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Abstract
Active learning (AL) for semi-supervised node
classification aims to reduce the number of la-
beled instances by selecting only the most infor-
mative nodes for labeling. The AL algorithms
designed for other data types such as images and
text do not perform well on graph-structured data.
Although a few heuristics-based AL algorithms
have been proposed for graphs, a principled ap-
proach is lacking. We propose MetAL, an AL al-
gorithm that selects unlabeled items that directly
improve the future performance of a graph neu-
ral network (GNN) model. We formulate the AL
problem as a bilevel optimization problem. Based
on recent work in meta-learning, we compute the
meta-gradients to approximate the impact of un-
labeled instances on the model uncertainty. We
empirically demonstrate that MetAL outperforms
existing AL algorithms.

1. Introduction
The performance of a classification model depends on the
size and the quality of training data, often requiring a huge
labeling effort. With ever-increasing amounts of data, ac-
tive learning (AL) is gaining the attention of researchers
as well as practitioners as a way to reduce the effort spent
on labeling data instances. An AL algorithm selects a set
of instances based on an informative metric, gets their la-
bels, and updates the labeled dataset. Then the classification
model is retrained using the acquired labeled instances. This
process is repeated until a good performance (e.g. accuracy)
is reached.

An acquisition function is used to evaluate the informative-
ness of an unlabeled instance. Since quantifying the infor-
mativeness of an instance is not straightforward, a multitude
of heuristics have been proposed in AL literature (Settles,
2009). For example, uncertainty sampling selects instances
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which the model is most uncertain about (Houlsby et al.,
2011). However, such heuristics do not directly optimize
the expected future performance of the model. Even if a
heuristic works well on one dataset may not necessarily
translate to improved performance on a different dataset.
Therefore, it is desirable to directly incorporate model per-
formance into the acquisition function instead of designing
problem-specific heuristics.

Node classification is a semi-supervised learning problem.
The learning algorithm can utilize all data instances includ-
ing unlabeled ones. Only the labels of unlabeled instances
are not known. Graph neural network (GNN) models (Li
et al., 2015; Kipf & Welling, 2017; Wu et al., 2019a) have
achieved state-of-the-art results in node classification (Wu
et al., 2019b). However, the performance of a GNN model
depends on a significant number of labeled nodes, as train-
ing and validation sets. In this paper, we study the problem
of applying AL for classifying nodes of attributed graphs.
Reducing the number of labeled nodes required in node clas-
sification can benefit a variety of practical applications such
as in recommender systems (Ying et al., 2018; Rubens et al.,
2015) and text classification (Yao et al., 2019) by selecting
only the most informative nodes for labeling.

Instead of designing heuristics, we build our work motivated
by the framework of expected error reduction (EER) (Roy
& McCallum, 2001; Guo & Schuurmans, 2008; Mac Aodha
et al., 2014), in which the objective is to query instances
which would minimize the generalization error. We formu-
late this objective as a bilevel optimization problem. Based
on recent advances in meta-learning (Finn et al., 2017), we
utilize meta-gradients to make this optimization efficient.
Zügner & Günnemann (2019) propose using meta-gradients
for modeling an adversarial attack on GNNs. Our motiva-
tion in using meta-gradients is the opposite, evaluating the
importance of labeling each unlabeled instance. In section 5,
with empirical evidence, we show that MetAL significantly
outperforms existing AL algorithms.

