
From Graph Low-Rank Global Attention
to 2-FWL Approximation

Omri Puny 1 Heli Ben-Hamu 1 Yaron Lipman 1

Abstract

Graph Neural Networks are known to have an
expressive power bounded by that of the vertex
coloring algorithm (Xu et al., 2019a; Morris et al.,
2018). However, for rich node features, such a
bound does not exist and GNNs can be shown
to be universal. Unfortunately, expressive power
alone does not imply good generalization.

We suggest the Low-Rank Global Attention
(LRGA) module, taking advantage of the ef-
ficiency of low rank matrix-vector multiplica-
tion, that improves the algorithmic alignment (Xu
et al., 2019b) of GNNs with the more powerful
2-folklore Weisfeiler-Lehman (FWL) algorithm.
Furthermore, we provide a sample complexity
bound for the module using kernel feature map
interpretation of 2-FWL. Empirically, augment-
ing existing GNN layers with LRGA produces
state of the art results on most datasets in a GNN
standard benchmark.

1. Introduction
Perhaps the most commonly used family of GNNs are
message-passing neural networks (Gilmer et al., 2017), built
by aggregating messages from local neighborhoods at each
layer. Many GNN variants have been shown to be an in-
stance of this family (Duvenaud et al., 2015; Li et al., 2016;
Battaglia et al., 2016; Niepert et al., 2016; Hamilton et al.,
2017; Monti et al., 2017; Veličković et al., 2018; Bresson
and Laurent, 2017; Xu et al., 2019a; Bruna et al., 2014; Def-
ferrard et al., 2016; Kipf and Welling, 2016; Maron et al.,
2019b). In a recent analysis of the expressive power of
such models, (Xu et al., 2019a; Morris et al., 2018) have
shown that message-passing neural networks are at most as
powerful as the vertex coloring algorithm also known as the

1Weizmann Institute of Science. Correspondence to: Omri
Puny <omri.puny@weizmann.ac.il>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 108, 2020. Copyright 2020 by
the author(s).

1-Weisfeiler-Lehman (WL) test. 1-WL is part of the k-WL
hierarchy of increasing power and complexity iterative algo-
rithms aimed at solving graph isomorphism. This analysis
led to the design of new architectures (Morris et al., 2018;
Maron et al., 2019a) mimicking higher orders of the k-WL
family.

Although expressive power bounds on GNNs exist, empiri-
cally in many datasets, GNNs are able to fit the train data
well. Thus indicating the expressive power of these models
might not be the main roadblock to a successful general-
ization. Therefore, we focus our efforts on strengthening
GNNs from a generalization point of view. Towards that
goal we propose the Low-rank global attention (LRGA)
module which can be augmented to any GNN layer. We
define a κ-rank attention matrix, where κ is a parameter, that
requires O(κ|V |) memory and can be applied in O(κ2|V |)
computational complexity, in contrast to standard attention
modules that apply |V | × |V | attention matrix to node data
with O(|V |3) computational complexity.

We restrict our attention to a class of graphs called rich fea-
ture graphs which have their structural information encoded
in the node features. Our theoretical analysis of LRGA
under the rich feature graph assumption includes: (i) formu-
lating the 2-FWL algorithm, which is strictly stronger than
1-WL, using polynomial kernels; (ii) showing that LRGA
aligns with this formulation of 2-FWL, i.e., LRGA can ap-
proximate (for sufficiently high κ) the update step of the
2-FWL algorithm with simple functions; and (iii) bounding
the sample complexity of the LRGA module when learning
the 2-FWL update rule. Although our bound is exponential
in the graph size, it nevertheless implies that LRGA can
provably learn the 2-FWL step.

2. Low-rank global attention (LRGA)
We consider a graph G = (V,E) where V is the vertex-
set of size n and E is the edge-set. Each vertex carries
an input feature vector xi ∈ Rd0 , where d0 is the input
feature dimension. The input vertices’ feature vectors are
summarized in a matrixX0 = (x1, . . . ,xn)

T ∈ Rn×d0 ; in
turn,X l ∈ Rn×dl represents the output of the lth layer of a
neural network. We propose the Low-rank global attention

From Graph Low-Rank Global Attention to 2-FWL Approximation

(LRGA) module that is added to any GNN layer:

X l+1 ←
[
X l,LRGA(X l),GNN(X l)

]
(1)

the brackets imply concatenation along the feature dimen-
sion. The LRGA acting on input feature matrixX ∈ Rn×din :

LRGA(X) =
[

1
η(X)m1(X)

(
m2(X)Tm3(X)

)
, m4(X)

]
(2)

where m1,m2,m3,m4 : Rn×din → Rn×κ are MLPs
operating on the feature dimension, that is m(X) =

[m(x1), . . . ,m(xn)]
T , and κ ∈ N0 is a parameter repre-

senting the rank of the attention module. Lastly, η is a
global normalization factor:

η(X) =
1

n

(
1Tm1(X)

) (
m2(X)T1

)
, (3)

where 1 = (1, 1, . . . , 1)T ∈ Rn. We can think of
A = η(X)−1m1(X)m2(X)T as a κ-rank attention
matrix that acts globally on the graph’s node features.
η(X) represents the expectation of the row sums in
m1(X)m2(X)T , so E(A1) = 1.

