
TpG Geoopt: Riemannian Optimization in PyTorch

Max Kochurov 1 Rasul Karimov 1 Serge Kozlukov 2 1

Abstract

Geoopt is a research-oriented modular open-

source package for Riemannian Optimization

in PyTorch. The core of Geoopt is a stan-

dard Manifold interface that allows for the

generic implementation of optimization algo-

rithms (Bécigneul & Ganea, 2018). Geoopt sup-

ports basic Riemannian SGD as well as adap-

tive optimization algorithms. Geoopt also pro-

vides several algorithms and arithmetic methods

for supported manifolds, which allow compos-

ing geometry-aware neural network (Ganea et al.,

2018; Liu et al., 2019; Brooks et al., 2019) layers

that can be integrated with existing models.

1. Introduction

Geooptis built on top of PyTorch (Paszke et al., 2019), a

dynamic computation graph backend. This allows us to use

all the capabilities of PyTorch for geometric deep learning,

including auto-differentiation, GPU acceleration, and ex-

porting models (e.g., ONNX (Bai et al., 2019)). Geoopt

optimizers implement the interface of native PyTorch opti-

mizers and can serve as a drop-in replacement during train-

ing. The only difference is how parameters are declared1,

see Figure 1. The created manifold parameters can be used

transparently with PyTorch functions and its serialization

utils. All native PyTorch tensors by Geoopt optimizers are

treated as regular Euclidean parameters.

The work on the package is mostly motivated by experi-

ments with hyperbolic embeddings and hyperbolic neural

networks. We provide several models of hyperbolic space,

including the Poincarè ball model, the Hyperboloid model,

and general κ-Stereographic model which generalizes Hy-

1Skolkovo Institute of Science and Technology, Moscow, Rus-
sia 2HSE University, Russian Federation Skolkovo Institute of
Science and Technology, Russian Federation. Correspondence to:
Max Kochurov <maxim.v.kochurov@gmail.com>.

Proceedings of the 37
th International Conference on Machine

Learning, Vienna, Austria, PMLR 108, 2020. Copyright 2020 by
the author(s).

1More examples can be found here: https://github.

com/geoopt/geoopt/tree/master/examples

import geoopt

from geoopt.optim import (

RiemannianAdam

)

manifold = geoopt.Stiefel()

orth_mat = geoopt.Parameter(

manifold.random(10, 10)

)

opt = RiemannianAdam([orth_mat])

Figure 1. Creation of a manifold valued parameter.

perbolic, Euclidean, and Spherical geometries (Bachmann

et al., 2019).

2. Riemannian optimization

For a thorough introduction to geometry and differential

geometry we refer to (Schuller, 2015b;a; Lee, 2006; 2013;

Thurston, 1997), for synthetic description in general met-

ric spaces to (Yokota, 2012), and concerned specifically

with optimization and automatic differentiation (Betancourt;

Absil et al., 2007; Elliott, 2018; Elliott).

Figure 2 visualizes a gradient descent step on the Poincaré

disk. The concept of “directions” on a manifold corresponds

to length-minimizing paths emanating from a point. Re-

stricted to a single source point, these paths, in a delicate

way, form a vector space, denoted TpM and called the “tan-

gent space” at point p. Given such a path segment X , we can

obtain its destination point using the operation called “ex-

ponential map”, pt+1 = expX . In a small neighbourhood,

one can find a unique shortest path connecting one point to

another – this is called the logarithmic map, X = logpt
pt+1.

The linear approximation (the derivative) of a function be-

tween manifolds is thus a linear map that takes directions

in the input manifold into directions on the output manifold.

