.6 129.7 110.4 123.0 119.9 119.8

Stocha. %SGA 130.9 115.7 122.8 115.6 122.3 113.3 115.9

Exp. Determ. %SGA 111.5 118.1 118.0 110.9 118.7 111.2 112.6
Stocha. %SGA 110.8 117.4 119.7 111.9 120.0 110.4 112.4

—

completion times) is provided in Appendix 7 and 9.

The key idea is that this over/under-estimation does not
matter in Q-learning van Hasselt et al. (2015) as long as the
order of Q-function value among actions are the same.

5. Experiment
Target MRRC problem. We test our algorithm using the
modified maze (see Figure 2) generator of Neller et al.
(2010) (code provided in Appendix 10) and compare with
the baselines. (For the tests overcoming inherent artificial-
ness, inscalability, discreteness of the simulator, see ap-
pendix 2) To generate the task completion times of a maze,
Dijkstra’s algorithm and dynamic programming were used
for deterministic and stochastic environments, respectively.
In the deterministic environment, robots always succeed
in their movement. In the stochastic environment, a robot
makes its intended move with a certain probability. (Cells
with a dot: success with 55%, every other direction with
15% each. Cells without a dot: 70% and 10%, respectively.)
We consider two reward rules: linearly decaying rewards
f(age) = max{200 − age, 0} and nonlinearly decaying
rewards f(age) = λage with λ = 0.99, where age is the
task age when served. Initial age of tasks were uniformly
distributed in the interval [0, 100].

Baselines. We consider three baselines:
• Optimum: We have this baseline only when the environ-
ment is deterministic and the reward is linear. The exact
solution of it was computed using Gurobi Optimization
(2019) with a 60-min time limit.
• Ekici et al: For deterministic environments and linear
rewards, an up-to-date, fast heuristic for MRRC is available
Ekici & Retharekar (2013). It claims around 93% optimality
for 50 tasks and 4 robots.
• Sequential Greedy Algorithm (SGA): To our knowledge,
there is no literature addressing MRRC with stochastic en-
vironments or exponential rewards. Instead, we construct
an indirect baseline using a general-purpose multi-robot
task allocation algorithm called SGA Han-Lim Choi et al.
(2009). We will provide our performance divided by SGA
performance as %SGA. We will see that the %SGA in the de-
terministic linear-reward case is maintained for other cases.

Figure 3. Ablation study, with 0) Ours, 1) Ours without sequntial
embedding, 2) Ours without random PGM, 3) Ours without TAP

The performance is expressed as % of ratio ρ = (rewards
collected by the proposed method/reward collected by the
baseline).

Performance test. We tested the performance under four
environments: deterministic/linear rewards, determinis-
tic/nonlinear rewards, stochastic/linear rewards, stochas-
tic/nonlinear rewards. See Table 1. For linear/deterministic
rewards, our method achieves near-optimality with 3%
fewer rewards than optimal on average. The standard devia-
tion for ρ is provided in parentheses. For others, we see that
the %SGA ratio for linear/deterministic is well maintained
in stochastic or nonlinear environments.

Ablation study. There are three components in our pro-
posed method: 1) Q-function inference with random PGM,
2) a careful encoding of information using two-layers of
random structure2vec, and 3) transferability-enabled policy
(TAP) (see appendix). We have removed each component
from the full model and compared with full model. We only
considered deterministic/linearly decaying rewards where
the optimal solution is available for comparison. Figure
3 shows the results. While the full method requires more
training steps, only the full method achieves near-optimum.

For the transferability and scalability tests, see appendix.

6. Concluding Remarks
We proposed the first near-optimal learning-based algorithm
for solving NP-hard multi-robot/machine scheduling prob-
lems (MRRC here and IPMS in the appendix). As discussed
in Section 2, ride-sharing and pickup delivery problems can
naturally be formulated as MRRC problems. We created the
concept of random PGM to represent scheduling problems
with random task completion times. We developed mean-
field inference theory for random PGM. We prove that the
popular GNN-based mean-field inference method can be
extended to achieve the mean-field inference method we
call random structure2vec. This method enabled a precise
Q-function estimation for multi-robot scheduling problems.
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1. MRRC with continuous state/continuous
time space formulation, or with setup time
and processing time

In continuous state/continuous time space formulation, the
initial location and ending location of robots and tasks are
arbitrary on R2. At every moment at least a robot finishes a
task, we make assignment decision for a free robot(s). We
call this moments as ‘decision epochs’ and express them
as an ordered set (t1, t2, . . . , tk, . . . ). Abusing this notation
slightly, we use (·)tk = (·)k.