Table 1. Performance on the obg bendhmark datasets.

Model
ogbl-ppa ogbl-collab

Hits@100± std Hits@10± std
Matrix Factorization 0.3229± 0.0094 0.3805± 0.0018
Node2Vec 0.2226± 0.0083 0.4281± 0.0140

GCN 0.1155± 0.0153 0.3329± 0.0190
GraphSAGE 0.1063± 0.0244 0.3121± 0.0620
LRGA + GCN 0.2988± 0.0211 0.4363± 0.0121
LRGA + GCN (large) 0.3426± 0.016 0.4541± 0.0091

3. Theoretical Analysis
The LRGA (equation 2) module has an interesting justi-
fication in the context of GNNs. In essence, we restrict
our attention to a certain graph class with informative node
features, called rich feature graphs and show that it algorith-
mically aligns (Xu et al., 2019b) with the 2-FWL algorithm.

3.1. Rich features can make GNNs universal

The expressive power of GNNs has been shown to be
bounded by that of the vertex coloring algorithm (Xu et al.,
2019a; Morris et al., 2019). However, it is clear that using
more expressive node features can make the graph isomor-
phism problem easier. Here, we are interested in evaluating
the power of GNNs when the node features are informative.
As a model for informative node features we define rich
feature graphs and prove that for this model GNNs are uni-
versal, i.e., have maximal expressive power.
Notation. Let G = (V,E), a graph with D ∈ N fea-
tures per node, i.e., xi ∈ RD. In matrix form X =
(x1, . . . ,xn)

T ∈ Rn×D. We further break X into 2d
blocks, X =

[
X1, . . . ,X2d

]
, where consecutive blocks

X2`−1,X2`, ` ∈ [d], contain the same number of columns.

Definition 1 (Rich feature graph). A graph G = (V,E)
with node features X is a rich feature graph if, for
some d ∈ N, there exists a block structure X =[
X1, . . . ,X2d

]
so that for all i, j ∈ [n], the vector Yi,j =[〈

x1
i ,x

2
j

〉
,
〈
x3
i ,x

4
j

〉
, . . . ,

〈
x2d−1
i ,x2d

j

〉]
∈ Rd represents

the isomorphism type of the pair (i, j).

In matrix notation Y =
[
X1(X2)T , . . . ,X2d−1(X2d)T

]
.

The isomorphism type of a pair (i, j), which represents
either an edge or a node of graph G, summarizes all the
information this pair carries in graph G.

Hence, rich feature graphs carry all their information in
the node features. In fact, every graph can be represented
as a rich feature graph. Let M ∈ {0, 1}n×n be the adja-
cency matrix of G, and ci ∈ (0, 1), i ∈ [n], representatives
of the node’s features. Then, Y =

[
M + 1

2I, c1
T ,1cT

]
represents the isomorphism types of pairs in G. Using the
singular value decomposition (SVD) we can write Y =[
X1(X2)T , . . . ,X5(X6)T

]
and X =

[
X1, . . . ,X6

]
is

a rich feature representation for G. In general the isomor-
phism type is represented as a tensor Y ∈ Rn2×d. The
following proposition shows that GNN in (Battaglia et al.,
2018), with a global attribute block, is universal under the
rich feature graph assumption.
Proposition 1. GNNs can approximate an arbitrary con-
tinuous function over the class of rich feature graphs with
node featuresX ∈ K in some compact set K ⊂ Rn×D.

3.2. 2-FWL via a polynomial kernel

We next formulate the 2-FWL algorithm using polynomial
kernels. Let G = (V,E) be a colored graph with isomor-
phism types of pairs of vertices represented via a tensor
Y0 ∈ Rn2×d0 . Y0 is the initial coloring of the vertex pairs
and is set as the input to the 2-FWL algorithm. Yl ∈ Rn2×dl

denotes the coloring after the lth recoloring step. A recolor-
ing step in the algorithm aggregates information from the
multiset of neighborhoods colors for each pair. We repre-
sent the multiset of neighborhoods colors of the tuple (i, j)
with a matrix Zl(i,j) ∈ Rn×2dl . That is, any permutation of
the rows of Zl(i,j) represent the same multiset. The rows
of Zl(i,j), which represent the elements in the multiset, are

zk =
[
Yli,k,Y

l
k,j

]
∈ R2dl , k ∈ [n].

The 2-FWL update step of a pair (i, j) is done by concatenat-
ing the previous color and an encoding of the neighborhood:

Yl+1
i,j =

[
Yli,j ,ENC

(
Zl(i,j)

)]
(4)

ENC : Rn×2dl → Rdenc is the encoding function that is
invariant to the row-order of its input and maps different
multisets to different target vectors.