Our contributions are: (1) MetAL, a novel active learning al-
gorithm based on the expected error reduction principle; and
(2) demonstrating that MetAL can consistently outperform
existing baselines on a variety of real world graphs.
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2. Related Work
2.1. Active Learning

AL research has contributed a multitude of approaches for
training supervised learning models with less labeled data.
We recommend (Settles, 2009) for a detailed review of
AL.The objective of most existing AL approaches is to
select the most informative instance for labeling. Uncer-
tainty sampling is the most commonly used AL approach.
Gal & Ghahramani (2016) propose using dropout at eval-
uation time as a way to calculate the model uncertainty
of convolutional neural networks (CNN). Gal et al. (2017)
provides a comparison of various acquisition functions for
quantifying the model uncertainty of CNN models. The
use of meta-learning for AL has been considered in a few
recent works (Woodward & Finn, 2017; Bachman et al.,
2017). However, these algorithms are designed for the few-
shot learning setting and tied to RNN-based meta-learning
models such as matching networks (Vinyals et al., 2016).
Additionally, their reliance on reinforcement learning makes
the training difficult. In contrast, our approach is built on
model agnostic meta-learning (MAML) (Finn et al., 2017)
which is efficient and can be used with a variety of super-
vised loss functions.

2.2. Active Learning for Graph Data

Compared to applications of AL on image data, only a
limited number of AL models have been developed for graph
data. Previous work on applying AL on graph data (Gu &
Han, 2012; Bilgic et al., 2010; Ji & Han, 2012) depend on
earlier classification models such as Gaussian random fields,
in which the features of nodes are not being used. Therefore,
selecting query nodes uniformly in random coupled with
a recent graph neural network (GNN) model can easily
outperform such AL models. AL models that use recent
GNN architectures (Cai et al., 2017; Gao et al., 2018) are
limited and they rely on linear combinations of uncertainty
and various heuristics such as node centrality measures. As
we show in this paper, the performance of such models is
inconsistent; efficient on some datasets, worse than random
sampling on other datasets.

3. Our Framework
3.1. Problem Setting

In this paper, we apply AL for the multi-class node clas-
sification of a given undirected attributed graph G of N
nodes. The graph G consists of an adjacency matrix
A ∈ {0, 1}N×N and a node attribute matrix X ∈ RN×F ,
where F is the number of attributes. Labels of a small set of
nodes VL are given and labels of rest of the nodes VU are un-
known. A labeled node is assigned a label in {1, 2, . . . C},

where C is the number of classes. The objective of a learner
is to learn a function fθ(xi) which can predict the class
label of a given test node i ∈ VU . Parameters θ of the model
are estimated by minimizing a loss function, usually using a
gradient-based optimization algorithm.

We consider a pool-based active learning setting, in which
the labeled dataset VL is much smaller compared to a large
pool of unlabeled items VU . We can acquire the label of any
unlabeled item by querying an oracle at a uniform cost per
item. Suppose we are given a query budget K, such that
we are allowed to query labels of a maximum number of K
items. An optimal active learner selects the set of K items
which would maximize the performance of the classification
model upon retraining it with their labels. Selection of K
items for querying is done in an iterative manner such that in
each iteration a batch of B items are queried and the model
is retrained with their labels.

3.2. Optimization Problem

We define our objective as finding q unlabeled instances
which maximizes the likelihood of labeled instances while
minimizing the uncertainty of labels of the unlabeled in-
stances U \ q. For any q ∈ U we estimate this objective of
the model after training it on q. Training on (xq, yq) updates
model parameters θ̂ to θ̂+(xq,yq) such that

θ̂+(xq,yq) = arg min
θ

l(fθ(G), YL ∪ yq), (1)

where l is the loss function (e.g. cross-entropy). We can
write our objective as an optimization problem:

q∗ = arg min
q
E(fθ̂+(xq,yq)), (2)

where E is a cost function defined as

E(fθ̂+(xq,yq)) = l(fθ̂+(xq,yq)(G), YL)+

H([fθ̂+(xq,yq)(G)]U\q),
(3)

in which we minimize the loss over labeled instances com-
bined with H([fθ̂+(xq,yq)(G)]U\q), entropy of unlabeled
items.