Task completion time can consist of three components:
travel time, setup time and processing time. While a robot
in the travel phase or setup phase may be reassigned to other
tasks, we can’t reassign a robot in the processing phase.
Under these assumptions, at each decision epoch robot ri
is given a set of tasks it can assign itself: if it is in the trav-
eling phase or setup phase, it can be assigned to any tasks
or not assigned; if it is in the processing phase, it must be
reassigned to its unfinished task. This problem can be cast
as a Markov Decision Problem (MDP) whose state, action,
and reward are defined as follows:

State.The state sk at decision epoch k is represented as
(Gk, αk). Gk is a directed graph (Rk ∪ Tk, Ek) where Rk
is the set of all robots at decision epoch k, Tk is the set of
all remaining unserved tasks at decision epoch k, and Ek =
ERTk ∪ ETTk is the set of directed edges. A directed edge
εRTi,p ∈ ERTk is assigned with a weight (random variable)
denoting the task completion time (a duration) for robot i to
finish task p (note this time subsumes the information about
the robot’s present location). A directed edge εTTp,q ∈ ETTk is
assigned with a weight (random variable) denoting the task
completion time (a duration) for a robot that just competed
task p to complete task q. αk = {ηpk ∈ R|p ∈ Tk} is a set of
ages where ηpk indicates the age of task p at decision epoch

k. We denote the set of possible states as S.

Action. A joint assignment of robots to tasks at current state
sk = (Gk, αk), denoted as ak, should satisfy two constraints:
(i) no two robots can be assigned to the same task, and
(ii) a robot may only remain without assignment when the
number of robots exceeds the number of remaining tasks.
Thus, a joint assignment ak is a maximal bipartite matching
in the bipartite graph (Rk ∪ Tk, ERTk ). For example, robot i
in Rk is matched with task p in Tk if we assign robot i to
task p at decision epoch k. We denote the set of all possible
joint assignments asA. A policy π is defined as π : S 7→ A.

Reward. In MRRC, Each task has an arbitrarily determined
initial age. At each decision epoch, the age of each task
increases by the time it passed during the epoch. When a
task is serviced, a reward is determined only by its age when
serviced. Denote this reward rule as R(k). One can easily
see that whether a task is served at epoch k is completely
determined by sk, ak and sk+1. Therefore, we can denote
the reward we get with sk, ak and sk+1 as R(sk, ak, sk+1).

Objective. We can now define an assignment policy φ as a
function that maps a state sk to action ak. Given s0 initial
state, an MRRC problem can be expressed as a problem of
finding an optimal assignment policy φ∗ such that

φ∗ = argmax
φ

E

[ ∞∑
k=0

R (sk, ak, sk+1) |s0

]
.

2. Identical parallel machine scheduling
problem (IPMS) with makespan
minimization objective

2.1. Formulation

IPMS is a problem defined in continuous state/continuous
time space. Once service of a task i begins, it requires a
deterministic duration of time τi for a machine to complete
- we call this the processing time. Machines are all iden-
tical, which means processing time of each tasks among
machines are all the same. Processing times of each tasks
are all different. Before a machine can start processing a
task, it is required to first setup for the task. In this paper,
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Table 1. IPMS test results for makespan minimization with deter-
ministic task completion time (our algorithm / best Google OR
tool result)

Makespan # Machines
minimization 3 5 7 10

# Tasks
50 106.7% 117.0% 119.8% 116.7%
75 105.2% 109.6% 113.9% 111.3%

100 100.7% 111.0% 109.1% 109.0%

we discuss IPMS with ‘sequence-dependent setup times’. In
this case, a machine must conduct a setup prior to serving
each task. The duration of this setup depends on the current
task i and the task j that was previously served on that ma-
chine - we call this the setup time. The completion time for
each task is thus the sum of the setup time and processing
time. Under this setting, we solve the IPMS problem for
make-span minimization as discussed in [Kurz et al. (2001)].
That is, we seek to minimize the total time spent from the
start time to the completion of the last task. IPMS problem’s
sequential decision making problem formulation resembles
that of MRRC with continuous-time and continuous-space.
That is, every time there is a finished task, we make as-
signment decision for a free machine. We call this times
as ‘decision epochs’ and express them as an ordered set
(t1, t2, . . . , tk, . . . ). Abusing this notation slightly, we use
(·)tk = (·)k. This problem can be cast as a Markov Decision
Problem (MDP) whose state, action, and reward are defined
as follows:

State. Defined the same as MRRC with continuous
state/time space, except that the robot is now task, and
task completion time is the sum of (setup time + processing
time).

Action. Defined the same as MRRC with continuous
state/time space.

Reward. Let’s denote the time between decision epoch k
and decision epoch k+1 as Tk = tk− tk−1. One can easily
see that Tk is completely determined by sk, ak and sk+1.
Therefore, we can denote the reward we get with sk, ak and
sk+1 as T (sk, ak, sk+1).

Objective. We can now define an assignment policy φ as a
function that maps a state sk to action ak. Given s0 initial
state, an IPMS problem with makespan minimization ob-
jective can be expressed as a problem of finding an optimal
assignment policy φ∗ such that

φ∗ = argmin
φ

E

[ ∞∑
k=0

T (sk, ak, sk+1) |s0

]
.

2.2. Experiments

For IPMS, we test it with continuous time, continuous state
environment. While there have been many learning-based

methods proposed for (single) robot scheduling problems,
to the best our knowledge our method is the first learn-
ing method to claim scalable performance among machine-
scheduling problems. Hence, in this case, we focus on show-
ing comparable performance for large problems, instead of
attempting to show the superiority of our method compared
with heuristics specifically designed for IPMS (actually no
heuristic was specifically designed to solve our exact prob-
lem (makespan minimization, sequence-dependent setup
with no restriction on setup times))

For each task, processing times is determined using uniform
[16, 64]. For every (task i, task j) ordered pair, a unique
setup time is determined using uniform [0, 32]. As illus-
trated in Appendix 2.1, we want to minimize make-span.
As a benchmark for IPMS, we use Google OR-Tools library
Google (2012). This library provides metaheuristics such
as Greedy Descent, Guided Local Search, Simulated An-
nealing, Tabu Search. We compare our algorithm’s result
with the heuristic with the best result for each experiment.
We consider cases with 3, 5, 7, 10 machines and 50, 75, 100
jobs.

The results are provided in Appendix Table 1. Makespan
obtained by our method divided by the makespan obtained
in the baseline is provided. Although our method has limi-
tations in problems with a small number of tasks, it shows
comparable performance to a large number of tasks and
shows its value as the first learning-based machine schedul-
ing method that achieves scalable performance.

3. Bayesian Network representation
Here we analytically show that robot scheduling problem
randomly induces a random Bayesian Network from state
st. Given starting state st and action at, a person can re-
peat a random experiment of “sequential decision making
using policy φ”. In this random experiment, we can define
events ‘How robots serve all remaining tasks in which se-
quence’. We call such an event a ‘scenario’. For example,
suppose that at time-step twe are given robots {A,B}, tasks
{1, 2, 3, 4, 5}, and policy φ. One possible scenario S∗ can
be {robot A serves task 3→ 1→ 2 and robot B serves task
5 → 4}. Define random variable Xk a task characteristic,
e.g. ‘The time when task k is serviced’. The question is,
‘Given a scenario S∗, what is the relationship among random
variables {Xk}’? Recall that in our sequential decision mak-
ing formulation we are given all the ‘task completion time’
information in the st description. Note that, task completion
time is only dependent on the previous task and assigned
task. In our example above, under scenario S∗ ‘when task 2
is served’ is only dependent on ‘when task 1 is served’. That
is, P (X2|X1, X3, S

∗) = P (X2|X1, S
∗). This relationship

is called ‘conditional independence’. Given a scenario S∗,
every relationship among {Xi|S∗} can be expressed us-
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ing this kind of relationship among random variables. A
graph with this special relationship is called ‘Bayesian Net-
work’ [Koller & Friedman (2009)], a probabilistic graphical
model.