For an objective function J : M → R this means that

derivative at a point pt is an operator J ′(pt) : Tpt
M → R,

i.e a linear functional. Given an inner product (a Riemannian

local metric) gpt
, there is unique direction J ′(pt)

♭ ∈ Tpt
M

that corresponds to this linear functional, in such a way

that J ′(pt) = gpt

(

J ′(pt)
♭, ·

)

, assuming convenient place-

holder notation. It is the sought for ascent direction. Thus

https://github.com/geoopt/geoopt/tree/master/examples
https://github.com/geoopt/geoopt/tree/master/examples

TpG Geoopt: Riemannian Optimization in PyTorch

pt

pt+1

−J
′(pt)

♭

∂x1

∂x2

Figure 2. A gradient descent step on the Poincaré disk. Contour

lines visualize the objective function; pt is the current estimate;

−♭(dJ) is the descent direction, visualized as a geodesic curve;

pt+1 is the final point of that curve and the new estimate; ∂x1
, ∂x2

are basis vectors in the space of directions at pt; stroked line

visualizes the (downscaled) “Euclidean” gradient.

the update rule is

pt+1 = exp(−ηJ ′(pt)
♭),

where η ∈ R is the learning rate.

In Geoopt, points and directions are numerically represented

using embeddings of manifolds into ambient vector spaces

(often embedding is the identity map). Objective functions,

too, are defined in this ambient space. Using PyTorch’s

backward we can obtain the derivative of this “extended”

function, acting on “Euclidean” directions. As an embed-

ding map allows to “push” a direction on the manifold into

a direction in the ambient vector space, this “Euclidean”

derivative naturally corresponds to a linear functional act-

ing on directions on the manifold (which pushes directions

to ambient space and applies the “Euclidean” derivative).

This functional is exactly the derivative of our original ob-

jective function defined on the manifold, and we can use

the inner product to convert it into the ascent direction, as

discussed earlier. This whole procedure – the transition

from ambient space to the manifold, and application of in-

ner product – is performed in Geoopt by a single operation,

egrad2rgrad.

3. Design goals

Optimization on manifolds is a fairly general problem and

designing a general-purpose package accounting for pos-

sible use-cases may not be a tractable problem. Geoopt

is specifically concerned with geometric deep learning re-

search and its development is guided by a couple of rather

pragmatic principles:

1. Smooth integration with the PyTorch ecosystem.

This assumes “familiar” PyTorch-esque interfaces. For

instance, geoopt.optim optimizers can serve as

drop-in replacements of torch.optim. This also

implies compatibility with third-party packages based

on PyTorch, for example, experiment management sys-

tems (Falcon, 2019; Kolesnikov, 2018).

2. Broadcasting. Support broadcasting for all operations

and broadcasting semantics for product manifolds.

3. Robustness and numerical stability. Hyperbolic

models such as Poincaré disk and the Lorentz model

have an unbounded numerical error as points get far

from the origin. Therefore it is important that Geoopt

users don’t have to deal with more NaNs that they

would have to otherwise. Whenever possible, algo-

rithms in Geoopt are implemented to work even with

float32 precision. The instabilities of specific func-

tions are described in documentation appropriately.

4. Efficiency and extendibility. The previous bullets are

concerned with “not getting in the way”. When those

are satisfied, we strive to provide reasonable efficiency

and leave place for extendibility.

4. Implementation details

The basic primitive of Geoopt is

geoopt.ManifoldTensor which is a “tensor”

(a multi-dimensional array) that stores a reference to

its containing geoopt.Manifold. We inherit from

torch.Tensor and torch.nn.Parameter. This

ensures compatibility with the rest of PyTorch ecosystem

and suggests just one “right way” to use Geoopt within

PyTorch code, which we consider Pythonic (van Rossum

et al., 2001).

Array manipulations in Geoopt should support broadcasting.

Simple product manifolds are implemented with broadcast

along first dimensions, by convention. More complex cases

are handled by geoopt.ProductManifold class.