Since the label yq of an unlabeled instance q is unknown,
we compute the expected loss over all possible labels. We
rewrite Equation (3) as

arg min
q

C∑
k=1

P (ŷq = k|G, YU )E(fθ̂+(xq,yq=k)). (4)

In this case, we select the instance xq which contributes to
the smallest expected value of E . θ̂+(xq,yq=k) denotes the
parameters of a model trained with instance q having label
k.
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3.3. Meta-learning Approach

Since the label of an item q ∈ U is unknown, we use the
posterior class probabilities ŷq as a proxy for yq. Addi-
tionally, this approach requires training a separate model
for each possible label of each unlabeled item (NU × C).
Training such a large number of models is prohibitively
time-consuming.

To remedy this issue, we estimate the impact of a query q
with label k (yq = k) by training a model with label ŷq,k
upweighted by a small perturbation δ such that (xq, yq =
ŷq + ŷq · δq,k), where δq,k ∈ R is the perturbation added to
label k.

We rewrite Equation (1) as

θ̂+(xq,yq=k) = arg min
θ

l(fθ(G), YL∪Ŷq�(1+δq,k)). (5)

We quantify the impact of retraining the model with (xq, yq)
added to the labeled set as the change in loss ∆Eq,k =
E(fθ̂xq,yq=k

) − E(fθ̂) and the expected change of loss for
querying the item q by

∆Eq =

C∑
k=1

P (ŷq = k|G, YL) ∆Eq,k. (6)

P (yq = k|G, YL) is the posterior class probabilities of
the current model fθ̂. When δq,k is arbitrarily small, this
change can be computed as the gradient of loss with respect
to label perturbation δq,k, ∆Eq,k → ∇δq,kE(fθ̂q,k , YU\q).
We rewrite Equation (6) using gradient as

q∗ = arg min
q

C∑
k=1

P (ŷq = k|G, YL)∇δq,kE(fθ̂xq,yq=k
).

(7)

The term ∆Eq quantifies the impact of labeling a query
q. This simplifies the AL problem to finding the item cor-
responding to the minimum expected meta-gradient ∆Eq
(Equation (7)) such that a negative expected meta-gradient
corresponds to a model with lower expected loss. In other
words, we need to find a query q which maximizes the
negative gradient (−∆Eq).

Equation (5) and Equation (7) form a bilevel optimization
problem. Calculating the meta-gradients as in Equation (7)
involves a calculation of two gradients in a nested order,
the inner one for optimizing the model parameters θ̂q for
perturbed labels and the outer one for calculating the gra-
dient with respect to the perturbation δq,k. Therefore, the
expected value of E indirectly depends on δ via θ̂+(xq,yq=k).
This is similar to the computation of meta-gradients in meta-
learning approaches used for few-shot learning (Finn et al.,
2017). It should be noted that, unlike in few-shot learning,
we calculate meta-gradients with respect to a perturbation

added to the labels instead of differentiating with respect to
model parameters.

Calculating ∆Eq for each unlabeled node with Equation (7)
is inefficient for practical applications of this algorithm.We
address this problem by selecting a subset of unlabeled
items having higher prediction uncertainty to estimate the
model uncertainty in Equation (3) and remaining unlabeled
items as query items Q. We add a small perturbation δQ ∈
RNQ×C to the labels of Q items and retrain the model with
these perturbed labels. With vector notation we can rewrite
Equation (5) as

θ̂+(xQ,ŶQ�(1+δ)) = arg min
θ

l(fθ(G), YL ∪ ŶQ � (1 + δ)).

(8)
Then we calculate the cost E and its gradient with respect
to δQ (∇δQ). ∇δQ is a real valued matrix, in which a row q
corresponds to an unlabeled instance q ∈ Q and a column
k corresponds to a label k ∈ 1, . . . , C. For example, the
gradient vector of query instance q belonging to class k can
be expressed as ∇δq,k = [∇δQ ][q,k]. We use the notation
[∇δQ ][q,k] to denote the element at qth row and kth column.