4. Proof of Theorem 1.
We first define necessary definitions for our proof. Given a
random PGM {GX ,P}, a PGM is chosen among GX , the
set of all possible PGMs on X . The set of semi-cliques is
denoted as CX . As discussed in the main text, if we are given
P then we can easily calculate the presence probability pm
of semi-clique Dm as pm =

∑
G∈GX P(G)1Dm∈G.

For each semi-clique Di in CX , define a binary random
variable V i: F 7→ {0, 1} with value 0 for the factoriza-
tion that does not include semi-clique Di and value 1 for
the factorization that include semi-clique Di. Let V be a
random vector V =

(
V 1, V 2, . . . , V |CX |

)
. Then we can ex-

press P (X1, . . . , Xn|V ) ∝
∏|CX |
i=1

[
φi
(
Di
)]V i

. We denote[
φi
(
Di
)]V i

as ψ(Di).

Now we prove Theorem 1.

In mean-field inference, we want to find a distribution
Q (X1, . . . , Xn) =

∏n
i=1Qi(Xi) such that the cross-

entropy between it and a target distribution is minimized.
Following the notation in Koller & Friedman (2009), the
mean field inference problem can written as the following
optimization problem.

min
Q

D

(∏
i

Qi |P (X1, . . . , Xn|V ))

)
s.t.

∑
xi

Qi (xi) = 1 ∀i

Here D (
∏
iQi | P (X1, . . . , Xn|V )) can be expressed

as D (
∏
iQi | P (X1, . . . , Xn|V )) = EQ [ln (

∏
iQi)] −

EQ [ln (P (X1, . . . , Xn|V ))].

Note that

EQ [ln (P (X1, . . . , Xn|V ))] = EQ
[
ln

(
1

z
Π
|CX |
i=1 ψ

i
(
Di, V

))]

= EQ

ln

1

z

|CX |∏
i=1

ψi
(
Di, V

)
= EQ

|CX |∑
i=1

V i ln
(
φi
(
Di
))− EQ[ln(Z)]

=

|CX |∑
i=1

EQ
[
V i ln

(
φi
(
Di
))]
− EQ[ln(Z)]

=

|CX |∑
i=1

EV i
[
EQ
[
V i ln

(
φi
(
Di
))
|V i
]]
− EQ[ln(Z)]

=

|CX |∑
i=1

P
(
V i = 1

) [
EQ
[
ln
(
φi
(
Di
))]]
− EQ[ln(Z)]

=

|CX |∑
i=1

pi
[
EQ
[
ln
(
φi
(
Di
))]]
− EQ[ln(Z)].

Hence, the above optimization problem can be written as

max
Q

EQ

|CX |∑
i=1

pi ln
(
φi
(
Di
))+ EQ

n∑
i=1

(lnQi)

s.t.
∑
xi

Qi (xi) = 1 ∀i
(1)

In Koller & Friedman (2009), the fixed point equation is
derived by solving an analogous equation to (1) without the
presence of the pi. Theorem 1 follows by proceeding as in
Koller & Friedman (2009) with straightforward accounting
for pi.

5. Proof of Lemma 1.
Since we assume semi-cliques are only between two ran-
dom variables, we can denote CX = {Dij} and presence
probabilities as {pij} where i, j are node indexes. Denote
the set of nodes as V .

From here, we follow the approach of Dai et al. (2016) and
assume that the joint distribution of random variables can
be written as

p ({Hk} , {Xk}) ∝
∏
k∈V

ψi (Hk|Xk)
∏
k,i∈V

ψi (Hk|Hi) .

Expanding the fixed-point equation for the mean field infer-
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ence from Theorem 1, we obtain:

Qk (hk) =

1

Zk
exp

 ∑
ψi:Hk∈Di

E(Di−{Hk})∼Q
[
lnψi

(
Hk = hk|Di

)]
=

1

Zk
exp{lnφ (Hk = hk|xk) +∑

i∈V

∫
H
pkiQi (hi) lnφ (Hk = hk|Hi) dhi}.

This fixed-point equation for Qk (hk) is a function of
{Qj (hj)}j 6=k such that

Qk (hk) = f
(
hk, xk, {pkjQj (hj)}j 6=k

)
.