Multiset encoding. As shown in (Maron et al., 2019a)
a collection of Power-sum Multi-symmetric Polynomials

From Graph Low-Rank Global Attention to 2-FWL Approximation

Table 2. Performance on the benchmark GNN datasets.

Model
CLUSTER PATTERN CIFAR10 MNIST TSP

Param Acc ± std # Param Acc ± std # Param Acc ± std # Param Acc ± std # Param F1 ± std
MLP 104305 20.97 ± 0.01 103629 50.13 ± 0.00 106017 56.78 ± 0.12 105717 95.18 ± 0.18 94394 0.548 ± 0.003

GCN 101655 47.82 ± 4.91 100923 74.36 ± 1.59 101657 54.46 ± 0.10 101365 89.99 ± 0.15 108738 0.627 ± 0.003

GraphSAGE 99139 53.90 ± 4.12 98607 81.25 ± 3.84 102907 66.08 ± 0.24 102691 97.20 ± 0.17 98450 0.663 ± 0.003

GIN 103544 52.54 ± 1.03 100884 98.25 ± 0.38 105654 53.28 ± 3.70 105434 93.96 ± 1.30 118574 0.657 ± 0.001

DiffPool - - - - 108042 57.99 ± 0.45 106538 95.02 ± 0.42 - -

GAT 110700 54.12 ± 1.21 109936 90.72 ± 2.04 110704 65.48 ± 0.33 110400 95.62 ± 0.13 109250 0.669 ± 0.001

MoNet 104227 45.95 ± 3.39 103775 97.89 ± 0.89 104229 53.42 ± 0.43 104049 90.36 ± 0.47 94274 0.637 ± 0.01

GatedGCN 104355 54.20 ± 3.58 104003 97.24 ± 1.19 104357 69.37 ± 0.48 104217 97.47 ± 0.13 94946 0.802 ± 0.001
LRGA + GatedGCN 93482 62.11 ± 3.47 104663 98.68 ± 0.16 93485 70.65 ± 0.18 93395 98.20 ± 0.03 103347 0.798 ± 0.001

(PMPs) can be used to build the multiset encoding function,
ENC. Given a multiset Z = (z1, . . . ,zn)

T ∈ Rn×2d:

ENC(Z) =

[
n∑
k=1

zαk

∣∣∣∣∣ α ∈ N2d
0 , |α| ≤ n

]
,

where α = (α1, . . . , α2d), and zα = zα1
1 · · · z

α2d

2d .

We focus on computing a single output coordinate α of the
ENC function applied to a particular multiset Z(i,j). This
can be computed using matrix multiplication (Maron et al.,
2019a): Let α = (β,γ) ∈ N2d

0 , where β,γ ∈ Nd0. Then,

ENCα(Z(i,j)) =

n∑
k=1

zα
k =

n∑
k=1

Yβ
i,kYγ

k,j = (YβYγ)i,j . (5)

By Yβ we mean that we apply the multi-power β to the
feature dimension, i.e., (Yβ)i,j = Yβi,j . This implies that
computing the multisets encoding amounts to calculating
monomials Yβ,Yγ and their matrix multiplications YβYγ .
Thus the 2-FWL update rule, equation 4, can be written in
the following matrix form, where we denote Y = Yl:

Yl+1 =
[
Y,
[
YβYγ

∣∣ (β,γ) ∈ N2d
0 , |β|+ |γ| ≤ n

]]
(6)

2-FWL via polynomial kernels. Let the node feature
matrix X = (x1, . . . ,xn)

T ∈ Rn×D, and Yi,j =[〈
x1
i ,x

2
j

〉
, . . . ,

〈
x2d−1
i ,x2d

j

〉]
are the colors they define on

the vertex pairs. We show it is possible to compute YβYγ

directly fromX using polynomial feature maps. Indeed,

Yβi,j =
d∏
`=1

〈
x2`−1
i ,x2`

j

〉β`
=

d∏
`=1

〈
ϕβ`

(x2`−1
i), ϕβ`

(x2`
j)
〉

=

d∏
`=1

〈
ϕβ`

(xodd
i), ϕβ`

(xeven
j)

〉
=
〈
ϕβ(x

odd
i), ϕβ(x

even
j)

〉
where the second equality is using the feature maps ϕβ`

of the (homogeneous) polynomial kernels (Vapnik, 1998),
〈x1,x2〉β` ; the third equality is reformulating the feature
maps ϕβ`

on the vectors xodd
i =

[
x1
i , . . . ,x

2d−1
i

]
, and

xeven
i =

[
x2
i , . . . ,x

2d
i

]
; and the last equality is due to the

closure of kernels to multiplication. We denote the final

feature map by ϕβ. Now, let ψβ(xi) = ϕβ(x
odd
i) and

φβ(xi) = ϕβ(x
even
i), then we have:

Yβ = ψβ(X)φβ(X)T ,

where ψβ(X) is applying ψβ to every row ofX . Therefore,
YβYγ can be written directly as a function of the node
featuresX using the feature maps φβ, ψβ, φγ , ψγ :

YβYγ = ψβ(X)φβ(X)Tψγ(X)φγ(X)T . (7)

Table 3. Results on ZINC dataset.