In our experiments, we use the top 10% unlabeled items
with the largest prediction entropy to estimate the model
entropy and the rest of unlabeled items as Q. Our algorithm
is shown in Algorithm 1. We select the node corresponding
to the minimal meta-gradient and retrieve its label from the
oracle. We add this node with its label to the labeled set and
retrain the model.

4. Experiments
4.1. Data

We evaluate our proposed approach on three citation net-
work datasets: Citeseer, PubMed, and CORA (Sen et al.,
2008). Details of the datasets can be found in the Supple-
mentary Material. As the initial labeled set VL, we randomly
select two nodes belonging to each label. We leave 5% of
the rest of the unlabeled nodes as the test set. The remaining
unlabeled nodes VU qualify to be queried. The size of the
initial labeled set and its size as a fraction of the total nodes
(labeling rate) are shown in Table 1.

4.2. Model

We evaluate the effectiveness of MetAL, the proposed al-
gorithm using a two-layer GCN model (Kipf & Welling,
2017). We use the default hyper-parameters used in GNN
literature (e.g. learning rate = 0.01) and do not perform
any dataset-specific hyper-parameter tuning since hyper-
parameter tuning while training a model with AL can lead
to label inefficiency (Ash et al., 2020). We use following
algorithms in our comparison:



Active Learning on Graphs via Meta Learning

0 5 10 15 20 25 30 35 40
Acquired nodes

0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

M
ac

ro
-F

1

MetAL (Ours)
Random
BALD
Entropy
PageRank
AGE

(a) CiteSeer

0 5 10 15 20 25 30 35 40
Acquired nodes

0.55

0.60

0.65

0.70

0.75

M
ac

ro
-F

1

MetAL (Ours)
Random
BALD
Entropy
PageRank
AGE

(b) PubMed

0 5 10 15 20 25 30 35 40
Acquired nodes

0.50

0.55

0.60

0.65

0.70

0.75

M
ac

ro
-F

1

MetAL (Ours)
Random
BALD
Entropy
PageRank
AGE

(c) CORA

Figure 1. Macro-F1 score (test) of active learning algorithms with number of acquisitions. A two-layer GCN is used as the GNN model.
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Figure 2. Batch acquisition with GCN. Macro-F1 score (test) of active learning algorithms with number of acquisitions. A batch of 4
instances are acquired at each acquisition step.

• Random: Selects B unlabeled nodes randomly.

• PageRank: Select unlabeled nodes with B-largest
PageRank centrality values.

• Entropy: Calculate the entropy of predictions of the
current model over unlabeled nodes and selectB nodes
corresponding to B-largest entropy values.

• AGE (Cai et al., 2017): Selects B nodes which maxi-
mizes a linear combination of three metrics: PageRank,
model entropy and information density.

• BALD (Gal et al., 2017; Houlsby et al., 2011): Se-
lects B nodes which has the B-largest mutual informa-
tion values between predictions and model posterior.

• MetAL: Selects B items corresponding to the mini-
mum meta-gradient according to Equation (7)

For computing entropy, mutual information in BALD, and
class probabilities predicted by the current model P (ŷq =
k|G, YL) in MetAL, we use 20 iterations of MC-dropout to
approximate a Bayesian model (Gal & Ghahramani, 2016).

We execute 10 steps of gradient descent with momentum
as the inner optimization loop and then calculate the meta-
gradient matrix. We acquire the label of unlabeled items
and retrain the GNN model by performing 50 steps of adam
optimizer (Kingma & Ba, 2014). We perform 40 acquisi-
tion steps and repeat this process on 10 different randomly

initialized training and test splits for each dataset. We report
the average F1 score (Macro-averaged) over the respective
test sets. In most cases, average accuracy follows a similar
trend.