As in Dai et al. (2016), this equation can be expressed as a
Hilbert space embedding of the form

µ̃k = T̃ ◦
(
xk, {pkj µ̃j}j 6=i

)
,

where µ̃k indicates a vector that encodes Qk (hk) . In this
paper, we use the nonlinear mapping T̃ (based on a neural
network form ) suggested in Dai et al. (2016):

µ̃k = σ

W1xk +W2

∑
j 6=k

pkj µ̃j


6. Simple presence probability inference

method used for MRRC
Denote ages of task i, j as agei, agej . Note that
if we generate M samples of εij as {ekij}Mk=1, then
1
M

∑M
k=1 f(ekij , agei, agej) is an unbiased and consis-

tent estimator of E[f(εij , agei, agej)]. The correspond-
ing neural network-based inference is as follows: for
each sample k, for each task i and task j, we form
a vector of ukij = (ekij , agei, agej) and compute gij =∑M
k=1

1
MW1(relu(W2u

k
ij). We obtain {pij} from {gij}

using softmax.

The pseducode implementation is as follows: In lines 1
and 2, the likelihood of the existence of a directed edge
from each node m to node n is computed by calculating
W1

(
relu

(
W2u

k
mn

))
and averaging over the M samples.

In lines 3 and 4, we use the soft-max function to obtain
pm,n.

1 For m,n ∈ V do
2 gmn = 1

M

∑M
k=1W1

(
relu

(
W2u

k
mn

))
3 For m,n ∈ V do
4 pm,n = egmn/τ∑

j∈v e
gmn/τ

.

Table 2. Transferability test (50 trials of training for each cases,
linear & deterministic env.)

Testing size : Robot (R) / Task (T)
Training size

(Robot(R)/Task(T)) 2R/20T 3R/20T 3R/30T 5R/30T 5R/40T 8R/40T 8R/50T

2R/20T 98.31 93.61 97.31 92.16 92.83 90.94 93.44
3R/20T 95.98 97.50 96.11 93.64 91.75 91.60 92.77
3R/30T 94.16 96.17 97.80 94.79 93.19 93.14 93.28
5R/30T 97.83 94.89 96.43 95.35 93.28 92.63 92.40
5R/40T 97.39 94.69 95.22 93.15 96.99 94.96 93.65
8R/40T 95.44 94.43 93.48 93.93 96.41 96.11 95.24
8R/50T 95.69 96.68 97.35 94.02 94.50 94.86 96.85

7. Complete algorithm of section 4.1 with task
completion time as a random variable

We combine random sampling and inference procedure sug-
gested in section 4.1 and Figure 2. Denote the set of task
with a robot assigned to it as T A. Denote a task in T A as ti
and the robot assigned to ti as rti . The corresponding edge
in ERT for this assignment is εrti ti . The key idea is to use
samples of εrti ti to generate N number of sampled Q(s, a)
value and average them to get the estimate of E(Q(s, a)).
First, for l = 1 . . . N we conduct the following procedure.
For each task ti in T A, we sample one data elrti ti . Using
those samples and {pij}, we follow the whole procedure
illustrated in section 4.1 to get Q(s, a)l. Second, we get the
average of {Q(s, a)l}l=Nl=1 to get the estimate ofE(Q(s, a)),
1
N

∑l=N
l=1 Q(s, a)l.

The complete algorithm of section 4.1 with task completion
time as a random variable is given as below.

1 agei = age of node i
2 The set of nodes for assigned tasks ≡ TA
3 Initialize {µ(0)

i }, {γ
(0)
i }

4 for l = 1 to N :
5 for ti ∈ T :
5 if ti ∈ T A do:
6 sample elrti ti from εrti ti
7 xi = elrti ti
9 else: xi = 0
10 for t = 1 to T1 do
11 for i ∈ V do
12 li =

∑
j∈V pjiµ

(t−1)
j

13 µ
(t)
i = relu (W3li +W4xi)

14 µ̃l = Concatenate
(
µ
(T1)
i , agei

)
15 for t = 1 to T2 do
16 for i ∈ V do
17 li =

∑
j∈V pjiγ

(t−1)
j

18 γ
(t)
j = relu (W5li +W6µ̃i)

19 Ql = W7

∑
i∈V γ

(T )
i

20 Qavg = 1
N

∑N
l=1Ql
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Table 3. Training complexity (mean of 20 trials of training, linear & deterministic env.)

