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Abstract
The research in biometric recognition using hand
shape has been somewhat stagnating in the last
decade. Meanwhile, computer vision and ma-
chine learning have experienced a paradigm shift
with the renaissance of deep learning, which has
set the new state-of-the-art in many related fields.
Inspired by successful applications of deep learn-
ing for other biometric modalities, we propose
a novel approach to 3D hand shape recognition
from RGB-D data based on geometric deep learn-
ing techniques. We show how to train our model
on synthetic data and retain the performance on
real samples during test time. To evaluate our
method, we provide a new dataset NNHand RGB-
D of short video sequences and show encouraging
performance compared to diverse baselines on the
new data, as well as current benchmark dataset
HKPolyU. Moreover, the new dataset opens door
to many new research directions in hand shape
recognition.

1. Introduction
Biometric systems based on 3D hand geometry provide
an interesting alternative in places where fingerprints and
palmprints cannot be used (e.g. wearing latex gloves, very
dirty hands) and face recognition is not an option either (e.g.
wearing face masks, helmets, goggles or other protective
equipment). Solutions have been proposed in the past (Kan-
hangad et al., 2009; 2011; Wang et al., 2014a; Svoboda et al.,
2015), however, they do not offer satisfactory performance
neither are easy to use as they often impose strong con-
straints on the acquisition environment. Recent advances
in deep learning and 3D sensing suggest that one could try
to drop many of the acquisition constraints. Attempts to
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propose a novel system that would take advantage of the
latest trends, however, require new dataset, as evaluation
data for such approaches are missing at the moment.

This paper presents a novel approach to biometric hand
shape recognition by utilizing some recently developed prin-
ciples in Geometric Deep Learning (GDL) (Bronstein et al.,
2017a). In particular, our method is based on Dynamic
Graph CNN (DGCNN) (Wang et al., 2019). Taking into
consideration that a hand is a rather complex geometric ob-
ject, we replace the Global Pooling Layer with so-called
Clustered Pooling Layer, which allows having a piece-wise
descriptor (per-cluster) of the hand, instead of creating just
one global descriptor.

Successful training of GDL models however requires notice-
able amount of annotated data, which one typically does not
have in biometrics. To overcome this limitation, inspired by
works of Schuch (Schuch et al., 2016) and Svoboda (Svo-
boda et al., 2017), we created a synthetic dataset of hand
point clouds using the MANO (Romero et al., 2017) model
and show how to train the proposed model fully on synthetic
data while achieving good results on real data during the
experiments.

In order to evaluate our method, this work presents a new
dataset for less constrained 3D hand biometric recognition.
The dataset was acquired using a low cost acquisition de-
vice (an off-the-shelf RGB-D camera) in variable environ-
mental conditions (there were no constraints on where the
system was placed during acquisition). Each sample is
a short RGB-D video of a user performing a predefined
gesture, which allows researchers to capture frames in dif-
ferent poses and opens door to possibly new research areas
(e.g. non-rigid hand shape recognition, hand shape recogni-
tion from a video sequence, etc.). To set a baseline perfor-
mance, we evaluate the novel dataset on two state-of-the-art
GDL models, namely the PointNet++ (Qi et al., 2017) and
DGCNN (Wang et al., 2019).

Our main contributions are three-fold
• Clustered DGCNN: A novel geometric deep learning

architecture for 3D hand shape recognition based on
the Dynamic Graph CNN.

• Transfer learning solution for training of 3D hand
shape recognition models using a synthetically gen-
erated dataset of hands.



Clustered Dynamic Graph CNN for Biometric 3D Hand Shape Recognition

• NNHand RGB-D: New biometric dataset of RGB-D
video sequences for the purpose of 3D hand shape
recognition.

2. Clustered Dynamic Graph CNN
The human hand is a complex and highly non-rigid surface.
Moreover, RGB-D scans are often noisy. Matching noisy
samples of hands using a global descriptor seems very chal-
lenging. An easier task would be to rather aim at describing
the hand surface divided into semantically meaningful parts.
These parts can be pre-defined based on human anatomy,
for example by looking at the skeletal structure of the hand.
Such clustered description (see Figure 1(b)) retains more
information and should be robust against noise and, possibly
non-rigid, transformations.