Model
ZINC ZINC (large)

Param MAE ± std # Param MAE ± std
MLP 106970 0.681 ± 0.005 2289351 0.7035 ± 0.003

GCN 103077 0.469 ± 0.002 2189531 0.479 ± 0.007

GraphSage 105031 0.410 ± 0.005 2176751 0.439 ± 0.006

GIN 103079 0.408 ± 0.008 2028509 0.382 ± 0.008

DiffPool 110561 0.466 ± 0.006 2291521 0.448 ± 0.005

GAT 102385 0.463 ± 0.002 2080881 0.471 ± 0.005

MoNet 106002 0.407 ± 0.007 2244343 0.372 ± 0.01

GatedGCN 105875 0.363 ± 0.009 2134081 0.338 ± 0.003

LRGA + GatedGCN 94457 0.367 ± 0.008 1989730 0.285 ± 0.01

3.3. Algorithmic alignment with 2-FWL

Our goal is to show that LRGA algorithmically aligns with
2-FWL over rich feature graphs providing justification to its
improved generalization properties. We consider the notion
of algorithmic alignment introduced in (Xu et al., 2019b).

First, we show that LRGA (equation 2) can implement a sin-
gle multi-power α of the 2-FWL update rule in equation 6.
The single head 2-FWL update rule is Yl+1 =

[
Y,YβYγ

]
.

Using equation 7 the rule over the input node featuresX:

X l+1 =
[
X, ψβ(X)φβ(X)Tψγ(X), φγ(X)

]
It can be readily checked that the updated node features
Xl+1 indeed define the updated colors with a single head
Yl+1. To finish the argument note that this update equation
has the same form as the LRGA. Note that the normalization
η in equation 2 is a multiplication by a scalar and therefore
has no influence on the colors. We showed:

Theorem 1. LRGA module can simulate a single head 2-
FWL update rule under rich feature graph assumption.

From Graph Low-Rank Global Attention to 2-FWL Approximation

Bound on LRGA sample complexity. We conclude this
section by proving that the learnable modules in LRGA,
namely the MLPs mi, can provably learn the feature maps
φβ, ψβ. Let us denote by φ : RD → Rm one of these
feature maps. All the m outputs of φ consist of monomials
xδ , where x ∈ RD and δ ∈ ND0 , |δ| ≤ n, and m ≤
N , where N =

(
n+D
D

)
is the dimension of all D-variate

polynomials of degree at-most n. We will consider a single
output coordinate of φ, namely xδ .

Corollary 6.2 (Arora et al., 2019) provides a sample com-
plexity bound, denoted CA(g, ε, δ), of a polynomial g :
RD → R of the form g(x) =

∑
j aj 〈βj ,x〉

pj , where
pj ∈ {1, 2, 4, 6, . . .}, aj ∈ R, βj ∈ RD; ε, δ are the PAC
learning constants, A is an over-parameterized, randomly
initialized two-layer MLP trained with gradient descent.

Let B =
{
β ∈ ND0 | |β| ≤ n

}
, and note that there are N

elements in B. We assume some fixed ordering in B is
prescribed. Define the sample matrix (multivariate Van-
demonde) V ∈ RN×N by Vα,β = βα. Lemma 2.8
in (Wendland, 2004) implies that V is non-singular. Let
cn,D =

∥∥V −1∥∥∞; note that cn,D depends only upon n,D.

Lemma 1. Fix D,n ∈ N, and let δ ∈ B be arbitrary. Then,
there exist coefficients a ∈ RN , ‖a‖1 ≤ cn,D, so that
xδ =

∑
β∈B aβ(〈β,x〉+ 1)n, for all x ∈ RD.

Using the Lemma, we assume that the MLPm : RD+1 → R
is two-layer, over-parameterized of the form m(x, 1) (i.e.,
a constant 1 plugged in an extra D + 1 coordinate). We
consider training m with random initialization and gradient
descent using data (x,xδ) ∈ RD × R where x is sampled
i.i.d. from some distribution D over RD. Let g : RD+1 →
R defined as g(x, xD+1) =

∑
β∈B aβ (〈β,x〉+ xD+1)

n,
where a ∈ RN is according to Lemma 1. Then, the learning
setup described above is equivalent to training the MLP
m(x, xD+1) using data of the form ((x, 1), g(x, 1) = xδ),
where (x, 1) is sampled i.i.d. from a distribution D′ over
RD+1 concentrated on the hyperplane xD+1 = 1. Now by
Corollary 6.2 from (Arora et al., 2019) xδ is learnable by
the MLP m and the sample complexity is bounded by

CA(g, ε, δ) = O
(
Cn,D + log(1/δ)

ε2

)
,

where Cn,D = O((n2 + 1)(n+1)/2cn,D). The asymptotic
behaviour of cn,D is out of scope for this paper, but in any
case Cn,D grows exponentially with the graph size. We can
say however, that for a fixed graph size, and feature dimen-
sion, Cn,D can be considered as a (very large) constant.
Discussion. The LRGA module is shown to be theoreti-
cally powerful when restricted to rich feature graphs and
large rank κ. In practice, the edge structure is only partially
manifested in the node features, and κ is maintained low
for computational complexity. For these reasons LRGA

complements GNNs that in turn transfers edge information
to the node representation.