Linear & Deterministic Testing size : Robot (R) / Task (T)
2R/20T 3R/20T 3R/30T 5R/30T 5R/40T 8R/40T 8R/50T

Performance with full training 98.31 97.50 97.80 95.35 96.99 96.11 96.85
# Training for 93 optimality 19261.2 61034.0 99032.7 48675.3 48217.5 45360.0 47244.2

8. Transferability
8.1. Intuition behind transferability of inference steps

in section 4.1

Why are the inference steps introduced in section 4.1 trans-
ferable? For the first step, it is trivial; the inference problem
is a scale-free task. In the second step, the ‘value affinity’
embedding will be underestimated or overestimated accord-
ing to the ratio (number of robots/number of tasks) in a
local graph.: underestimated if the ratio in the training envi-
ronment is smaller than the ratio in the testing environment;
overestimated otherwise.

8.2. Experiments to check transferability

Suppose that we trained an algorithm with problems of
3 robots/30 tasks. We can claim transferability of this
algorithm if it achieves similar performance compared to
the algorithm trained with problems of 8 robots/50 tasks
when both are tested for problems with 8 robots/50 tasks.
Table 2 shows comprehensive transferability test results.
The rows indicate training conditions, while the columns
indicate testing conditions. The results in the diagonal
cells in red (cells with the same training size and testing
size) serve as baselines (direct testing). The results in the
off-diagonal show the results for the transferability testing,
and demonstrate how the algorithms trained with different
problem size perform well on test problems. We can see
that lower-direction transfer tests (trained with larger size
problem and tested with smaller size problems) show only a
small loss in performance. For upper-direction transfer tests
(trained with smaller size problems and tested with larger
size problem), the performance loss was up 4 percent.

9. Methods for scalability
9.1. Transferability-enabled assignment choice

In Bidding phase., every robot ri inRt evaluate Qt(st, at)
over all the feasible action εiq ∈ ERTt while assuming there
are no unsigned robots and proposes (bids) the best action
εiq∗ selecting t∗q in Tt with its corresponding Qt(st, εiq∗)
values. In Consensus phase., the auctioneer finds the bid
with the best value, and select one pair of robot r∗i and task
t∗q , say εi∗q∗ . Then, the algorithm update the current state
as G′t = (Rt/ri∗ ∪ Tt/tq∗ , ERTt /εi∗q∗) and proceeds these

steps again from the bidding phase.

Bidding phase. In the kth bidding phase, initially all
robots know the k − 1 robot-task matchings determined
in the previous k − 1 iterations. Denote this matching
asMk−1, a bipartite subgraph of (Rt ∪ Tt, ERTt ). Unas-
signed robot i, ignores all others unassigned, and calculates
Q(s(t),Mk−1 ∪ {εRTip }) for each unassigned task p as if
those k robots only exist in the future and serve all remain-
ing tasks (here, εRTip ∈ ERTt is the edge corresponding to
assigning robot i to task j). If task ` has the highest value,
robot i bids {εRTi` , Q(st,Mk−1 ∪ {εRTi` })} to the central-
ized auctioneer. Since the number of ignored robots varies
at each iteration, transferability of Q-function inference is
crucial.

Consensus phase. At kth consensus phase, the centralized
auctioneer finds the bid with the best bid value, say {εRTi∗p∗ ,
bid value with εRTi∗p∗}. (Here i∗ and p∗ denote the best
robot task pair.) The centralized auctioneer then updates
everyone’sMk−1 asMk =Mk−1 ∪ {εRTi∗p∗}.

These two phases iterate untilMk becomes a maximal bi-
partite matching of (Rt ∪ Tt, ERTt ). This matching is then
chosen as the joint assignment a∗t at time step t. One can
easily verify that the computational complexity of comput-
ing πQθ is O (|LR| |LT |), which is only polynomial. In
the experiments, we show empirically that TAP achieves
near-optimal performance for MRRC.

9.2. Auction-fitted Q-iteration framework

Auction-fitted Q-iteration.
We incorporate TAP into a fitted Q-iteration
framework to find θ that empirically minimizes
EπQθ ,sk+1∼P ′ [Qθ (sk, ak)− [r (sk, ak) + γQθ (sk+1, πQθ (sk+1))]] .
We call it auction-fitted Q-iteration.