The core of our approach is a modified Dynamic Graph
CNN architecture. In the following text, we will denote
multilayer perceptron as MLP(m,n, . . .), where m,n, . . .
are the nmber of parameters of each layer of the MLP. We
further define the shape parameter space and pose param-
eter space as S ∈ R10 and P ∈ R12 respectively. Our
model starts with two EdgeConv (Wang et al., 2019) mod-
ules, both with k = 10 nearest neighbors and max feature
aggregation type. The first module has MLP(6, 64, 64, 128)
and the latter one MLP(128 + 128, 256). Outputs of both
EdgeConv modules are concatenated and passed forward.
The model is then forked into two branches, one regress-
ing the pose parameters p ∈ P and the other one the
shape parameters s ∈ S of the input point cloud. The first
branch composed of a Global Pooling (GP) module with
MLP(128 + 256, 1024) followed by another sub-network
MLP(1024, 512, 256, 12). The second branch, which out-
puts the shape parameters s ∈ S, replaces the GP module
with novel Clustered Pooling module which internally has
an MLP(128+ 256, 1024) and is followed by another MLP
sub-block defined as MLP(1024, 512, 256, 10). Our clus-
tered Dynamic Graph CNN architecture is schematically
depicted in Figure 1(a).

Clustered Pooling Module inspired by the differentiable
graph pooling (Ying et al., 2018; Cangea et al., 2018;
Bianchi et al., 2019), the Global Pooling Module in the
shape regression sub-network is replaced with a novel Clus-
tered Pooling Module (see Figure 1(b)). It allows to dy-
namically learn a clustering function l : RF → RC , which
produces cluster assignment probability vector c ∈ RN×C

into C ∈ N clusters for a vector of N ∈ N feature points
x ∈ RN×F as

c = softmax(l(x)). (1)

To get the clustered representation, the input feature points
x ∈ RN×F further undergo a non-linear transformation
defined as f : RF → RF ′

and are subsequently aggregated

into the C clusters as:

xf = f(x), (2)

x̂ =
cTxf

D
, (3)

where the division represents a Hadamard division, D ∈
RC×F ′

is a matrix with identical columns, where each col-

umn is defined as
(∑N

i=1 ci

)T
∈ RC×1 and x̂ ∈ RC×F ′

is

the pooled representation of the transformed input xf ∈ RF ′
.

The novel clustered DGCNN architecture which we call
Clustered DGCNN is schematically depicted in Figure 1(a).

Training. The optimization of our model is posed as a
regression over the shape and pose parameters s ∈ S and
p ∈ P , and simultaneous classification of the point clusters,
while feeding a three-dimensional point cloud as an input.
It is defined using the following objective function E for a
batch of M ∈ N samples:

E = ES + λ1EP + λ2Eclust, (4)

where ES is the MSE loss for the regression of the shape
parameters

ES =
1

M

M−1∑
m=0

|ŝm − sm|2, (5)

EP is the MSE loss for the regression of the pose parameters

EP =
1

M

M−1∑
m=0

|p̂m − pm|2, (6)

and Eclust is a cross-entropy loss which enforces the classi-
fication of points into correct clusters. It is defined as:

Eclust =
1

M

M−1∑
m=0

−log

(
exp(cym

m )∑
j exp(cjm)

)
, (7)

where cm is the vector of cluster probabilities for points in
a point cloud and y are the cluster labels of these points.
Hyperparameter λ1 is weighting the importance of regress-
ing the pose parameters p ∈ P with respect to the shape
parameters s ∈ S and λ2 is a hyperparameter weighting the
importance of the cluster classification loss.

3. Experiments
The following sections describe the datasets that have been
used, the two simple baseline methods we compare to and
results in different scenarios1.

1Experimental setup details and additional epxeriments can be
found in the supplemnetary material.
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(a) Clustered DGCNN architecture (b) Global vs. Clustered Pooling

Figure 1. Our novel Clustered DGCNN: (a) The network architecture; (b) The difference between global and clustered pooling of the
N input feature points. Global pooling creates a single new descriptor for the whole hand shape, while clustered pooling creates a new
descriptor for each of the C semantically meaningful clusters.