Table 4. Results of augmented GNNs with LRGA on ZINC .

Model
Model size∼ 100K Model size∼ 300K

MAE± std MAE± std
LRGA + GCN 0.457± 0.004 0.433± 0.008
LRGA + GAT 0.438± 0.007 0.432± 0.016
LRGA + GIN 0.363± 0.010 0.355± 0.032

4. Experiments
We evaluated our method on various tasks from two bench-
marks. We follow each benchmark evaluation protocol de-
signed for a fair comparison of different models.
Baselines. We compare performance with the following
baselines: MLP, GCN (Kipf and Welling, 2016), Graph-
SAGE (Hamilton et al., 2017), GIN (Xu et al., 2019a), Diff-
Pool (Ying et al., 2018), GAT (Veličković et al., 2018),
MoNet (Monti et al., 2017) and GatedGCN (Bresson and
Laurent, 2017), Node2Vec (Grover and Leskovec, 2016) and
MATRIX FACTORIZATION (Hu et al., 2020)

4.1. Benchmarking GNNs (Dwivedi et al., 2020)

Tables 2 and 3 summarize the results on this benchmark;
LRGA combined with GatedGCN achieves SOTA perfor-
mance in most of the datasets in the benchmark. To obey
the parameter budget when LRGA is combined with Gat-
edGCN we reduce the width of the GatedGCN layers. While
improving SOTA for CLUSTER, PATTERN, CIFAR10,
and MNIST, we found that LRGA did not improve Gat-
edGCN on TSP and ZINC. To see if LRGA can improve
GatedGCN with higher parameter budget, we enlarged the
parameter budget to 2M and reevaluated all models on the
ZINC dataset. As seen in table 3 our model improved SOTA
by a large margin. We further explored the contribution of
LRGA to other GNN architectures, see table 4. All models
in the table were evaluated with the same augmented LRGA
module size (κ = 30) and two versions for their own size:
the original setting as appears in the benchmark (model size
of ∼ 300K) versus a reduced model that fits the parameter
budget (model size of ∼ 100K). Observing table 4, we see
that LRGA improved all the GNNs considerably when aug-
mented to GNNs without the 100K budget, while improving
GCN, GAT, and GIN in the reduced 100K setting.

4.2. Link prediction OGB (Hu et al., 2020)

Table 1 summarizes the results on ogbl-ppa and ogbl-collab.
It should be noted that the first two rows correspond to node
embedding methods where the rest are GNNs. Augmenting
GCN with LRGA achieves a major improvement on those
datasets. Larger versions of LRGA+GCN achieve SOTA
results on these datasets, while still using less parameters
than node embedding methods.

From Graph Low-Rank Global Attention to 2-FWL Approximation

References
Abbe, E. (2017). Community detection and stochastic block

models: recent developments.

Arora, S., Du, S. S., Hu, W., Li, Z., and Wang, R. (2019).
Fine-grained analysis of optimization and generalization
for overparameterized two-layer neural networks. arXiv
preprint arXiv:1901.08584.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-
Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti,
A., Raposo, D., Santoro, A., Faulkner, R., et al. (2018).
Relational inductive biases, deep learning, and graph net-
works. arXiv preprint arXiv:1806.01261.

Battaglia, P. W., Pascanu, R., Lai, M., Rezende, D., and
Kavukcuoglu, K. (2016). Interaction Networks for Learn-
ing about Objects, Relations and Physics.

Bresson, X. and Laurent, T. (2017). Residual Gated Graph
Convnets. Technical report.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. (2014).
Spectral networks and deep locally connected networks
on graphs. In 2nd International Conference on Learning
Representations, ICLR 2014.

Defferrard, M., Bresson, X., and Vandergheynst, P. (2016).
Convolutional neural networks on graphs with fast local-
ized spectral filtering. In Advances in Neural Information
Processing Systems, pages 3844–3852.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell,
R., Hirzel, T., Aspuru-Guzik, A., and Adams, R. P. (2015).
Convolutional networks on graphs for learning molecular
fingerprints. In Advances in neural information process-
ing systems, pages 2224–2232.

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., and
Bresson, X. (2020). Benchmarking graph neural net-
works.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. (2017). Neural Message Passing for Quan-
tum Chemistry. In International Conference on Machine
Learning, pages 1263–1272.

Grover, A. and Leskovec, J. (2016). node2vec: Scalable
feature learning for networks.