5. Results
In Figure 1 we observe that MetAL contributes to the best
performance with both GCN and SGC models used as node
classifier. We observe that the performance of SGC is infe-
rior compared to the GCN model. Lack of a hidden layer
and non-linear activation functions can be the reason con-
tributing to reduced performance. The performance drop is
noticeable, especially on the PubMed dataset. Additionally,
we perform batch-mode acquisition: acquiring labels of a
batch of 4 nodes at each step. Figure 2 shows that MetAL is
the best AL algorithm for all three datasets.

6. Conclusion
We introduce MetAL, a principled approach to perform ac-
tive learning on graph data. We express the semi-supervised
active node classification problem as a bilevel optimiza-
tion problem. Empirical performance on benchmark graphs
shows that our proposed method is superior to existing
heuristics-based AL algorithms. Understanding which char-
acteristics of an attributed graph makes AL easier or difficult
is an open research problem.
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Supplementary Material

A. Algorithm
We present the proposed algorithm here.

Algorithm 1 MetAL: Meta Learning Active Node Classifi-
cation.

Input: Graph G = (A,X), Query budget K, Initial
labels YL
Output:An improved model
θ ← train model on G with known labels YL
for i← 1 to nq = K do

Calculate posterior class probabilities with the current
model
Sample a set of NQ instances Qj from U
Train a model with perturbed labels of Qj instances
with Equation (8)
Calculate meta-gradient∇δQ1

Select the best instance q∗ using Equation (7)
Query instances q∗ and retrieve its label Yq∗
Update label set YL ← YL ∪ Yq∗
Retrain the model θ ← arg minθ l(fθ(G), YL)

end for
Return θ

B. Model Details
We implement all algorithms in Pytorch (Paszke et al., 2019)
and perform all experiments on a single Nvidia GTX 1080
GPU.

In addition to the GCN model, we perform the same ex-
periments with SGC (Wu et al., 2019a), a simplified GNN
architecture which does not include a hidden layer and non-
linear activation functions. In Figure 3, we observe that the
performance of SGC is slightly inferior compared to the
GCN model. Lack of a hidden layer and non-linear acti-
vation functions can be the reason contributing to reduced
performance.The performance drop is noticeable, specially
on the PubMed dataset.

C. Data
We consider the largest connected component as an undi-
rected graph in our experiments.

Citation Graphs. Each of these dataset is made of docu-
ments as nodes and edges between them. If one document

Table 1. Dataset statistics. Labeling rate as a percentage of total
nodes is shown within brackets.

Dataset NV NC |VL| (%)
CiteSeer 2110 6 12 (0.56)
PubMed 19717 3 6 (0.03)
CORA 2485 7 14 (0.56)

cites another, they are linked by an edge. Each node contains
bag-of-word features of its text as its attributes.

D. Running Time
Table 2 lists the execution time each algorithm spends to
acquire a set of 40 unlabeled instances on average. Even
though our proposed approach MetAL consumes additional
time compared to uncertainty-based algorithms, it is several
magnitudes faster than the graph-specific baseline AGE.
Further, the ultimate goal of applying AL is to reduce total
human time spent on labeling instances. It is safe to say that
MetAL achieves this key objective at the cost of slightly
increased acquisition time.
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Figure 3. Macro-F1 score (test) of active learning algorithms with number of acquisitions. A two-layer GCN is used as the GNN model.

Table 2. Running time (seconds): average time taken to acquire 40 unlabeled instances. Run on a single Nvidia GTX 1080 GPU.
Classifier Dataset Random Entropy PageRank AGE BALD MetAL

CiteSeer 12.8 15.3 13.4 50.3 15.4 39.5
GCN PubMed 24.2 28.2 65.9 2312.9 28.3 193.2

CORA 12.3 14.6 13.5 61.2 14.6 41.4
CiteSeer 4.7 5.0 5.6 41.0 5.1 25.0

SGC PubMed 5.0 8.1 48.8 2219.2 8.0 164.3
CORA 3.8 4.8 5.8 55.0 4.9 27.8