3.1. Datasets

Synthetic training dataset Recent developments in hand
pose estimation (Romero et al., 2017; Kulon et al., 2019;
2020) have provided us, besides others, with a very conve-
nient deformable model of three-dimensional hands called
MANO (Romero et al., 2017), which is publicly available.
It allows generating hands of arbitrary shapes in arbitrary
poses. We use the pre-trained MANO hand model to gen-
erate 200 subjects with 50 poses each, resulting in a total
of 10000 three-dimensional hands, whose shape and pose
is controlled via s ∈ S and p ∈ P . Such three-dimensional
models can be easily reprojected into range data.

Testing datasets Extensive evaluation of our approach
on both the new dataset and a standard benchmark
HKPolyU (Kanhangad et al., 2009; 2011) has been carried
out.

3.2. Input point cloud pre-processing

Before feeding a hand point cloud to a model, it undergoes
the following pre-processing steps. First, each point cloud
is subsampled using Furthest Point Sampling (FPS) to 4096
points. Consequently, each sample is aligned to a reference
hand point cloud using the Iterative Closest Point (ICP)
algorithm.

3.3. Baseline methods

Two state-of-the-art algorithms in deep learning on point
clouds have been used as baselines. In particular, the Point-
Net++ (Qi et al., 2017) architecture (PointNet++ and Big
PointNet++ baselines), successor of the famous PointNet
by (Qi et al., 2016), and the Dynamic Graph CNN (Wang
et al., 2019) (DGCNN and Big DGCNN baselines), which
are both implemented as a part of PyTorch Geometric li-
brary (Fey & Lenssen, 2019).

3.4. Feature matching

For matching, we consider the per-cluster shape parameters
as the output feature vector in case of our novel Clustered
DGCNN. There are 21 different clusters which results in a
vector of 210 dimensions. For a fair comparison, in case of
PointNet++ and DGCNN baselines, which both perform a
global pooling, we take the output of the layer before the last
in the shape regression network as the feature vector, which
has 256-dimensions. Different metrics have been tried for
computing the distance, where the L1 metric has shown to
be the most suitable one.

3.5. Results

We have evaluated our method in both All-To-All and
Reference-Probe matching scenarios. Employed dataset
splitting strategies for different datasets are described in the
supplementary material. In both scenarios, our novel Clus-
tered DGCNN outperforms both baselines by a margin and
sets new state-of-the-art on the NNHand RGB-D dataset as
well as HKPolyU v1 and v2 standard benchmarks.

We show the importance of the novel clustering loss by ad-
ditionaly comparing to a Clustered DGCNN model trained
without it (w/o Eclust in the tables below).

Comparing to the results of (?Kanhangad et al., 2011), we
use heavily downsampled inputs, yet obtain on-par or supe-
rior perfromance compared to the original works. Remark-
ably, in case of reference - probe matching on the HKPolyU
v2 dataset, we can compare to the results presented by (Kan-
hangad et al., 2011), where we outperform their method
in terms of EER by a huge margin of 7% (which is an im-
provement by 60% compared to their EER of 17.2%). This
further supports the high potential of our novel method.
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Table 1. Matching performance of presented methods on different datasets in terms of Top-1 accuracy and EER.

Matching Type Method
NNHand RGB-D HKPolyU v1 HKPolyU v2

Top-1 [%] EER [%] Top-1 [%] EER [%] Top-1 [%] EER [%]

All-To-All

PointNet++ 53.42 47.19 30.40 34.28 9.12 37.55
Big PointNet++ 48.35 34.79 40.62 38.51 17.72 44.24

DGCNN 76.20 21.70 84.63 19.03 39.12 27.40
Big DGCNN 73.54 22.05 73.79 19.66 29.30 27.62

Ours (w/o Eclust) 94.94 16.67 97.01 12.70 49.30 24.34
Ours 98.23 14.45 99.27 7.92 59.65 25.08

Reference-Probe

PointNet++ 24.05 39.08 17.29 33.14 12.10 35.39
Big PointNet++ 18.86 40.54 22.37 34.72 13.68 37.70