The original goal of Geoopt is Riemannian optimization,

and it is supposed to be efficient: this requires optimizations

in the update step, merging retractions followed by parallel

transport, etc. In product manifolds, the adaptive term is

computed per manifold parameter, and product structure

is exploited (Bécigneul & Ganea, 2018). This is a part

of Geoopt in the first place, and any possibility to make

effective use of the adaptive term is implemented.

TpG Geoopt: Riemannian Optimization in PyTorch

The geoopt.Manifold base class describes

a methodset expected by geoopt.optim opti-

mizers. The geoopt.Manifold inherits from

torch.nn.Module: this way it is captured by

state dict() and its parameters can be optimized for.

The minimal methodset for the geoopt.Manifold sub-

class includes:

• Retraction: retr takes an array of points, an array of

tangent vectors at these points, and outputs an array

of points. Retraction is a first-order approximation of

the exponential map used in optimization, and often

we have a separate expmap method. However, for

some manifolds, we provide variants that perform the

actual exponential map instead of retraction during

optimization.

• Vector transport: transp takes an array of source

points, an array of target points, an array of tangent

vectors attached to source points, and produces an array

of tangent vectors at target points. It is the first-order

approximation of parallel transport.

• Inner product: inner takes an array of points and two

arrays of tangent vectors at these points and returns an

array of inner products of those vectors.

• egrad2rgrad is used to convert the covector in

the ambient vector space (produced by PyTorch’s

backward) into a corresponding tangent vector on

the actual manifold.

Points and tangent vectors in Geoopt are always represented

by coordinates in the (assumed) ambient vector space. In

case of PoincareBall, the embedding coincides with the

natural global chart, and corresponds to the chart-induced

basis vector fields. Such consistency is only possible be-

cause of negative curvature of Hyperbolic space and con-

formality of Poincaré Ball. On a sphere, one could neither

allocate a non-vanishing smooth vector field, nor expect

unique geodesics to exist between all points, nor measures

to have unique barycentres. For this reason, on a Sphere

one has to either use local charts or take on the extrinsic

approach (assume an ambient vector space, which is what

we do). The array of numbers representing a tangent vector

(e.g., one gets after taking a logarithmic map) in Geoopt

stores the coordinates of the push-forward of that vector

under the assumed embedding into ambient vector space.

This representation is somewhat restrictive (e.g., it compli-

cates implementing the tiling-based parameterizations of

Hyperbolic space (Yu & De Sa, 2019)) but rather convenient

and follows the spirit of (Bécigneul & Ganea, 2018).

To extend Geoopt, one should implement basic methods

such as retraction or exponential map on the manifold, par-

allel or vector transport for tangent vectors, and make them

properly broadcastable. The latter might be the hardest in

implementation, and as maintainers, we are more than ready

to help with it.

5. Features

To help researches Geoopt has implementation of standard

manifolds (Absil et al., 2007):

• geoopt.Sphere manifold – for unit norm con-

strained problems (embeddings, eigenvalue problems)

S = {x ∈ R
n : ‖x‖ = 1} (1)

• geoopt.Stiefel manifold – for basis reconstruc-

tion

St =
{

X ∈ R
n×m : X⊤X = I

}

(2)

• geoopt.BirkhoffPolytope (Douik & Hassibi,

2018) – for inferring permutations in data

B =
{

X ∈ R
n×n : 1⊤X = 1 = X1

}

(3)

• geoopt.Stereographic model (Bachmann

et al., 2019) and geoopt.Lorentz manifold – for

Hyperbolic deep learning

• geoopt.Product and geoopt.Scaled mani-

folds – to combine and extend any of above

Geoopt supports most important and widely used optimiz-

ers:

• geoopt.optim.RiemannianAdam – a Rieman-

nian version for popular Adam optimizer (Kingma &

Ba, 2014)