Hamilton, W. L., Ying, R., and Leskovec, J. (2017). Induc-
tive representation learning on large graphs. In Advances
in Neural Information Processing Systems, volume 2017-
Decem, pages 1025–1035.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. (2020). Open Graph Bench-
mark: Datasets for Machine Learning on Graphs.

Joshi, C. K., Laurent, T., and Bresson, X. (2019). An ef-
ficient graph convolutional network technique for the
travelling salesman problem.

Kipf, T. N. and Welling, M. (2016). Semi-Supervised Clas-
sification with Graph Convolutional Networks. 5th Inter-
national Conference on Learning Representations, ICLR
2017.

Knyazev, B., Taylor, G. W., and Amer, M. R. (2019). Un-
derstanding attention in graph neural networks. CoRR,
abs/1905.02850.

Li, Y., Zemel, R., Brockschmidt, M., and Tarlow, D. (2016).
Gated graph sequence neural networks. In 4th Interna-
tional Conference on Learning Representations, ICLR
2016 - Conference Track Proceedings.

Maron, H., Ben-Hamu, H., Serviansky, H., and Lipman,
Y. (2019a). Provably powerful graph networks. In Ad-
vances in Neural Information Processing Systems 32,
pages 2156–2167. Curran Associates, Inc.

Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y.
(2019b). Invariant and equivariant graph networks. In 7th
International Conference on Learning Representations,
ICLR 2019.

Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J.,
and Bronstein, M. M. (2017). Geometric deep learning
on graphs and manifolds using mixture model CNNs. In
Proc. CVPR, volume 1, page 3.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. (2018). Weisfeiler and
Leman Go Neural: Higher-order Graph Neural Networks.
arXiv preprint arXiv:1810.02244.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. (2019). Weisfeiler and
Leman Go Neural: Higher-Order Graph Neural Networks.
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 33:4602–4609.

Niepert, M., Ahmed, M., and Kutzkov, K. (2016). Learning
Convolutional Neural Networks for Graphs.

Vapnik, V. N. (1998). Statistical Learning Theory. Wiley-
Interscience.

Veličković, P., Casanova, A., Liò, P., Cucurull, G., Romero,
A., and Bengio, Y. (2018). Graph attention networks. In
6th International Conference on Learning Representa-
tions, ICLR 2018.

Wendland, H. (2004). Scattered data approximation, vol-
ume 17. Cambridge university press.

From Graph Low-Rank Global Attention to 2-FWL Approximation

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019a). How
Powerful are Graph Neural Networks? In International
Conference on Learning Representations.

Xu, K., Li, J., Zhang, M., Du, S. S., Kawarabayashi, K.-i.,
and Jegelka, S. (2019b). What Can Neural Networks
reason About? Technical report.

Ying, R., You, J., Morris, C., Ren, X., Hamilton, W. L., and
Leskovec, J. (2018). Hierarchical graph representation
learning with differentiable pooling.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. (2017). Deep
sets. In Advances in Neural Information Processing Sys-
tems, pages 3391–3401.

A. Proof of Proposition 1
Proof. Every graph function can be formulated as a func-
tion of the isomorphism type tensor Y ∈ Rn2×d, and we will
approximate such arbitrary continuous functions with GNN.
Let f : Rn2×d → R be a continuous invariant graph func-
tion (i.e., agnostic to ordering the graph nodes) defined over
the isomorphism type tensors Rn2×d. Define f̂(X) = f(Y),
where Y is defined as in Definition 1. f̂ : K → R is an
invariant set function since it is a composition of invariant
and equivariant functions (see e.g., (Maron et al., 2019b)
for definition of equivariance); it is also continuous as a
composition of continuous functions. Hence f̂ can be ap-
proximated over K using DeepSets (Zaheer et al., 2017)
(due to DeepSets universality). Since the GNN in (Battaglia
et al., 2018) includes DeepSets as a particular case it can
approximate f̂ as-well.

B. 2-FWL via polynomial kernels
In this section, we give a full characterization of feature
maps, ϕβ, of the final polynomial kernel we use to formulate
the 2-FWL algorithm. A key tool for the derivation of the
final feature map is the multinomial theorem, which we state
here in a slightly different form to fit our setting.

Multinomial theorem. Let us define a set of m variables
x1y1, . . . , xmym composed of products of corresponding x
and y’s. Then,

(x1y1 + · · ·+ xmym)n =
∑
|ν|=n

(
n

ν

) m∏
i=1

(xiyi)
νi

where ν ∈ Nm0 , and the notation
(
n
ν

)
= n!

ν1!·····νm! . The sum
is over all possible ν which sum to n, in total

(
n+m−1
m−1

)
elements.

Recall that we wish to compute Yβi,j as shown in the paper:

Yβi,j =
d∏
k=1

〈
x2k−1
i ,x2k

j

〉βk
=

d∏
k=1

〈
ϕβk

(x2k−1
i), ϕβk

(x2k
j)
〉

=

d∏
k=1

〈
ϕβk

(xodd
i), ϕβk

(xeven
j)

〉
=
〈
ϕβ(x

odd
i), ϕβ(x

even
j)

〉
We will now follow the equalities to derive the final feature
map. The second equality is using the feature maps ϕβk

of the (homogeneous) polynomial kernels (Vapnik, 1998),
〈x1,x2〉βk , which can be derived from the multinomial
theorem.