DGCNN 24.56 24.31 54.24 16.79 42.98 16.58
Big DGCNN 28.48 23.45 45.54 15.83 31.92 19.53

Ours (w/o Eclust) 51.14 17.09 69.83 11.82 56.84 14.36
Ours 62.28 13.75 85.65 7.26 69.82 10.48
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Figure 2. All-To-All matching ROC curves (tradeoff between ac-
ceptance and rejection rates) of the presented methods on different
datasets.
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Figure 3. Reference-probe matching ROC curves (tradeoff be-
tween acceptance and rejection rates) of the presented methods on
different datasets.
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A. NNHand RGB-D Dataset
This section introduces a new dataset of human hands col-
lected for the purpose of evaluating hand biometric systems.
At the moment, the first version of the dataset, with suffix v1,
has been released and comprises of 79 individuals in total.
It is planned to continue collecting extended version v2 with
the aim of about 200 different identities.

The dataset is collected using an off-the-shelf range camera
Intel RealSense SR-300 (Zabatani et al., 2019) in different
environments and lighting conditions. Each person con-
tributing to the dataset is asked to repeatedly perform three
different series of gestures with the hand in front of the cam-
era, resulting in three RGB-D video sequences collected for
each participant. Each subject in the dataset has the follow-
ing annotations: User ID, Gender and Age. The dataset is
mainly targetting three-dimensional hand shape recognition.
However, the presence of RGB-D information also allows
attempting two-dimensional shape or palmprint recognition.
Attempting palmprint recognition on this dataset might how-
ever be extremely challenging due to the poor quality of the
RGB data in many sequences.

Video sequences There are three types of gestures that
each participant is asked to perform repeatedly four times.
Between the gestures, the participants are asked to remove
their hands from the scene and re-enter. This naturally forces
them to re-introduce the hand in the scene each time and
provides more diverse and realistic samples.

The recorded video sequences are depicted in Figure 4. A
more detailed description of the dataset can be found on the
project webpage2.

Applications The main purpose of the dataset is to serve
as a new evaluation benchmark for three-dimensional hand
shape recognition based on a low-cost sensor. The dataset
allows for experiments with non-rigid three-dimensional
shape recognition from either dynamic video sequences or
static frames as well as attempts to perform recognition
viewing the hand from either its palm or dorsal side. Addi-
tionally, the Gender and Age information can be used for
experiments aiming at recognizing the gender or age of a
person based on the shape of their hand.

B. Experimental setup
The following sections describe the datasets that have been
used, the two simple baseline methods we compare to and
results in different scenarios.

2https://handgeometry.nnaisense.com/

B.1. Datasets

Synthetic training dataset Recent developments in hand
pose estimation (Romero et al., 2017; Kulon et al., 2019;
2020) have provided us, besides others, with a very conve-
nient deformable model of three-dimensional hands called
MANO (Romero et al., 2017), which is publicly available.
It allows generating hands of arbitrary shapes in arbitrary
poses. The generation of hand sample is controlled by two
sets of parameters. First are the so-called shape parameters
in space S ⊆ R10 that define the overall size of the hand
and lengths and thickness of the fingers. The second group
of parameters are the pose parameters in space P ⊆ R12,
where the first 9 parameters define the hand pose in terms
of non-rigid deformations (e.g. bending fingers, etc.) and
the last 3 parameters define the orientation of the whole
hand in the three-dimensional space. We use the pre-trained
MANO hand model to generate 200 subjects with 50 poses
each, resulting in a total of 10000 three-dimensional hands,
whose shape and pose is controlled via s ∈ S and p ∈ P .
Such three-dimensional models can be easily reprojected
into range data.

NNHand RGB-D database A dataset of fixed RGB-D
frames has been sampled from the video sequences. For
each subject, the sequence number 1 has been taken and 10
samples have been acquired while the hand is held straight
up with the fingers extended and palm facing the camera.
The dataset currently contains 79 subjects, which gives a
total of 790 samples. Similarly, the sequence number 2 has
been used to obtain a second set of 790 samples. For repro-
ducibility of this evaluation, the acquired subset of RGB-D
frames is stored together with the original NNHand RGB-
D dataset. Each frame captured from the video sequences
undergoes several pre-processing steps.