• geoopt.optim.SparseRiemannianAdam –

Adam implementation to support sparse gradients

• geoopt.optim.RiemannianSGD – SGD with

(Nesterov) momentum implementation

• geoopt.optim.SparseRiemannianSGD –

SGD implementation that supports sparse gradients

6. Advanced Usage

The advanced usage of Geoopt covers Hyperbolic deep

learning pioneered in recent years (Sun et al., 2015; Nickel

& Kiela, 2017; Sa et al., 2018; Gromov, 1987; Dhingra

et al., 2017). In Geoopt, we provide a robust implementa-

tion for the Poincare Ball model along with methods for

performing supplementary math. In addition to constant

negative curvature support, positive curvature stereographic

TpG Geoopt: Riemannian Optimization in PyTorch

model of a sphere is also a part of the unified implemen-

tation of Möbius arithmetics in projected spacetime do-

main. Users can find supplementary functions as methods

of geoopt.Stereographic class. Derivatives for cur-

vature are supported by the whole domain, especially for

zero curvature case, so curvature optimization is possible.

6.1. Other Applications

Geoopt is a general-purpose optimization library for Py-

Torch. Manifold optimization appears in many applications.

Language models. For example, in NLP, when training

recurrent neural networks, it is useful to constraint the transi-

tion matrix to be unitary (Arjovsky et al., 2015). The unitary

matrix keeps the gradient norm unchanged, and the network

is able to learn long-range dependencies. Unitary matrices

form a smooth Riemannian manifold, and Riemannian op-

timization can be easily applied to them. Another kind of

constrained parameterization used in RNNs is Stiefel mani-

fold (Helfrich et al., 2017). It also helps to avoid problems

of vanishing or exploding gradients.

Computer vision. In the field of computer vision, doubly

stochastic matrices can be used to match keypoints between

views (Birdal & Simsekli, 2019). In (Birdal & Simsekli,

2019) the probabilistic approach was proposed to compare

images from a completely different time and viewpoints.

To calculate uncertainty bounds, MCMC is run over the

solution space. Combined with cycle consistency energy

function method is available not only to match keypoints but

also to provide estimates guiding to pick the most promising

connections.

Time series. For multidimensional time series analysis

and classification, it was shown promising to look at the co-

variance matrix of stationary representation. The covariance

matrix is passed to SPD neural networks that perform final

classification (Nguyen et al., 2019; Brooks et al., 2019), e.g.,

processes or gestures. The approach proposed in (Brooks

et al., 2019) allows Riemannian batch normalization for

SPD matrices, further improving time series classification

benchmarks and training stability.

Hyperbolic deep learning. An active area of research is

using hyperbolic representations to account for “implicit

hierarchical relationships” in data. Geoopt allows for opti-

mization with parameters in several models of real Hyper-

bolic spaces, and provides basic operations of hyperbolic ge-

ometry. Hyperbolic embeddings appear in NLP (Balažević

et al., 2019; Nickel & Kiela, 2017), image understand-

ing (Khrulkov et al., 2019), and general representation learn-

ing (Gu et al., 2019). Some works also focus on graph learn-

ing tasks (Chami et al., 2019; Liu et al., 2019; Bachmann

et al., 2019) and extend the message passing framework

proposed by (Fey & Lenssen, 2019). With Geoopt, imple-

mentation of such extensions become simpler, as demon-

strated by (Chami et al., 2019). An extensible implemen-

tation of Hyperbolic message passing framework may rely

on torch geometric library modifying aggregate

method in MessagePassing class.

Summary. Riemannian optimization is important for cur-

rent research in geometric deep learning. Geoopt tries

to fill the niche of Riemannian optimization in PyTorch.

The library has helped to conduct research in computer vi-

sion (Khrulkov et al., 2019; Birdal & Simsekli, 2019; Chen

et al., 2019), navigation (Comer et al., 2020), optimal trans-

port (Titouan et al., 2019), time-series analysis (Vayer et al.,

2020), and Hyperbolic deep learning (Shen et al., 2020;

Skopek et al., 2020; Alvarez-Melis et al., 2019; Chami et al.,

2019).