Suppose the dimensions ofX2k−1,X2k are n×Dk where∑d
k=1 2Dk = D. Then, ϕβk

consists of monomials of

degree βk of the form ϕβk
(x)ν =

√(
βk

ν

)∏Dk

i=1 x
νi
i =√(

βk

ν

)
xν , |ν| = βk. In total the size of the feaure map

ϕβk
is
(
βk+Dk−1
Dk−1

)
.

The third equality is reformulating the feature maps ϕβk

on the vectors xodd
i =

[
x1
i ,x

3
i , . . . ,x

2d−1
i

]
∈ RD/2, and

xeven
i =

[
x2
i ,x

4
i , . . . ,x

2d
i

]
∈ RD/2.

The last equality is due to the closure of kernels to multipli-
cation. The final feature map, which is the product kernel, is
composed of all possible products of elements of the feature
maps, i.e.,

ϕβ(x) =

(
d∏
k=1

√(
βk
νk

)
xνkk

∣∣∣ |νj | = βj , ∀j ∈ [d]

)
,

where x = [x1,x2, . . . ,xd] ∈ RD/2, and xk ∈ RDk

for all k ∈ [d]. The size of the final feature map is∏d
k=1

(
βk+Dk−1
Dk−1

)
≤ N where N =

(
n+D
D

)
.

C. Bound on LRGA sample complexity
C.1. Proof of Lemma 1

Proof. Using the multinomial theorem we have: (〈β,x〉+
1)n =

∑
α∈B dαβ

αxα, where dα are positive multinomial
coefficients. This equation defines a linear relation between
the monomial basis xδ and (〈β,x〉+ 1)n, for β ∈ B. The
matrix of this system is V multiplied by a positive diagonal
matrix with dα on its diagonal. By inverting this matrix and
solving this system for xδ the lemma is proved.

C.2. Derivation of sample complexity bound

Corollary 6.2 in (Arora et al., 2019) provides a bound on
the sample complexity, denoted CA(g, ε, δ), of a polynomial
g : RD → R of the form

g(x) =
∑
j

aj 〈βj ,x〉pj , (8)

From Graph Low-Rank Global Attention to 2-FWL Approximation

where pj ∈ {1, 2, 4, 6, 8, . . .}, aj ∈ R, βj ∈ RD; ε, δ are
the relevant PAC learning constants, and A represents an
over-parameterized, randomly initialized two-layer MLP
trained with gradient descent:

CA(g, ε, δ) = O

(∑
j pj |aj | ‖βj‖

pj
2 + log(1/δ)

ε2

)

In our case g : RD+1 → R is defined as
g(x, xD+1) =

∑
β∈B aβ (〈β,x〉+ xD+1)

n where B ={
β ∈ ND0 | |β| ≤ n

}
and by Lemma 1 there exist a such

that g(x, 1) = xδ . The sample complexity bound expres-
sion by Corollary 6.2 is therefore:

CA(g, ε, δ) = O


∑
β∈B n |aβ|

∥∥∥β̂∥∥∥n
2
+ log(1/δ)

ε2


when β̂ = (β, 1).

Let us bound the first term in the numerator of the sample
complexity expression:

∑
β∈B

n |aβ|
∥∥∥β̂∥∥∥n

2
= n ·

∑
β∈B

|aβ|

(
D∑
i=1

β2
i + 1

)n/2
≤ n ·

(
n2 + 1

)n/2 ∑
β∈B

|aβ| ≤
(
n2 + 1

)(n+1)/2
cn,D

The first inequality is due to ‖·‖2 ≤ ‖·‖1, the second is by
Lemma 1 and uniting n into the main term. From the above,
the bound follows.

Table 5. Summary of the benchmarking GNN and ogb link predic-
tion Datasets

Dataset #Graphs #Nodes Avg. Nodes Avg. Edges #Classes
ZINC 12K 9-37 23.16 49.83 -

CLUSTER 12K 40-190 117.20 4301.72 6

PATTERN 14K 50-180 117.47 4749.15 2

MNIST 70K 40-75 70.57 564.53 10

CIFAR10 60K 85-150 117.63 941.07 10

TSP 12K 50-500 275.76 6894.04 2

obgl-ppa 1 576,289 - 30,326,273 -

obgl-collab 1 235,868 - 1,285,465 -

D. Implementation Details
In this section we describe the datasets on which we per-
formed our evaluation. In addition, we specify the hyper-
parameters for the experiments section in the paper. The
rest of the model configurations are determined directly by
the evaluation protocols defined by the benchmarks. It is
worth noting that most of our experiments ran on a single
Tesla V-100 GPU, if not stated otherwise. We performed

our parameter search only on κ and d (except for CIFAR10
and MNIST were we searched over different dropout val-
ues), since the rest of the parameters were dictated by the
evaluation protocol. The models sizes were restricted by the
allowed parameter budget.