First, the background is removed using the depth informa-
tion. Subsequently, to avoid problems with objects or other
parts of the body appearing in the frames, a mask keeping
only the central area of each frame is applied (see Figure 5).
Next, an OpenPose-based (Cao et al., 2017) single RGB
image hand pose estimator3 is used to estimate the hand
keypoints. Thanks to the one-to-one mapping between RGB
and depth information, this allows to filter out the undesired
part of the hand below the wrist in the whole RGB-D frame.
Step-by-step preprocessing of a random frame is depicted
in Figure 5.

HKPolyU v1 database. A dataset of 177 subjects con-
taining in total 1770 RGB-D samples that were acquired
with high precision Minolta Vivid 910 range scanner. Each
subject has been scanned in two sessions in different time
periods, obtaining 5 samples per session. The precision of

3https://github.com/erezposner/HandKeyPointDetector
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Figure 4. The three sequences (one in each row) recorded for each subject in the dataset. The first sequence is sliding hand vertically
into the scene with an open palm and removing it again, repeatedly. In the second sequence, rotation of the hand is added when the hand
is upright. In the last sequence, the user closes and reopens the fist while the hand is upright.

Figure 5. Each sample in the dataset undergoes the following
pre-processing steps.

the data is enough to perform both 3D hand geometry and
3D palmprint recognition.

HKPolyU v2 database. It is a dataset of 114 subjects
with a total of 570 RGB-D samples that were acquired using
the Minolta Vivid 910 range scanner. Each subject has
been scanned 5 times, each time presenting his hand on
different global orientation. Besides, the precision of the
data is enough to perform both 3D hand geometry and 3D
palmprint recognition.

B.2. Input point cloud pre-processing

Before feeding a hand point cloud to a model, it undergoes
the following pre-processing steps. First, each point cloud
is subsampled using Furthest Point Sampling (FPS) to 4096
points. Consequently, each sample is aligned to a reference
hand point cloud using the Iterative Closest Point (ICP)
algorithm.

B.3. Baseline methods

Two state-of-the-art algorithms in deep learning on point
clouds have been used as baselines. In particular, the Point-
Net++ (Qi et al., 2017) architecture, successor of the fa-
mous PointNet by (Qi et al., 2016), and the Dynamic Graph
CNN (DGCNN) (Wang et al., 2019), which are both im-
plemented as a part of PyTorch Geometric library (Fey &
Lenssen, 2019).

PointNet++ The baseline PointNet++ architecture has
two Set Abstraction (SA) (Qi et al., 2017) modules. The
first SA module has subsampling ratio r = 0.5, neighbor-
hood radius ρ = 0.2 and MLP(3, 64, 64, 128). It is fol-
lowed by second SA module with r = 0.25, ρ = 0.4 and
MLP(3 + 128, 128, 128, 256). The output of the second
SA module is forked into two parallel branches. The first
branch is supposed to output the shape parameters s ∈ S . It
is composed by a Global Abstraction (GA) (Qi et al., 2017)
module with MLP(3+256, 256, 512, 1024) followed by an-
other MLP subblock defined as MLP(1024, 512, 256, 10).
The second branch, instead, is outputting the pose pa-
rameters p ∈ P and is composed of a GA module with
MLP(3 + 256, 256, 512, 1024) whose output is fed to an
MLP module MLP(1024, 512, 256, 12).

Big PointNet++ Second version with more parameters
has been evaluated in parallel. This model has a bigger
subnetwork for the shape regression. In particular, the GA
module is equipped with MLP(3 + 256, 256, 512, 1024 ×
21) whose output is fed to an MLP module MLP(1024 ×
21, 1024×2112 , 1024×2124 , 10× 21, 10).

Dynamic Graph CNN (DGCNN) The model starts with
two EdgeConv (Wang et al., 2019) modules, both with
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k = 10 and max aggregation type. The first module
has MLP(6, 64, 64, 128) and the latter one MLP(128 +
128, 256). Outputs of both EdgeConv modules are concate-
nated and passed forward. The model is then forked into
two branches, one regressing the pose parameters p ∈ P
and the other one the shape parameters s ∈ S of the input
point cloud. The first branch composed of a GA module
with MLP(128+ 256, 1024) followed by another MLP sub-
block with defined as MLP(1024, 512, 256, 12). The sec-
ond branch is almost the same, with only one difference:
The final MLP block’s output is 10-dimensional as it outputs
the shape parameters s.