7. Related projects

There were other Riemannian optimization projects prior to

Geoopt. Notable examples include PyManOpt (Townsend

et al., 2016) and GeomStats (Miolane et al., 2020).

The main distinction between Geoopt and other solu-

tions is interface-wise. PyManOpt is a Python re-

implementation of the original Manopt (Boumal et al.,

2014) and follows the original interface closely with its

solver.solve(Problem(manifold, cost)) se-

mantics. PyManOpt currently provides an admittedly

broader collection of algorithms (trusted region methods,

Nelder-Mead, etc) and manifolds than Geoopt. Manopt is

the MATLAB package accompanying the Absil’s book (Ab-

sil et al., 2007). Geomstats is designed around sklearn’s

fit-transform semantics. Both solutions are great

general-purpose tools for Riemannian optimization. Geoopt

is concerned explicitly with neural networks and geometric

deep learning: its interfaces are designed to integrate well

with PyTorch-based projects. Geoopt users define neural

networks and cost functions in the usual “PyTorch” way and

don’t have to construct a PyManOpt Problem. In this as-

pect, similar to Geoopt is McTorch. It takes on the approach

of forking PyTorch and extending it on the C++ back-end

side. This is heavy on infrastructure. Maintaining a fork

up to date demands a considerable and continuous effort.

Using a fork complicates integration with other third-party

libraries, which could pin to specific versions of PyTorch. It

could complicate it to the point that one runs into the task of

re-compilation of entire PyTorch and further distribution of

binary packages. Geoopt avoids such infra-structural costs

and aims to keep the bar low – both for new contributors

and users.

TpG Geoopt: Riemannian Optimization in PyTorch

References

Absil, P.-A., Mahony, R., and Sepulchre, R. Optimization

Algorithms on Matrix Manifolds. Princeton University

Press, USA, 2007. ISBN 0691132984.

Alvarez-Melis, D., Mroueh, Y., and Jaakkola, T. S. Un-

supervised hierarchy matching with optimal transport

over hyperbolic spaces. In OTML Workshop in Advances

in Neural Information Processing Systems, 2019. URL

https://arxiv.org/abs/1911.02536.

Arjovsky, M., Shah, A., and Bengio, Y. Unitary evolution

recurrent neural networks, 2015.

Bachmann, G., Bécigneul, G., and Ganea, O.-E. Constant

curvature graph convolutional networks. Nov 2019. URL

http://arxiv.org/abs/1911.05076v1.

Bai, J., Lu, F., Zhang, K., et al. Onnx: Open neural

network exchange. https://github.com/onnx/

onnx, 2019.

Balažević, I., Allen, C., and Hospedales, T. Multi-relational

poincaré graph embeddings. May 2019. URL http:

//arxiv.org/abs/1905.09791v3.

Betancourt, M. Tweet: ”i am continuously amazed

at how delightfully illuminating differential geom-

etry is. if everyone listened to it then we would

have so many fewer janky algorithms out there”.

URL https://twitter.com/betanalpha/

status/1246150679976083456.

Birdal, T. and Simsekli, U. Probabilistic permutation

synchronization using the riemannian structure of the

birkhoff polytope. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, pp.

11105–11116, 2019.

Boumal, N., Mishra, B., Absil, P.-A., and Sepulchre, R.

Manopt, a Matlab toolbox for optimization on manifolds.

Journal of Machine Learning Research, 15(42):1455–

1459, 2014. URL https://www.manopt.org.

Brooks, D., Schwander, O., Barbaresco, F., Schneider, J.-

Y., and Cord, M. Riemannian batch normalization for

spd neural networks. Sep 2019. URL http://arxiv.

org/abs/1909.02414v2.

Bécigneul, G. and Ganea, O.-E. Riemannian adaptive op-

timization methods. Oct 2018. URL http://arxiv.

org/abs/1810.00760v2.