Bidding phase. In a bidding phase, all robots initially know
the matching determined in previous iterations (the partial
solution for the given scheduling problem). We denote this
matching as Y , a bipartite subgraph of ((Rt ∪ Tt), ERTt ).
When making a bid, a robot ri ignores all other unassigned
robots. For example, suppose robot ri considers tj for
bidding. For ri, Y ∪ εij is a proper action (according to
definition in section 2) for the scheduling problem that ex-
cludes currently unassigned robots. That is, robot ri thus
can compute Q(st,Y ∪ εritj ) for all unassigned task tj
while ignoring other unassigned robots. If task t∗ is with
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the highest value, robot ri bids {εrit∗ , Q(st,Y ∪ εrit∗)} to
auctioneer. Since number of robots ignored by ri is differ-
ent at each iteration, transferability of Q-function inference
plays key role.

Consensus phase. In the consensus phase, the auctioneer
finds the bid with the best value, say {ε∗, bid value with ε∗}.
Then auctioneer updates everyone’s Y as Y ∪ {ε∗}.

Exploration. How can we conduct exploration in the
auction-fitted Q-iteration framework? Unfortunately, we
can’t use ε-greedy method since 1) an arbitrary random de-
viation in a joint assignment often induces a catastrophic
failure Maffioli (1986), 2) joint assignment space, complex
and combinatorial, is hard to explore efficiently with such
arbitrary random exploration policy. In learning the parame-
ters θ for Qθ (sk, ak), we use the exploration strategy that
perturbs the parameters θ randomly to actively explore the
joint assignment space with TAP. Note that θ denotes all
neural network parameters used in the random structure2vec
iterations and the read-out function mapping the node em-
bedding µ̃k to Q(st, at). While this method was originally
developed for policy-gradient based methods Plappert et al.
(2017), exploration in parameter space is also particularly
useful in our auction-fitted Q-iteration as well.

9.3. Computational complexity analysis

MRRC can be formulated as a semi-MDP (SMDP) based
multi-robot planning problem (e.g., (Omidshafiei et al.,
2017)). This problem’s complexity with R robots and
T tasks and maximum H time horizon is O((R!/T !(R −
T )!)H). For example, (Omidshafiei et al., 2017) state that a
problem with only 13 task completion times (‘TMA nodes’
in their language) possessed a policy space with cardinal-
ity 5.622 ∗ 1017. In our proposed method, this complexity
is addressed by a combination of two complexities: com-
putational complexity and training complexity. For com-
putational complexity of joint assignment decision at each
timestep, it is O(|R||T |3) = O((1)× (2)× (3)× (4) + (5))
where (1)− (5) are as follows.
(1) # of Q-function computation required in one time-step

= O(|R||T |): Shown in section 4.2

(2) # of mean-field inference in one Q-function computa-
tion = 2 (constant): Two embedding steps (Distance
embedding, Value embedding) each needs one mean-
field inference procedure

(3) # of structure2vec propagation operation in one mean-
field inference= O(|T |2): There is one structure2vec
operation from a task to another task and therefore the
total number of operations is |T | × (|T | − 1).

(4) # of neural net computation for each structure2vec
propagation operation=C (constant): This is only de-
pendent on the hyperparameter size of neural network
and does not increase as number of robots or tasks.

(5) # of neural net computation for inference of random
PGM=O(|T |2) As an offline stage, we infer the semi-
clique presence probability for every possible directed
edge, i.e. from a task to another task using algorithm
introduced in Appendix 6. This algorithm complexity
is O(|T | × (|T | − 1)) = O(|T |2).

While we don’t explicitly compute the training complexity
of our method, we show below that empirical evidence (Ta-
ble 2) shows that training requirement does not necessarily
increases and thus complexity is at most sub-polynomial.

9.4. Experiments testing training complexity.

Training efficiency is required to obtain scalability. To quan-
tify this we measured the training time required to achieve
93% optimality. As before, we consider a deterministic en-
vironment with linear rewards and compare with the exact
optimum. See Table 3. There, training time does not neces-
sarily increase with problem size, suggesting the proposed
algorithm is scalable.

10. Code for the experiment
For the entire codes used for experiments, please go to the
following Google drive link for the codes.
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