Big DGCNN Second version with more parameters has
been evaluated in parallel. This model has a bigger sub-
network for the shape regression. In particular, the GA
module is equipped with MLP(128 + 256, 1024 × 21)
whose output is fed to an MLP module MLP(1024 ×
21, 1024×2112 , 1024×2124 , 10× 21, 10).

B.4. Matching scenarios and splitting strategies

All-To-All matching In this experiment, each output fea-
ture vector is taken and its distance to feature vectors of all
other samples in the dataset is computed. The sample with
the shortest distance is taken as the matching class.

Reference-Probe matching A very popular way of evalu-
ating biometric algorithms on diverse datasets is performing
so-called reference - probe matching, where the dataset is
split into two parts, one is the reference (i.e. the database)
and the rest is the probe (i.e. the samples one wants to
identify). Different splitting strategies have been applied
depending on the dataset at hand.

For the HKPolyU v1 dataset, the splitting strategy proposed
by (Kanhangad et al., 2009) is followed, choosing the 5
samples from the first session as the reference and the 5
samples from the second session as the probe for each user.

In case of HKPolyU v2, we use the splitting strategy used
in (Kanhangad et al., 2011), where 1 sample is chosen as
probe and all the other 4 as reference. This process is re-
peated 5 times, always picking different sample as the probe
to produce the genuine and impostor scores for the genera-
tion of the ROC curve and computation of the EER.

NNHand RGB-D database has 10 samples per user from
sequence 1 and another 10 samples from sequence 2. For
each user, the 10 samples from sequence 1 are selected as
the reference and the other 10 samples from sequence 2 are
left as the probe.

B.5. Semantic segmentation analysis

Our method (Clustered DGCNN), besides others, outputs
the semantic segmentation of the point cloud into parts,
which the network was enforced to learn during training by
the cluster assignment loss (see Equation 4) using the cluster
annotations provided with the synthetic training samples.

There is no ground truth segmentation for the testing data
and thus we provide a qualitative evaluation in Figure 6,
which supports that the Clustered DGCNN has learnt to
segment the point cloud in a meaningful way. Aggregat-
ing information inside each cluster, therefore, provides a
meaningful piece-wise representation of the point cloud.

One should notice that due to the presence of noise in the
input point clouds, the segmentation is prone to produce
some outliers in the finger regions (see Figure 6). Influence
of such inconsistencies on the final descriptor is reduced by
averaging feature vectors in each semantic region in order
to produce the global segment descriptor (i.e. a cluster).

B.6. Ablation study

Two ablation studies are performed in order to justify our
architecture design choices as well as the employed loss
function.

Clustered Pooling Layer To clarify that the novel archi-
tecture does not perform better only because its increased
capacity compared to the classical PointNet++ and DGCNN,
we created their extended versions, which we call Big Point-
Net++ and Big DGCNN respectively. The architectures are
the same, but the number of parameters in the shape regres-
sion subnetwork is changed (see Section B.3 for details).
The results in Table 1 and Figure 2 and 3 show that simply
increasing the network capacity does not result in noticeable
performance gain in most cases.

Semantic hand clustering We train another version of
Clustered DGCNN without the cluster assignment loss
Eclust to demonstrate its importance. An example of the
learnt segmentation without Eclust is shown in the last row
of Figure 6. Compared to our novel solution (the first two
rows in the figure), there is no apparent meaning to the pro-
duced segmentation of the hand. Moreover, by far not all of
the 21 available clusters are well exploited. The results in
Table 1 and Figure 2 and 3 confirm that without semanti-
cally meaningful clustering, the solution is less robust and
yields significantly lower performances especially in the
case of reference-probe matching.



Clustered Dynamic Graph CNN for Biometric 3D Hand Shape Recognition

(a) (b)

(c) (d)

(e) (f)

Figure 6. The first two rows show clustering of points computed
by Clustered DGCNN for two real samples. One can notice some
inconsistency around some of the fingers. Last row shows the
effect of omitting clustering loss Eclust during training. (a,c,e)
The original point cloud; (b,d,e) Result of clustering the point
cloud.