Chami, I., Ying, Z., Ré, C., and Leskovec, J. Hy-

perbolic graph convolutional neural networks. In

Wallach, H., Larochelle, H., Beygelzimer, A.,

d'Alché-Buc, F., Fox, E., and Garnett, R. (eds.),

Advances in Neural Information Processing Sys-

tems 32, pp. 4868–4879. Curran Associates, Inc.,

2019. URL http://papers.nips.cc/paper/

8733-hyperbolic-graph-convolutional-neural-networks.

pdf.

Chen, B., Huang, X., Xiao, L., Cai, Z., and Jing, L. Hy-

perbolic interaction model for hierarchical multi-label

classification. arXiv preprint arXiv:1905.10802, 2019.

Comer, J. F., Andrews, R. W., Naderializadeh, N., Kolouri,

S., and Hoffman, H. SAR automatic target recognition

with less labels. In Hammoud, R. I., Overman, T. L., and

Mahalanobis, A. (eds.), Automatic Target Recognition

XXX, volume 11394, pp. 73 – 83. International Society

for Optics and Photonics, SPIE, 2020. doi: 10.1117/12.

2564875. URL https://doi.org/10.1117/12.

2564875.

Dhingra, B., Shallue, C. J., Norouzi, M., and Andrew

M. Dai, G. E. D. Poincaré embeddings for learning hier-

archical representations. 2017. URL https://arxiv.

org/pdf/1705.08039.

Douik, A. and Hassibi, B. Manifold optimization over

the set of doubly stochastic matrices: A second-order

geometry. Technical report, 2018.

Elliott, C. Beautiful differentiation (extended version).

Technical report, Technical Report 2009-02, LambdaPix,

March 2009a. URL http://conal. net

Elliott, C. The simple essence of automatic differentiation,

2018.

Falcon, W. Pytorch lightning. GitHub. Note: https://github.

com/williamFalcon/pytorch-lightning Cited by, 3, 2019.

Fey, M. and Lenssen, J. E. Fast graph representation learning

with PyTorch Geometric. In ICLR Workshop on Repre-

sentation Learning on Graphs and Manifolds, 2019.

Ganea, O., Becigneul, G., and Hofmann, T. Hyper-

bolic neural networks. In Bengio, S., Wallach, H.,

Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Gar-

nett, R. (eds.), Advances in Neural Information Process-

ing Systems 31, pp. 5345–5355. Curran Associates, Inc.,

2018. URL http://papers.nips.cc/paper/

7780-hyperbolic-neural-networks.pdf.

Gromov, M. Hyperbolic groups. In Essays in group theory,

pp. 75–263. Springer, 1987.

Gu, A., Sala, F., Gunel, B., and Ré, C. Learn-

ing mixed-curvature representations in product spaces.

2019. URL https://openreview.net/pdf?

id=HJxeWnCcF7.

https://arxiv.org/abs/1911.02536
http://arxiv.org/abs/1911.05076v1
https://github.com/onnx/onnx
https://github.com/onnx/onnx
http://arxiv.org/abs/1905.09791v3
http://arxiv.org/abs/1905.09791v3
https://twitter.com/betanalpha/status/1246150679976083456
https://twitter.com/betanalpha/status/1246150679976083456
https://www.manopt.org
http://arxiv.org/abs/1909.02414v2
http://arxiv.org/abs/1909.02414v2
http://arxiv.org/abs/1810.00760v2
http://arxiv.org/abs/1810.00760v2
http://papers.nips.cc/paper/8733-hyperbolic-graph-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/8733-hyperbolic-graph-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/8733-hyperbolic-graph-convolutional-neural-networks.pdf
https://doi.org/10.1117/12.2564875
https://doi.org/10.1117/12.2564875
https://arxiv.org/pdf/1705.08039
https://arxiv.org/pdf/1705.08039
http://papers.nips.cc/paper/7780-hyperbolic-neural-networks.pdf
http://papers.nips.cc/paper/7780-hyperbolic-neural-networks.pdf
https://openreview.net/pdf?id=HJxeWnCcF7
https://openreview.net/pdf?id=HJxeWnCcF7

TpG Geoopt: Riemannian Optimization in PyTorch

Helfrich, K., Willmott, D., and Ye, Q. Orthogonal recurrent

neural networks with scaled cayley transform, 2017.