D.1. Benchmarking Graph Neural Networks (Dwivedi
et al., 2020)

Datasets. This benchmark contains 6 main datasets :

(i) ZINC, a molecular graphs dataset with a graph re-
gression task where each node represents an atom and
each edge represents a bond. The regression target is
a property known as the constrained solubility (with
mean absolute error as evaluation metric). Addition-
ally, the node features represent the atom’s type (28
types) and the edge features represents the type of con-
nection (4 types). The hyperparameters range which
we used in our search was κ ∈ {20, 25, 30, 40} and
d ∈ {35, 40, 45, 50, 55}. For the reported results we
used κ = 30, d = 45 and the averaged time for a
single epoch (whole training) was 15.5 seconds (27.5
minutes).

(ii) MNIST and CIFAR10, the known image classifica-
tion problem is converted to a graph classification
task using Super-pixel representation (Knyazev et al.,
2019), which represents small regions of homoge-
neous intensity as nodes. The edges in the graph
are obtained by applying k-nearest neighbor algo-
rithm on the nodes coordinates. Node features are
a concatenation of the Super-pixel intensity (RGB
for CIFAR10 and greyscale for MNIST) and its im-
age coordinate. Edges features are the k-nearest dis-
tances. For the CIFAR10 and MNIST datasets our
search range was κ ∈ {20, 25, 30}, d = {45, 50} and
p ∈ {0, 0.1, 0.2, 0.3, 0.5}. The chosen hyperparame-
ters for the CIFAR10 dataset were κ = 30, d = 45
with additional dropout of p = 0.1. The averaged time
for a single epoch (whole training) is 238.5 seconds
(4.77 hours). We used the same hyperparameters for
the MNIST dataset, besides the dropout which was
changed to p = 0.2. Average time per epoch (whole
training) is 197.69 seconds (3.84 hours).

(iii) CLUSTER and PATTERN, node classification tasks
which aim to identify embedded node structures in
stochastic block model graphs (Abbe, 2017). The goal
of the task is to assign each node to the stochastic
block it was originated from, while the structure of
the graph is governed by two probabilities that define
the inner-structure and cross-structure edges. A single
representative from each block is assigned with an
initial feature that indicates its block while the rest

From Graph Low-Rank Global Attention to 2-FWL Approximation

of the nodes have no features. We searched hyper-
parameters over the range κ ∈ {20, 25, 30, 40} and
d ∈ {35, 40, 45, 50, 55}. The hyperparameters for
the CLUSTER dataset were κ = 30, d = 45. Av-
erage time per epoch (whole training) is 80.34 sec-
onds (1.92 hours). For the PATTERN dataset we used
κ = 25, d = 50. Averaged running time per epoch
(whole training) is 153.83 seconds (3.476 hours), on
a single Tesla P-100.

(iv) TSP, a link prediction task that tries to tackle the
NP-hard classical Traveling Salesman Problem (Joshi
et al., 2019). Given a 2D Euclidean graph the goal is to
choose the edges that participate in the minimal edge
weight tour of the graph. The evaluation metric for the
task is F1 score for the positive class. Our hyperpa-
rameters search was in the range κ ∈ {20, 25, 30} and
d ∈ {45, 50, 55}, the results shown in the paper uses
κ = 20, d = 50 and the averaged running time per
epoch (whole training) is 166.02 seconds (20.5 hours),
on a single Tesla P-100.

D.2. Link prediction datasets from the OGB
benchmark (Hu et al., 2020)

Datasets. In order to provide a more complete evaluation
of our model we also evaluate it on semi-supervised learn-
ing tasks of link prediction. We searched over the same
hyperparameter range κ ∈ {25, 50, 100} , d ∈ {150, 256}
and used κ = 50, d = 150 in both tasks. The two datasets
were:

(i) ogbl-ppa, an undirected unweighted graph. Nodes
represent types of proteins and the edges signify bio-
logical connections between proteins. The initial node
feature is a 58-dimensional one-hot-vector that indi-
cates the origin specie of the protein. The learning
task is to predict new connections between nodes. The
train/validation/test split sizes are 21M/6M/3M . The
evaluation metric is called Hits@K (Hu et al., 2020).
Averaged running time was 4.5 minutes per epoch and
1.5 hours for the whole training.

(ii) ogbl-collab, is a graph that represents a network of
collaborations between authors. Every author in the
network is represented by a node and each collabora-
tion is assigned with an edge. Initial node features are
obtained by combining word embeddings of papers
by that author (128-dimensional vector). Additionally,
each collaboration is described by the year of collab-
oration and the number of collaborations in that year
as a weight. The train/validation/test split sizes are
1.1M/60K/46K. Similarly to the previous dataset, the
evaluation metric is Hits@K. Averaged running time
was 5.22 seconds per epoch and 17.4 minutes for the
whole training.