Khrulkov, V., Mirvakhabova, L., Ustinova, E., Oseledets, I.,

and Lempitsky, V. Hyperbolic image embeddings. arXiv

preprint arXiv:1904.02239, 2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic

optimization. Dec 2014. URL http://arxiv.org/

abs/1412.6980v9.

Kolesnikov, S. Accelerated dl r&d. https://github.

com/catalyst-team/catalyst, 2018.

Lee, J. M. Riemannian manifolds: an introduction to curva-

ture, volume 176. Springer Science & Business Media,

2006.

Lee, J. M. Smooth manifolds. In Introduction to Smooth

Manifolds, pp. 1–31. Springer, 2013.

Liu, Q., Nickel, M., and Kiela, D. Hyperbolic graph

neural networks. In Wallach, H., Larochelle, H.,

Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett,

R. (eds.), Advances in Neural Information Processing

Systems 32, pp. 8230–8241. Curran Associates, Inc.,

2019. URL http://papers.nips.cc/paper/

9033-hyperbolic-graph-neural-networks.

pdf.

Miolane, N., Brigant, A. L., Mathe, J., Hou, B., Guigui,

N., Thanwerdas, Y., Heyder, S., Peltre, O., Koep, N.,

Zaatiti, H., Hajri, H., Cabanes, Y., Gerald, T., Chauchat,

P., Shewmake, C., Kainz, B., Donnat, C., Holmes, S., and

Pennec, X. Geomstats: A python package for riemannian

geometry in machine learning, 2020.

Nguyen, X., Brun, L., Lezoray, O., and Bougleux, S. A neu-

ral network based on spd manifold learning for skeleton-

based hand gesture recognition, 04 2019.

Nickel, M. and Kiela, D. Poincaré embeddings for learning

hierarchical representations. In Guyon, I., Luxburg, U.,

Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,

and Garnett, R. (eds.), Advances in Neural Information

Processing Systems 30. 2017.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,

Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,

L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Rai-

son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,

L., Bai, J., and Chintala, S. Pytorch: An imperative style,

high-performance deep learning library. Dec 2019. URL

http://arxiv.org/abs/1912.01703v1.

Sa, C. D., Gu, A., Ré, C., and Sala, F. Representation

tradeoffs for hyperbolic embeddings. Apr 2018. URL

http://arxiv.org/abs/1804.03329v2.

Schuller, F. Lectures on the geometric anatomy of

theoretical physics, 2015a. URL https://www.

youtube.com/playlist?list=PLPH7f_

7ZlzxTi6kS4vCmv4ZKm9u8g5yic. Unofficial

typeset notes: http://mathswithphysics.

blogspot.com/.

Schuller, F. The we-heraeus international winter

school on gravity and light, 2015b. URL https:

//www.youtube.com/playlist?list=

PLFeEvEPtX_0S6vxxiiNPrJbLu9aK1UVC_.

Shen, H. T., Long, T., Mettes, P., and Snoek, C. Search-

ing for actions on the hyperbole. In IEEE International

Conference on Computer Vision and Pattern Recognition,

2020.

Skopek, O., Ganea, O.-E., and Bécigneul, G. Mixed-

curvature variational autoencoders. In International

Conference on Learning Representations, 2020.

URL https://openreview.net/forum?id=

S1g6xeSKDS.

Sun, K., Wang, J., Kalousis, A., and Marchand-Maillet,

S. Space-time local embeddings. In Cortes, C.,

Lawrence, N. D., Lee, D. D., Sugiyama, M., and Gar-

nett, R. (eds.), Advances in Neural Information Process-

ing Systems 28, pp. 100–108. Curran Associates, Inc.,

2015. URL http://papers.nips.cc/paper/

5971-space-time-local-embeddings.pdf.

Thurston, W. P. Three-dimensional geometry and topology,

volume 35. Princeton university press, 1997.

Titouan, V., Flamary, R., Courty, N., Tavenard,

R., and Chapel, L. Sliced gromov-wasserstein.

In Wallach, H., Larochelle, H., Beygelzimer, A.,

d'Alché-Buc, F., Fox, E., and Garnett, R. (eds.),

Advances in Neural Information Processing Sys-

tems 32, pp. 14753–14763. Curran Associates, Inc.,

2019. URL http://papers.nips.cc/paper/

9615-sliced-gromov-wasserstein.pdf.

Townsend, J., Koep, N., and Weichwald, S. Pymanopt:

A python toolbox for optimization on manifolds using

automatic differentiation. Journal of Machine Learning

Research, 17(137):1–5, 2016. URL http://jmlr.

org/papers/v17/16-177.html.

van Rossum, G., Warsaw, B., and Coghlan, N. Pep-

8, 2001. URL https://www.python.org/dev/

peps/pep-0008/.

Vayer, T., Chapel, L., Courty, N., Flamary, R., Soullard,

Y., and Tavenard, R. Time series alignment with global

invariances, 2020.

http://arxiv.org/abs/1412.6980v9
http://arxiv.org/abs/1412.6980v9
https://github.com/catalyst-team/catalyst
https://github.com/catalyst-team/catalyst
http://papers.nips.cc/paper/9033-hyperbolic-graph-neural-networks.pdf
http://papers.nips.cc/paper/9033-hyperbolic-graph-neural-networks.pdf
http://papers.nips.cc/paper/9033-hyperbolic-graph-neural-networks.pdf
http://arxiv.org/abs/1912.01703v1
http://arxiv.org/abs/1804.03329v2
https://www.youtube.com/playlist?list=PLPH7f_7ZlzxTi6kS4vCmv4ZKm9u8g5yic
https://www.youtube.com/playlist?list=PLPH7f_7ZlzxTi6kS4vCmv4ZKm9u8g5yic
https://www.youtube.com/playlist?list=PLPH7f_7ZlzxTi6kS4vCmv4ZKm9u8g5yic
http://mathswithphysics.blogspot.com/
http://mathswithphysics.blogspot.com/
https://www.youtube.com/playlist?list=PLFeEvEPtX_0S6vxxiiNPrJbLu9aK1UVC_
https://www.youtube.com/playlist?list=PLFeEvEPtX_0S6vxxiiNPrJbLu9aK1UVC_
https://www.youtube.com/playlist?list=PLFeEvEPtX_0S6vxxiiNPrJbLu9aK1UVC_
https://openreview.net/forum?id=S1g6xeSKDS
https://openreview.net/forum?id=S1g6xeSKDS
http://papers.nips.cc/paper/5971-space-time-local-embeddings.pdf
http://papers.nips.cc/paper/5971-space-time-local-embeddings.pdf
http://papers.nips.cc/paper/9615-sliced-gromov-wasserstein.pdf
http://papers.nips.cc/paper/9615-sliced-gromov-wasserstein.pdf
http://jmlr.org/papers/v17/16-177.html
http://jmlr.org/papers/v17/16-177.html
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/

TpG Geoopt: Riemannian Optimization in PyTorch

Yokota, T. A rigidity theorem in alexandrov spaces with

lower curvature bound. Mathematische Annalen, 353(2):

305–331, 2012.

Yu, T. and De Sa, C. M. Numerically accurate hyperbolic

embeddings using tiling-based models. In Advances in

Neural Information Processing Systems, pp. 2021–2031,

2019.

